aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--gyp/opts.gyp4
-rw-r--r--gyp/opts.gypi2
-rw-r--r--src/core/SkOpts.cpp2
-rw-r--r--src/opts/SkOpts_avx2.cpp237
-rw-r--r--src/opts/SkOpts_sse41.cpp212
5 files changed, 366 insertions, 91 deletions
diff --git a/gyp/opts.gyp b/gyp/opts.gyp
index 396a37e3ef..ae4b294fdb 100644
--- a/gyp/opts.gyp
+++ b/gyp/opts.gyp
@@ -149,7 +149,7 @@
],
'sources': [ '<@(avx_sources)' ],
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '3' } },
- 'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx' ] },
+ 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx' ] },
'conditions': [
[ 'not skia_android_framework', { 'cflags': [ '-mavx' ] }],
],
@@ -167,7 +167,7 @@
],
'sources': [ '<@(avx2_sources)' ],
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '5' } },
- 'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx2' ] },
+ 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx2' ] },
'conditions': [
[ 'not skia_android_framework', { 'cflags': [ '-mavx2' ] }],
],
diff --git a/gyp/opts.gypi b/gyp/opts.gypi
index f2d36b9dfc..1a0d0300a4 100644
--- a/gyp/opts.gypi
+++ b/gyp/opts.gypi
@@ -60,6 +60,6 @@
'<(skia_src_path)/opts/SkOpts_avx.cpp',
],
'avx2_sources': [
- '<(skia_src_path)/core/SkForceCPlusPlusLinking.cpp',
+ '<(skia_src_path)/opts/SkOpts_avx2.cpp',
],
}
diff --git a/src/core/SkOpts.cpp b/src/core/SkOpts.cpp
index 28dd1afc71..674a1b7151 100644
--- a/src/core/SkOpts.cpp
+++ b/src/core/SkOpts.cpp
@@ -92,7 +92,7 @@ namespace SkOpts {
void Init_sse41();
void Init_sse42() {}
void Init_avx();
- void Init_avx2() {}
+ void Init_avx2();
void Init_neon();
static void init() {
diff --git a/src/opts/SkOpts_avx2.cpp b/src/opts/SkOpts_avx2.cpp
new file mode 100644
index 0000000000..b943317227
--- /dev/null
+++ b/src/opts/SkOpts_avx2.cpp
@@ -0,0 +1,237 @@
+/*
+ * Copyright 2015 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkOpts.h"
+#define SK_OPTS_NS sk_avx2
+
+#ifndef SK_SUPPORT_LEGACY_X86_BLITS
+
+namespace sk_avx2 {
+
+// AVX2 has masked loads and stores. We'll use them for N<4 pixels.
+static __m128i mask(int n) {
+ static const int masks[][4] = {
+ { 0, 0, 0, 0},
+ {~0, 0, 0, 0},
+ {~0,~0, 0, 0},
+ {~0,~0,~0, 0},
+ };
+ return _mm_load_si128((const __m128i*)masks+n);
+}
+
+// Load 8, 4, or 1-3 constant pixels or coverages (4x replicated).
+static __m256i next8( uint32_t val) { return _mm256_set1_epi32(val); }
+static __m128i next4( uint32_t val) { return _mm_set1_epi32(val); }
+static __m128i tail(int, uint32_t val) { return _mm_set1_epi32(val); }
+
+static __m256i next8( uint8_t val) { return _mm256_set1_epi8(val); }
+static __m128i next4( uint8_t val) { return _mm_set1_epi8(val); }
+static __m128i tail(int, uint8_t val) { return _mm_set1_epi8(val); }
+
+// Load 8, 4, or 1-3 variable pixels or coverages (4x replicated).
+// next8() and next4() increment their pointer past what they just read. tail() doesn't bother.
+static __m256i next8(const uint32_t*& ptr) {
+ auto r = _mm256_loadu_si256((const __m256i*)ptr);
+ ptr += 8;
+ return r;
+}
+static __m128i next4(const uint32_t*& ptr) {
+ auto r = _mm_loadu_si128((const __m128i*)ptr);
+ ptr += 4;
+ return r;
+}
+static __m128i tail(int n, const uint32_t* ptr) {
+ return _mm_maskload_epi32((const int*)ptr, mask(n));
+}
+
+static __m256i next8(const uint8_t*& ptr) {
+ auto r = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)ptr));
+ r = _mm256_shuffle_epi8(r, _mm256_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12,
+ 0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12));
+ ptr += 8;
+ return r;
+}
+static __m128i next4(const uint8_t*& ptr) {
+ auto r = _mm_shuffle_epi8(_mm_cvtsi32_si128(*(const uint32_t*)ptr),
+ _mm_setr_epi8(0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3));
+ ptr += 4;
+ return r;
+}
+static __m128i tail(int n, const uint8_t* ptr) {
+ uint32_t x = 0;
+ switch (n) {
+ case 3: x |= (uint32_t)ptr[2] << 16;
+ case 2: x |= (uint32_t)ptr[1] << 8;
+ case 1: x |= (uint32_t)ptr[0] << 0;
+ }
+ auto p = (const uint8_t*)&x;
+ return next4(p);
+}
+
+// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
+template <typename Dst, typename Src, typename Cov, typename Fn>
+static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
+ // We don't want to muck with the callers' pointers, so we make them const and copy here.
+ Dst d = dst;
+ Src s = src;
+ Cov c = cov;
+
+ // Writing this as a single while-loop helps hoist loop invariants from fn.
+ while (n) {
+ if (n >= 8) {
+ _mm256_storeu_si256((__m256i*)t, fn(next8(d), next8(s), next8(c)));
+ t += 8;
+ n -= 8;
+ continue;
+ }
+ if (n >= 4) {
+ _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
+ t += 4;
+ n -= 4;
+ }
+ if (n) {
+ _mm_maskstore_epi32((int*)t, mask(n), fn(tail(n,d), tail(n,s), tail(n,c)));
+ }
+ return;
+ }
+}
+
+// packed //
+// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
+// unpacked //
+
+// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
+// e.g [ BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
+//
+// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
+// e.g. [ B_G_ R_A_ b_g_ r_a_ ... ] for pixels or [ C_C_ C_C_ c_c_ c_c_ ... ] for coverage,
+// where _ is a zero byte.
+//
+// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
+// by unpacking arguments, calling fn, then packing the results.
+//
+// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
+// and all the packing and unpacking is handled automatically.
+
+template <typename Fn>
+struct Adapt {
+ Fn fn;
+
+ __m256i operator()(__m256i d, __m256i s, __m256i c) {
+ auto lo = [](__m256i x) { return _mm256_unpacklo_epi8(x, _mm256_setzero_si256()); };
+ auto hi = [](__m256i x) { return _mm256_unpackhi_epi8(x, _mm256_setzero_si256()); };
+ return _mm256_packus_epi16(fn(lo(d), lo(s), lo(c)),
+ fn(hi(d), hi(s), hi(c)));
+ }
+
+ __m128i operator()(__m128i d, __m128i s, __m128i c) {
+ auto unpack = [](__m128i x) { return _mm256_cvtepu8_epi16(x); };
+ auto pack = [](__m256i x) {
+ auto x01 = x,
+ x23 = _mm256_permute4x64_epi64(x, 0xe); // 0b1110
+ return _mm256_castsi256_si128(_mm256_packus_epi16(x01, x23));
+ };
+ return pack(fn(unpack(d), unpack(s), unpack(c)));
+ }
+};
+
+template <typename Fn>
+static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
+
+// These helpers all work exclusively with unpacked 8-bit values,
+// except div255() which is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
+
+// Divide by 255 with rounding.
+// (x+127)/255 == ((x+128)*257)>>16.
+// Sometimes we can be more efficient by breaking this into two parts.
+static __m256i div255_part1(__m256i x) { return _mm256_add_epi16 (x, _mm256_set1_epi16(128)); }
+static __m256i div255_part2(__m256i x) { return _mm256_mulhi_epu16(x, _mm256_set1_epi16(257)); }
+static __m256i div255(__m256i x) { return div255_part2(div255_part1(x)); }
+
+// (x*y+127)/255, a byte multiply.
+static __m256i scale(__m256i x, __m256i y) { return div255(_mm256_mullo_epi16(x, y)); }
+
+// (255 * x).
+static __m256i mul255(__m256i x) { return _mm256_sub_epi16(_mm256_slli_epi16(x, 8), x); }
+
+// (255 - x).
+static __m256i inv(__m256i x) { return _mm256_xor_si256(_mm256_set1_epi16(0x00ff), x); }
+
+// ARGB argb ... -> AAAA aaaa ...
+static __m256i alphas(__m256i px) {
+ const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
+ const int _ = ~0;
+ return _mm256_shuffle_epi8(px, _mm256_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_,
+ a+8,_,a+8,_,a+8,_,a+8,_,
+ a+0,_,a+0,_,a+0,_,a+0,_,
+ a+8,_,a+8,_,a+8,_,a+8,_));
+}
+
+
+// SrcOver, with a constant source and full coverage.
+static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
+ // We want to calculate s + (d * inv(alphas(s)) + 127)/255.
+ // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
+
+ // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
+ // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
+ auto s = _mm256_cvtepu8_epi16(_mm_set1_epi32(src)),
+ s_255_128 = div255_part1(mul255(s)),
+ A = inv(alphas(s));
+
+ const uint8_t cov = 0xff;
+ loop(n, tgt, dst, src, cov, adapt([=](__m256i d, __m256i, __m256i) {
+ return div255_part2(_mm256_add_epi16(s_255_128, _mm256_mullo_epi16(d, A)));
+ }));
+}
+
+// SrcOver, with a constant source and variable coverage.
+// If the source is opaque, SrcOver becomes Src.
+static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* cov, size_t covRB,
+ SkColor color, int w, int h) {
+ if (SkColorGetA(color) == 0xFF) {
+ const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
+ while (h --> 0) {
+ loop(w, dst, (const SkPMColor*)dst, src, cov,
+ adapt([](__m256i d, __m256i s, __m256i c) {
+ // Src blend mode: a simple lerp from d to s by c.
+ // TODO: try a pmaddubsw version?
+ return div255(_mm256_add_epi16(_mm256_mullo_epi16(inv(c),d),
+ _mm256_mullo_epi16( c ,s)));
+ }));
+ dst += dstRB / sizeof(*dst);
+ cov += covRB / sizeof(*cov);
+ }
+ } else {
+ const SkPMColor src = SkPreMultiplyColor(color);
+ while (h --> 0) {
+ loop(w, dst, (const SkPMColor*)dst, src, cov,
+ adapt([](__m256i d, __m256i s, __m256i c) {
+ // SrcOver blend mode, with coverage folded into source alpha.
+ auto sc = scale(s,c),
+ AC = inv(alphas(sc));
+ return _mm256_add_epi16(sc, scale(d,AC));
+ }));
+ dst += dstRB / sizeof(*dst);
+ cov += covRB / sizeof(*cov);
+ }
+ }
+}
+
+} // namespace sk_avx2
+
+#endif
+
+namespace SkOpts {
+ void Init_avx2() {
+ #ifndef SK_SUPPORT_LEGACY_X86_BLITS
+ blit_row_color32 = sk_avx2::blit_row_color32;
+ blit_mask_d32_a8 = sk_avx2::blit_mask_d32_a8;
+ #endif
+ }
+}
diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp
index 16ba87ad87..f097e56c5e 100644
--- a/src/opts/SkOpts_sse41.cpp
+++ b/src/opts/SkOpts_sse41.cpp
@@ -12,88 +12,67 @@
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
-// This file deals mostly with unpacked 8-bit values,
-// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top.
-
-// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4.
-struct m128ix2 { __m128i lo, hi; };
-
-// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels.
-static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); }
-static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }
-
-// pack() converts back, from 4 unpacked pixels to 4 packed pixels.
-static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); }
-
-// These nextN() functions abstract over the difference between iterating over
-// an array of values and returning a constant value, for uint8_t and uint32_t.
-// The nextN() taking pointers increment that pointer past where they read.
-//
-// nextN() returns N unpacked pixels or 4N unpacked coverage values.
-
-static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); }
-static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); }
-static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; }
-
-static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); }
-static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); }
-static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; }
+namespace sk_sse41 {
-static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); }
-static inline __m128i next2(const uint8_t*& ptr) {
- auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr);
- ptr += 2;
- const int _ = ~0;
- return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_));
-}
-static inline m128ix2 next4(const uint8_t*& ptr) {
- auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr);
+// An SSE register holding at most 64 bits of useful data in the low lanes.
+struct m64i {
+ __m128i v;
+ /*implicit*/ m64i(__m128i v) : v(v) {}
+ operator __m128i() const { return v; }
+};
+
+// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
+static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
+static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
+static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
+
+static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
+static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
+static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
+
+// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
+// incrementing the pointer past what we read.
+static __m128i next4(const uint32_t*& ptr) {
+ auto r = _mm_loadu_si128((const __m128i*)ptr);
ptr += 4;
- const int _ = ~0;
- auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)),
- hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_));
- return { lo, hi };
+ return r;
}
-
-static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); }
-static inline __m128i next2(const uint32_t*& ptr) {
- auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr));
+static m64i next2(const uint32_t*& ptr) {
+ auto r = _mm_loadl_epi64((const __m128i*)ptr);
ptr += 2;
return r;
}
-static inline m128ix2 next4(const uint32_t*& ptr) {
- auto packed = _mm_loadu_si128((const __m128i*)ptr);
- ptr += 4;
- return { unpacklo(packed), unpackhi(packed) };
+static m64i next1(const uint32_t*& ptr) {
+ auto r = _mm_cvtsi32_si128(*ptr);
+ ptr += 1;
+ return r;
}
-// Divide by 255 with rounding.
-// (x+127)/255 == ((x+128)*257)>>16.
-// Sometimes we can be more efficient by breaking this into two parts.
-static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
-static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
-static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
-
-// (x*y+127)/255, a byte multiply.
-static inline __m128i scale(__m128i x, __m128i y) {
- return div255(_mm_mullo_epi16(x, y));
+// xyzw -> xxxx yyyy zzzz wwww
+static __m128i replicate_coverage(__m128i xyzw) {
+ const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
+ return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
}
-// (255 - x).
-static inline __m128i inv(__m128i x) {
- return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16.
+static __m128i next4(const uint8_t*& ptr) {
+ auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
+ ptr += 4;
+ return r;
}
-
-// ARGB argb -> AAAA aaaa
-static inline __m128i alphas(__m128i px) {
- const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
- const int _ = ~0;
- return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
+static m64i next2(const uint8_t*& ptr) {
+ auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
+ ptr += 2;
+ return r;
+}
+static m64i next1(const uint8_t*& ptr) {
+ auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
+ ptr += 1;
+ return r;
}
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
template <typename Dst, typename Src, typename Cov, typename Fn>
-static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
+static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
// We don't want to muck with the callers' pointers, so we make them const and copy here.
Dst d = dst;
Src s = src;
@@ -102,30 +81,85 @@ static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const
// Writing this as a single while-loop helps hoist loop invariants from fn.
while (n) {
if (n >= 4) {
- auto d4 = next4(d),
- s4 = next4(s),
- c4 = next4(c);
- auto lo = fn(d4.lo, s4.lo, c4.lo),
- hi = fn(d4.hi, s4.hi, c4.hi);
- _mm_storeu_si128((__m128i*)t, pack(lo,hi));
+ _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
t += 4;
n -= 4;
continue;
}
if (n & 2) {
- auto r = fn(next2(d), next2(s), next2(c));
- _mm_storel_epi64((__m128i*)t, pack(r,r));
+ _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
t += 2;
}
if (n & 1) {
- auto r = fn(next1(d), next1(s), next1(c));
- *t = _mm_cvtsi128_si32(pack(r,r));
+ *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
}
return;
}
}
-namespace sk_sse41 {
+// packed
+// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
+// unpacked
+
+// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
+// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
+//
+// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
+// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
+// where _ is a zero byte.
+//
+// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
+// by unpacking arguments, calling fn, then packing the results.
+//
+// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
+// and all the packing and unpacking is handled automatically.
+
+template <typename Fn>
+struct Adapt {
+ Fn fn;
+
+ __m128i operator()(__m128i d, __m128i s, __m128i c) {
+ auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
+ auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
+ return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
+ fn(hi(d), hi(s), hi(c)));
+ }
+
+ m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
+ auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
+ auto r = fn(lo(d), lo(s), lo(c));
+ return _mm_packus_epi16(r, r);
+ }
+};
+
+template <typename Fn>
+static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
+
+// These helpers all work exclusively with unpacked 8-bit values,
+// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
+
+// Divide by 255 with rounding.
+// (x+127)/255 == ((x+128)*257)>>16.
+// Sometimes we can be more efficient by breaking this into two parts.
+static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
+static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
+static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
+
+// (x*y+127)/255, a byte multiply.
+static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
+
+// (255 * x).
+static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
+
+// (255 - x).
+static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
+
+// ARGB argb -> AAAA aaaa
+static __m128i alphas(__m128i px) {
+ const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
+ const int _ = ~0;
+ return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
+}
// SrcOver, with a constant source and full coverage.
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
@@ -134,14 +168,14 @@ static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
- __m128i s = next2(src),
- s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))),
+ __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
+ s_255_128 = div255_part1(mul255(s)),
A = inv(alphas(s));
const uint8_t cov = 0xff;
- loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) {
+ loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
- });
+ }));
}
// SrcOver, with a constant source and variable coverage.
@@ -152,23 +186,26 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
if (SkColorGetA(color) == 0xFF) {
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
while (h --> 0) {
- loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
+ loop(w, dst, (const SkPMColor*)dst, src, cov,
+ adapt([](__m128i d, __m128i s, __m128i c) {
// Src blend mode: a simple lerp from d to s by c.
// TODO: try a pmaddubsw version?
- return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s)));
- });
+ return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
+ _mm_mullo_epi16( c ,s)));
+ }));
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
} else {
const SkPMColor src = SkPreMultiplyColor(color);
while (h --> 0) {
- loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
+ loop(w, dst, (const SkPMColor*)dst, src, cov,
+ adapt([](__m128i d, __m128i s, __m128i c) {
// SrcOver blend mode, with coverage folded into source alpha.
__m128i sc = scale(s,c),
AC = inv(alphas(sc));
return _mm_add_epi16(sc, scale(d,AC));
- });
+ }));
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
@@ -176,6 +213,7 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
}
} // namespace sk_sse41
+
#endif
namespace SkOpts {