aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--src/core/SkBlurImageFilter.cpp393
-rw-r--r--tests/ImageFilterTest.cpp10
2 files changed, 24 insertions, 379 deletions
diff --git a/src/core/SkBlurImageFilter.cpp b/src/core/SkBlurImageFilter.cpp
index e9682ff301..5d9a1cf33a 100644
--- a/src/core/SkBlurImageFilter.cpp
+++ b/src/core/SkBlurImageFilter.cpp
@@ -7,16 +7,11 @@
#include "SkBlurImageFilter.h"
-#include <algorithm>
-
-#include "SkArenaAlloc.h"
#include "SkAutoPixmapStorage.h"
-#include "SkBitmap.h"
#include "SkColorData.h"
#include "SkColorSpaceXformer.h"
#include "SkTFitsIn.h"
#include "SkGpuBlurUtils.h"
-#include "SkNx.h"
#include "SkOpts.h"
#include "SkReadBuffer.h"
#include "SkSpecialImage.h"
@@ -28,18 +23,13 @@
#include "SkGr.h"
#endif
-// The value where the three pass window calculation results in a zero window.
-// N[Solve[sigma*3*Sqrt[2 Pi]/4 == 1/2, sigma], 16]
-static constexpr double kZeroWindow = 0.26596152026762;
-static constexpr double kPi = 3.14159265358979323846264338327950288;
-
class SkBlurImageFilterImpl final : public SkImageFilter {
public:
SkBlurImageFilterImpl(SkScalar sigmaX,
- SkScalar sigmaY,
- sk_sp<SkImageFilter> input,
- const CropRect* cropRect,
- SkBlurImageFilter::TileMode tileMode);
+ SkScalar sigmaY,
+ sk_sp<SkImageFilter> input,
+ const CropRect* cropRect,
+ SkBlurImageFilter::TileMode tileMode);
SkRect computeFastBounds(const SkRect&) const override;
@@ -172,342 +162,6 @@ static void get_box3_params(SkScalar s, int *kernelSize, int* kernelSize3, int *
}
}
-#if !defined(SK_SUPPORT_LEGACY_BLUR_IMAGE)
-
-// This is defined by the SVG spec:
-// https://drafts.fxtf.org/filter-effects/#feGaussianBlurElement
-static int calculate_window(double sigma) {
- // NB 136 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
- // using the Gauss filter. It also limits the size of buffers used hold intermediate values.
- // Explanation of maximums:
- // sum0 = window * 255
- // sum1 = window * sum0 -> window * window * 255
- // sum2 = window * sum1 -> window * window * window * 255 -> window^3 * 255
- //
- // The value window^3 * 255 must fit in a uint32_t. So,
- // window^3 < 2^32. window = 255.
- //
- // window = floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5)
- // For window <= 255, the largest value for sigma is 136.
- sigma = SkTPin(sigma, 0.0, 136.0);
- auto possibleWindow = static_cast<int>(floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5));
- return std::max(1, possibleWindow);
-}
-
-// Calculating the border is tricky. The border is the distance in pixels between the first dst
-// pixel and the first src pixel (or the last src pixel and the last dst pixel).
-// I will go through the odd case which is simpler, and then through the even case. Given a
-// stack of filters seven wide for the odd case of three passes.
-//
-// S
-// aaaAaaa
-// bbbBbbb
-// cccCccc
-// D
-//
-// The furthest changed pixel is when the filters are in the following configuration.
-//
-// S
-// aaaAaaa
-// bbbBbbb
-// cccCccc
-// D
-//
-// The A pixel is calculated using the value S, the B uses A, and the C uses B, and
-// finally D is C. So, with a window size of seven the border is nine. In the odd case, the
-// border is 3*((window - 1)/2).
-//
-// For even cases the filter stack is more complicated. The spec specifies two passes
-// of even filters and a final pass of odd filters. A stack for a width of six looks like
-// this.
-//
-// S
-// aaaAaa
-// bbBbbb
-// cccCccc
-// D
-//
-// The furthest pixel looks like this.
-//
-// S
-// aaaAaa
-// bbBbbb
-// cccCccc
-// D
-//
-// For a window of six, the border value is eight. In the even case the border is 3 *
-// (window/2) - 1.
-static int calculate_border(int window) {
- return (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
-}
-
-static int calculate_buffer(int window) {
- int bufferSize = window - 1;
- return (window & 1) == 1 ? 3 * bufferSize : 3 * bufferSize + 1;
-}
-
-// blur_one_direction implements the common three pass box filter approximation of Gaussian blur,
-// but combines all three passes into a single pass. This approach is facilitated by three circular
-// buffers the width of the window which track values for trailing edges of each of the three
-// passes. This allows the algorithm to use more precision in the calculation because the values
-// are not rounded each pass. And this implementation also avoids a trap that's easy to fall
-// into resulting in blending in too many zeroes near the edge.
-//
-// In general, a window sum has the form:
-// sum_n+1 = sum_n + leading_edge - trailing_edge.
-// If instead we do the subtraction at the end of the previous iteration, we can just
-// calculate the sums instead of having to do the subtractions too.
-//
-// In previous iteration:
-// sum_n+1 = sum_n - trailing_edge.
-//
-// In this iteration:
-// sum_n+1 = sum_n + leading_edge.
-//
-// Now we can stack all three sums and do them at once. Sum0 gets its leading edge from the
-// actual data. Sum1's leading edge is just Sum0, and Sum2's leading edge is Sum1. So, doing the
-// three passes at the same time has the form:
-//
-// sum0_n+1 = sum0_n + leading edge
-// sum1_n+1 = sum1_n + sum0_n+1
-// sum2_n+1 = sum2_n + sum1_n+1
-//
-// sum2_n+1 / window^3 is the new value of the destination pixel.
-//
-// Reduce the sums by the trailing edges which were stored in the circular buffers,
-// for the next go around. This is the case for odd sized windows, even windows the the third
-// circular buffer is one larger then the first two circular buffers.
-//
-// sum2_n+2 = sum2_n+1 - buffer2[i];
-// buffer2[i] = sum1;
-// sum1_n+2 = sum1_n+1 - buffer1[i];
-// buffer1[i] = sum0;
-// sum0_n+2 = sum0_n+1 - buffer0[i];
-// buffer0[i] = leading edge
-//
-// This is all encapsulated in the processValue function below.
-//
-using Pass0And1 = Sk4u[2];
-// The would be dLeft parameter is assumed to be 0.
-static void blur_one_direction(Sk4u* buffer, int window,
- int srcLeft, int srcRight, int dstRight,
- const uint32_t* src, int srcXStride, int srcYStride, int srcH,
- uint32_t* dst, int dstXStride, int dstYStride) {
-
- // The circular buffers are one less than the window.
- auto pass0Count = window - 1,
- pass1Count = window - 1,
- pass2Count = (window & 1) == 1 ? window - 1 : window;
-
- Pass0And1* buffer01Start = (Pass0And1*)buffer;
- Sk4u* buffer2Start = buffer + pass0Count + pass1Count;
- Pass0And1* buffer01End = (Pass0And1*)buffer2Start;
- Sk4u* buffer2End = buffer2Start + pass2Count;
-
- // If the window is odd then the divisor is just window ^ 3 otherwise,
- // it is window * window * (window + 1) = window ^ 3 + window ^ 2;
- auto window2 = window * window;
- auto window3 = window2 * window;
- auto divisor = (window & 1) == 1 ? window3 : window3 + window2;
-
- // NB the sums in the blur code use the following technique to avoid
- // adding 1/2 to round the divide.
- //
- // Sum/d + 1/2 == (Sum + h) / d
- // Sum + d(1/2) == Sum + h
- // h == (1/2)d
- //
- // But the d/2 it self should be rounded.
- // h == d/2 + 1/2 == (d + 1) / 2
- //
- // weight = 1 / d * 2 ^ 32
- auto weight = static_cast<uint32_t>(round(1.0 / divisor * (1ull << 32)));
- auto half = static_cast<uint32_t>((divisor + 1) / 2);
-
- auto border = calculate_border(window);
-
- // Calculate the start and end of the source pixels with respect to the destination start.
- auto srcStart = srcLeft - border,
- srcEnd = srcRight - border,
- dstEnd = dstRight;
-
- for (auto y = 0; y < srcH; y++) {
- auto buffer01Cursor = buffer01Start;
- auto buffer2Cursor = buffer2Start;
-
- Sk4u sum0{0u};
- Sk4u sum1{0u};
- Sk4u sum2{half};
-
- sk_bzero(buffer01Start, (buffer2End - (Sk4u *) (buffer01Start)) * sizeof(*buffer2Start));
-
- // Given an expanded input pixel, move the window ahead using the leadingEdge value.
- auto processValue = [&](const Sk4u& leadingEdge) -> Sk4u {
- sum0 += leadingEdge;
- sum1 += sum0;
- sum2 += sum1;
-
- Sk4u value = sum2.mulHi(weight);
-
- sum2 -= *buffer2Cursor;
- *buffer2Cursor = sum1;
- buffer2Cursor = (buffer2Cursor + 1) < buffer2End ? buffer2Cursor + 1 : buffer2Start;
-
- sum1 -= (*buffer01Cursor)[1];
- (*buffer01Cursor)[1] = sum0;
- sum0 -= (*buffer01Cursor)[0];
- (*buffer01Cursor)[0] = leadingEdge;
- buffer01Cursor =
- (buffer01Cursor + 1) < buffer01End ? buffer01Cursor + 1 : buffer01Start;
-
- return value;
- };
-
- auto srcIdx = srcStart;
- auto dstIdx = 0;
- const uint32_t* srcCursor = src;
- uint32_t* dstCursor = dst;
-
- // The destination pixels are not effected by the src pixels,
- // change to zero as per the spec.
- // https://drafts.fxtf.org/filter-effects/#FilterPrimitivesOverviewIntro
- while (dstIdx < srcIdx) {
- *dstCursor = 0;
- dstCursor += dstXStride;
- SK_PREFETCH(dstCursor);
- dstIdx++;
- }
-
- // The edge of the source is before the edge of the destination. Calculate the sums for
- // the pixels before the start of the destination.
- while (dstIdx > srcIdx) {
- Sk4u leadingEdge = srcIdx < srcEnd ? SkNx_cast<uint32_t>(Sk4b::Load(srcCursor)) : 0;
- (void) processValue(leadingEdge);
- srcCursor += srcXStride;
- srcIdx++;
- }
-
- // The dstIdx and srcIdx are in sync now; the code just uses the dstIdx for both now.
- // Consume the source generating pixels to dst.
- auto loopEnd = std::min(dstEnd, srcEnd);
- while (dstIdx < loopEnd) {
- Sk4u leadingEdge = SkNx_cast<uint32_t>(Sk4b::Load(srcCursor));
- SkNx_cast<uint8_t>(processValue(leadingEdge)).store(dstCursor);
- srcCursor += srcXStride;
- dstCursor += dstXStride;
- SK_PREFETCH(dstCursor);
- dstIdx++;
- }
-
- // The leading edge is beyond the end of the source. Assume that the pixels
- // are now 0x0000 until the end of the destination.
- loopEnd = dstEnd;
- while (dstIdx < loopEnd) {
- SkNx_cast<uint8_t>(processValue(0u)).store(dstCursor);
- dstCursor += dstXStride;
- SK_PREFETCH(dstCursor);
- dstIdx++;
- }
-
- src += srcYStride;
- dst += dstYStride;
- }
-}
-
-static sk_sp<SkSpecialImage> combined_pass_blur(
- SkVector sigma,
- SkSpecialImage* source, const sk_sp<SkSpecialImage>& input,
- SkIRect inputBounds, SkIRect dstBounds) {
- SkBitmap inputBM;
-
- if (!input->getROPixels(&inputBM)) {
- return nullptr;
- }
-
- if (inputBM.colorType() != kN32_SkColorType) {
- return nullptr;
- }
-
- SkBitmap src;
- inputBM.extractSubset(&src, inputBounds);
-
- // Make everything relative to the destination bounds.
- inputBounds.offset(-dstBounds.x(), -dstBounds.y());
- dstBounds.offset( -dstBounds.x(), -dstBounds.y());
-
- auto windowW = calculate_window(sigma.x()),
- windowH = calculate_window(sigma.y());
-
- auto srcW = inputBounds.width(),
- srcH = inputBounds.height(),
- dstW = dstBounds.width(),
- dstH = dstBounds.height();
-
- SkImageInfo dstInfo = SkImageInfo::Make(dstW, dstH, inputBM.colorType(), inputBM.alphaType());
-
- SkBitmap dst;
- if (!dst.tryAllocPixels(dstInfo)) {
- return nullptr;
- }
-
- auto bufferSizeW = calculate_buffer(windowW),
- bufferSizeH = calculate_buffer(windowH);
-
- // The amount 1024 is enough for buffers up to 10 sigma. The tmp bitmap will be
- // allocated on the heap.
- SkSTArenaAlloc<1024> alloc;
- Sk4u* buffer = alloc.makeArrayDefault<Sk4u>(std::max(bufferSizeW, bufferSizeH));
-
- if (windowW > 1 && windowH > 1) {
- // Blur both directions.
-
- auto tmpW = srcH,
- tmpH = dstW;
-
- auto tmp = alloc.makeArrayDefault<uint32_t>(tmpW * tmpH);
-
- // Blur horizontally, and transpose.
- blur_one_direction(
- buffer, windowW,
- inputBounds.left(), inputBounds.right(), dstBounds.right(),
- static_cast<uint32_t*>(src.getPixels()), 1, src.rowBytesAsPixels(), srcH,
- tmp, tmpW, 1);
-
- // Blur vertically (scan in memory order because of the transposition),
- // and transpose back to the original orientation.
- blur_one_direction(
- buffer, windowH,
- inputBounds.top(), inputBounds.bottom(), dstBounds.bottom(),
- tmp, 1, tmpW, tmpH,
- static_cast<uint32_t*>(dst.getPixels()), dst.rowBytesAsPixels(), 1);
- } else if (windowW > 1) {
- // Blur only horizontally.
-
- blur_one_direction(
- buffer, windowW,
- inputBounds.left(), inputBounds.right(), dstBounds.right(),
- static_cast<uint32_t*>(src.getPixels()), 1, src.rowBytesAsPixels(), srcH,
- static_cast<uint32_t*>(dst.getPixels()), 1, dst.rowBytesAsPixels());
- } else if (windowH > 1) {
- // Blur only vertically.
-
- blur_one_direction(
- buffer, windowH,
- inputBounds.top(), inputBounds.bottom(), dstBounds.bottom(),
- static_cast<uint32_t*>(src.getPixels()), src.rowBytesAsPixels(), 1, srcW,
- static_cast<uint32_t*>(dst.getPixels()), dst.rowBytesAsPixels(), 1);
- } else {
- // Nothing to do.
-
- return input->makeSubset(inputBounds);
- }
-
- return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(),
- dstBounds.height()),
- dst, &source->props());
-}
-#endif
-
sk_sp<SkSpecialImage> SkBlurImageFilterImpl::onFilterImage(SkSpecialImage* source,
const Context& ctx,
SkIPoint* offset) const {
@@ -553,16 +207,12 @@ sk_sp<SkSpecialImage> SkBlurImageFilterImpl::onFilterImage(SkSpecialImage* sourc
} else
#endif
{
- // If both sigmas will result in a zero width window, there is nothing to do.
- if (sigma.x() < kZeroWindow && sigma.y() < kZeroWindow) {
- result = input->makeSubset(inputBounds);
- } else {
- #if defined(SK_SUPPORT_LEGACY_BLUR_IMAGE)
- result = this->cpuFilter(source, sigma, input, inputBounds, dstBounds);
- #else
- result = combined_pass_blur(sigma, source, input, inputBounds, dstBounds);
- #endif
- }
+ #if defined(SK_SUPPORT_LEGACY_BLUR_IMAGE)
+ result = this->cpuFilter(source, sigma, input, inputBounds, dstBounds);
+ #else
+ // The new code will go here.
+ result = this->cpuFilter(source, sigma, input, inputBounds, dstBounds);
+ #endif
}
// Return the resultOffset if the blur succeeded.
@@ -585,8 +235,8 @@ sk_sp<SkSpecialImage> SkBlurImageFilterImpl::gpuFilter(
// The raw cross arm value c = E^-s
// The normalized cross arm value = c/n
// N[Solve[{c/n == 1/2048, sigma > 0}, sigma], 16]
- static constexpr double kZeroWindowGPU = 0.2561130112451658;
- if (sigma.x() < kZeroWindowGPU && sigma.y() < kZeroWindowGPU) {
+ static constexpr double kCrossTooSmall = 0.2561130112451658;
+ if (sigma.x() < kCrossTooSmall && sigma.y() < kCrossTooSmall) {
return input->makeSubset(inputBounds);
}
@@ -630,6 +280,13 @@ sk_sp<SkSpecialImage> SkBlurImageFilterImpl::cpuFilter(
SkVector sigma, const sk_sp<SkSpecialImage> &input,
SkIRect inputBounds, SkIRect dstBounds) const
{
+ // If both sigmas will result in a zero width window, there is nothing to do.
+ // N[Solve[sigma*3*Sqrt[2 Pi]/4 == 1/2, sigma], 16]
+ static constexpr double kZeroWindow = 0.2659615202676218;
+ if (sigma.x() < kZeroWindow && sigma.y() < kZeroWindow) {
+ return input->makeSubset(inputBounds);
+ }
+
int kernelSizeX, kernelSizeX3, lowOffsetX, highOffsetX;
int kernelSizeY, kernelSizeY3, lowOffsetY, highOffsetY;
get_box3_params(sigma.x(), &kernelSizeX, &kernelSizeX3, &lowOffsetX, &highOffsetX);
@@ -719,26 +376,14 @@ const {
SkRect SkBlurImageFilterImpl::computeFastBounds(const SkRect& src) const {
SkRect bounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src;
-#if defined(SK_SUPPORT_LEGACY_BLUR_IMAGE)
bounds.outset(fSigma.width() * 3, fSigma.height() * 3);
-#else
- auto borderW = calculate_border(calculate_window(fSigma.width())),
- borderH = calculate_border(calculate_window(fSigma.height()));
- bounds.outset(borderW, borderH);
-#endif
return bounds;
}
SkIRect SkBlurImageFilterImpl::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
MapDirection) const {
SkVector sigma = map_sigma(fSigma, ctm);
-#if defined(SK_SUPPORT_LEGACY_BLUR_IMAGE)
return src.makeOutset(SkScalarCeilToInt(sigma.x() * 3), SkScalarCeilToInt(sigma.y() * 3));
-#else
- auto borderW = calculate_border(calculate_window(sigma.x())),
- borderH = calculate_border(calculate_window(sigma.y()));
- return src.makeOutset(borderW, borderH);
-#endif
}
#ifndef SK_IGNORE_TO_STRING
diff --git a/tests/ImageFilterTest.cpp b/tests/ImageFilterTest.cpp
index 0b8d0d0fec..ac847ce7cf 100644
--- a/tests/ImageFilterTest.cpp
+++ b/tests/ImageFilterTest.cpp
@@ -855,7 +855,7 @@ DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) {
sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1)));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
- SkIRect expectedBounds = SkIRect::MakeXYWH(-132, -132, 234, 234);
+ SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236);
bounds = filter2->filterBounds(bounds, SkMatrix::I());
REPORTER_ASSERT(reporter, bounds == expectedBounds);
@@ -866,7 +866,7 @@ DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) {
sk_sp<SkImageFilter> filter2(make_blur(std::move(filter1)));
SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100);
- SkIRect expectedBounds = SkIRect::MakeXYWH(-132, -132, 234, 234);
+ SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236);
bounds = filter2->filterBounds(bounds, SkMatrix::I());
REPORTER_ASSERT(reporter, bounds == expectedBounds);
@@ -895,7 +895,7 @@ DEF_TEST(ImageFilterScaledBlurRadius, reporter) {
scaleMatrix.setScale(2, 2);
SkIRect bounds = SkIRect::MakeLTRB(0, 0, 200, 200);
- SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-5, -5, 205, 205);
+ SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-6, -6, 206, 206);
SkIRect blurBounds = blur->filterBounds(
bounds, scaleMatrix, SkImageFilter::kForward_MapDirection);
REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds);
@@ -920,7 +920,7 @@ DEF_TEST(ImageFilterScaledBlurRadius, reporter) {
scaleMatrix.setScale(1, -1);
SkIRect bounds = SkIRect::MakeLTRB(0, -100, 100, 0);
- SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-2, -102, 102, 2);
+ SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-3, -103, 103, 3);
SkIRect blurBounds = blur->filterBounds(
bounds, scaleMatrix, SkImageFilter::kForward_MapDirection);
REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds);
@@ -949,7 +949,7 @@ DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) {
SkRect boundsSrc = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));
SkRect expectedBounds = SkRect::MakeXYWH(
- SkIntToScalar(-4), SkIntToScalar(-4), SkIntToScalar(108), SkIntToScalar(108));
+ SkIntToScalar(-6), SkIntToScalar(-6), SkIntToScalar(112), SkIntToScalar(112));
SkRect boundsDst = composedFilter->computeFastBounds(boundsSrc);
REPORTER_ASSERT(reporter, boundsDst == expectedBounds);