aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--include/core/SkTInternalLList.h72
-rw-r--r--src/core/SkTLList.h82
-rw-r--r--tests/LListTest.cpp95
3 files changed, 242 insertions, 7 deletions
diff --git a/include/core/SkTInternalLList.h b/include/core/SkTInternalLList.h
index 32245b51eb..78c82bab7e 100644
--- a/include/core/SkTInternalLList.h
+++ b/include/core/SkTInternalLList.h
@@ -109,6 +109,64 @@ public:
#endif
}
+ /**
+ * Inserts a new list entry before an existing list entry. The new entry must not already be
+ * a member of this or any other list. If existingEntry is NULL then the new entry is added
+ * at the tail.
+ */
+ void addBefore(T* newEntry, T* existingEntry) {
+ SkASSERT(NULL != newEntry);
+
+ if (NULL == existingEntry) {
+ this->addToTail(newEntry);
+ return;
+ }
+
+ SkASSERT(this->isInList(existingEntry));
+ newEntry->fNext = existingEntry;
+ T* prev = existingEntry->fPrev;
+ existingEntry->fPrev = newEntry;
+ newEntry->fPrev = prev;
+ if (NULL == prev) {
+ SkASSERT(fHead == existingEntry);
+ fHead = newEntry;
+ } else {
+ prev->fNext = newEntry;
+ }
+#if SK_DEBUG
+ newEntry->fList = this;
+#endif
+ }
+
+ /**
+ * Inserts a new list entry after an existing list entry. The new entry must not already be
+ * a member of this or any other list. If existingEntry is NULL then the new entry is added
+ * at the head.
+ */
+ void addAfter(T* newEntry, T* existingEntry) {
+ SkASSERT(NULL != newEntry);
+
+ if (NULL == existingEntry) {
+ this->addToHead(newEntry);
+ return;
+ }
+
+ SkASSERT(this->isInList(existingEntry));
+ newEntry->fPrev = existingEntry;
+ T* next = existingEntry->fNext;
+ existingEntry->fNext = newEntry;
+ newEntry->fNext = next;
+ if (NULL == next) {
+ SkASSERT(fTail == existingEntry);
+ fTail = newEntry;
+ } else {
+ next->fPrev = newEntry;
+ }
+#if SK_DEBUG
+ newEntry->fList = this;
+#endif
+ }
+
bool isEmpty() const {
return NULL == fHead && NULL == fTail;
}
@@ -168,6 +226,20 @@ public:
#ifdef SK_DEBUG
void validate() const {
SkASSERT(!fHead == !fTail);
+ Iter iter;
+ for (T* item = iter.init(*this, Iter::kHead_IterStart); NULL != (item = iter.next()); ) {
+ SkASSERT(this->isInList(item));
+ if (NULL == item->fPrev) {
+ SkASSERT(fHead == item);
+ } else {
+ SkASSERT(item->fPrev->fNext == item);
+ }
+ if (NULL == item->fNext) {
+ SkASSERT(fTail == item);
+ } else {
+ SkASSERT(item->fNext->fPrev == item);
+ }
+ }
}
/**
diff --git a/src/core/SkTLList.h b/src/core/SkTLList.h
index 41f0c0b4af..b7934e180f 100644
--- a/src/core/SkTLList.h
+++ b/src/core/SkTLList.h
@@ -10,7 +10,14 @@
/** Doubly-linked list of objects. The objects' lifetimes are controlled by the list. I.e. the
the list creates the objects and they are deleted upon removal. This class block-allocates
- space for entries based on a param passed to the constructor. */
+ space for entries based on a param passed to the constructor.
+
+ Elements of the list can be constructed in place using the following macros:
+ SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args)
+ SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args)
+ where list is a SkTLList<type_name>*, location is an iterator, and args is the paren-surrounded
+ constructor arguments for type_name. These macros behave like addBefore() and addAfter().
+*/
template <typename T>
class SkTLList : public SkNoncopyable {
private:
@@ -23,6 +30,9 @@ private:
typedef SkTInternalLList<Node> NodeList;
public:
+
+ class Iter;
+
/** allocCnt is the number of objects to allocate as a group. In the worst case fragmentation
each object is using the space required for allocCnt unfragmented objects. */
SkTLList(int allocCnt = 1) : fCount(0), fAllocCnt(allocCnt) {
@@ -63,6 +73,22 @@ public:
this->validate();
}
+ /** Adds a new element to the list before the location indicated by the iterator. If the
+ iterator refers to a NULL location then the new element is added at the tail */
+ void addBefore(const T& t, const Iter& location) {
+ SkNEW_PLACEMENT_ARGS(this->internalAddBefore(location), T, (t));
+ }
+
+ /** Adds a new element to the list after the location indicated by the iterator. If the
+ iterator refers to a NULL location then the new element is added at the head */
+ void addAfter(const T& t, const Iter& location) {
+ SkNEW_PLACEMENT_ARGS(this->internalAddAfter(location), T, (t));
+ }
+
+ /** Convenience methods for getting an iterator initialized to the head/tail of the list. */
+ Iter headIter() const { return Iter(*this, Iter::kHead_IterStart); }
+ Iter tailIter() const { return Iter(*this, Iter::kTail_IterStart); }
+
void popHead() {
this->validate();
Node* node = fList.head();
@@ -155,6 +181,9 @@ public:
Iter& operator= (const Iter& iter) { INHERITED::operator=(iter); return *this; }
private:
+ friend class SkTLList;
+ Node* getNode() { return INHERITED::get(); }
+
T* nodeToObj(Node* node) {
if (NULL != node) {
return reinterpret_cast<T*>(node->fObj);
@@ -164,6 +193,12 @@ public:
}
};
+ // For use with operator new
+ enum Placement {
+ kBefore_Placement,
+ kAfter_Placement,
+ };
+
private:
struct Block {
int fNodesInUse;
@@ -198,7 +233,6 @@ private:
fList.remove(node);
reinterpret_cast<T*>(node->fObj)->~T();
if (0 == --node->fBlock->fNodesInUse) {
- // Delete a block when it no longer has any nodes in use to reduce memory consumption.
Block* block = node->fBlock;
for (int i = 0; i < fAllocCnt; ++i) {
if (block->fNodes + i != node) {
@@ -265,8 +299,52 @@ private:
#endif
}
+ // Support in-place initializing of objects inserted into the list via operator new.
+ template <typename S>
+ friend void *operator new(size_t,
+ SkTLList<S>* list,
+ Placement placement,
+ const typename SkTLList<S>::Iter& location);
+
+ // Helpers that insert the node and returns a pointer to where the new object should be init'ed.
+ void* internalAddBefore(Iter location) {
+ this->validate();
+ Node* node = this->createNode();
+ fList.addBefore(node, location.getNode());
+ this->validate();
+ return node->fObj;
+ }
+
+ void* internalAddAfter(Iter location) {
+ this->validate();
+ Node* node = this->createNode();
+ fList.addAfter(node, location.getNode());
+ this->validate();
+ return node->fObj;
+ }
+
NodeList fList;
NodeList fFreeList;
int fCount;
int fAllocCnt;
+
};
+
+// Use the below macros rather than calling this directly
+template <typename T>
+inline void *operator new(size_t, SkTLList<T>* list,
+ typename SkTLList<T>::Placement placement,
+ const typename SkTLList<T>::Iter& location) {
+ SkASSERT(NULL != list);
+ if (SkTLList<T>::kBefore_Placement == placement) {
+ return list->internalAddBefore(location);
+ } else {
+ return list->internalAddAfter(location);
+ }
+}
+
+#define SkNEW_INSERT_IN_LLIST_BEFORE(list, location, type_name, args) \
+ (new (list, SkTLList< type_name >::kBefore_Placement, location) type_name args)
+
+#define SkNEW_INSERT_IN_LLIST_AFTER(list, location, type_name, args) \
+ (new (list, SkTLList< type_name >::kAfter_Placement, location) type_name args) \ No newline at end of file
diff --git a/tests/LListTest.cpp b/tests/LListTest.cpp
index 65470aeb55..985e6754ea 100644
--- a/tests/LListTest.cpp
+++ b/tests/LListTest.cpp
@@ -37,6 +37,7 @@ static void check_list(const SkTInternalLList<ListElement>& list,
bool in0, bool in1, bool in2, bool in3,
ListElement elements[4]) {
+ list.validate();
REPORTER_ASSERT(reporter, empty == list.isEmpty());
#if SK_DEBUG
REPORTER_ASSERT(reporter, numElements == list.countEntries());
@@ -95,6 +96,29 @@ static void TestTInternalLList(skiatest::Reporter* reporter) {
// list should be empty again
check_list(list, reporter, true, 0, false, false, false, false, elements);
+
+ // test out methods that add to the middle of the list.
+ list.addAfter(&elements[1], NULL);
+ check_list(list, reporter, false, 1, false, true, false, false, elements);
+
+ list.remove(&elements[1]);
+
+ list.addBefore(&elements[1], NULL);
+ check_list(list, reporter, false, 1, false, true, false, false, elements);
+
+ list.addBefore(&elements[0], &elements[1]);
+ check_list(list, reporter, false, 2, true, true, false, false, elements);
+
+ list.addAfter(&elements[3], &elements[1]);
+ check_list(list, reporter, false, 3, true, true, false, true, elements);
+
+ list.addBefore(&elements[2], &elements[3]);
+ check_list(list, reporter, false, 4, true, true, true, true, elements);
+
+ cur = iter.init(list, Iter::kHead_IterStart);
+ for (int i = 0; NULL != cur; ++i, cur = iter.next()) {
+ REPORTER_ASSERT(reporter, cur->fID == i);
+ }
}
static void TestTLList(skiatest::Reporter* reporter) {
@@ -138,12 +162,23 @@ static void TestTLList(skiatest::Reporter* reporter) {
REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, list1 == list2);
+
+ list2.reset();
+
+ // use both before/after in-place construction on an empty list
+ SkNEW_INSERT_IN_LLIST_BEFORE(&list2, list2.headIter(), ListElement, (1));
+ REPORTER_ASSERT(reporter, list2 == list1);
+ list2.reset();
+ SkNEW_INSERT_IN_LLIST_AFTER(&list2, list2.tailIter(), ListElement, (1));
+ REPORTER_ASSERT(reporter, list2 == list1);
+
// add an element to the second list, check that iters are still valid
list2.addToHead(ListElement(2));
#ifdef SK_ENABLE_INST_COUNT
SkASSERT(3 == ListElement::InstanceCount());
#endif
+
REPORTER_ASSERT(reporter, iter3.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, iter4.get()->fID == iter1.get()->fID);
REPORTER_ASSERT(reporter, 1 == Iter(list2, Iter::kTail_IterStart).get()->fID);
@@ -163,14 +198,64 @@ static void TestTLList(skiatest::Reporter* reporter) {
#endif
REPORTER_ASSERT(reporter, list1.isEmpty() && list2.isEmpty());
+ // randomly perform insertions and deletions on a list and perform tests
int count = 0;
for (int j = 0; j < 100; ++j) {
if (list1.isEmpty() || random.nextBiasedBool(3 * SK_Scalar1 / 4)) {
- int id = static_cast<int>(random.nextU());
- if (random.nextBool()) {
- list1.addToHead(ListElement(id));
- } else {
- list1.addToTail(ListElement(id));
+ int id = j;
+ // Choose one of three ways to insert a new element: at the head, at the tail,
+ // before a random element, after a random element
+ int numValidMethods = 0 == count ? 2 : 4;
+ int insertionMethod = random.nextULessThan(numValidMethods);
+ switch (insertionMethod) {
+ case 0:
+ list1.addToHead(ListElement(id));
+ break;
+ case 1:
+ list1.addToTail(ListElement(id));
+ break;
+ case 2: // fallthru to share code that picks random element.
+ case 3: {
+ int n = random.nextULessThan(list1.count());
+ Iter iter = list1.headIter();
+ // remember the elements before/after the insertion point.
+ while (n--) {
+ iter.next();
+ }
+ Iter prev(iter);
+ Iter next(iter);
+ next.next();
+ prev.prev();
+
+ SkASSERT(NULL != iter.get());
+ // insert either before or after the iterator, then check that the
+ // surrounding sequence is correct.
+ if (2 == insertionMethod) {
+ SkNEW_INSERT_IN_LLIST_BEFORE(&list1, iter, ListElement, (id));
+ Iter newItem(iter);
+ newItem.prev();
+ REPORTER_ASSERT(reporter, newItem.get()->fID == id);
+
+ if (NULL != next.get()) {
+ REPORTER_ASSERT(reporter, next.prev()->fID == iter.get()->fID);
+ }
+ if (NULL != prev.get()) {
+ REPORTER_ASSERT(reporter, prev.next()->fID == id);
+ }
+ } else {
+ SkNEW_INSERT_IN_LLIST_AFTER(&list1, iter, ListElement, (id));
+ Iter newItem(iter);
+ newItem.next();
+ REPORTER_ASSERT(reporter, newItem.get()->fID == id);
+
+ if (NULL != next.get()) {
+ REPORTER_ASSERT(reporter, next.prev()->fID == id);
+ }
+ if (NULL != prev.get()) {
+ REPORTER_ASSERT(reporter, prev.next()->fID == iter.get()->fID);
+ }
+ }
+ }
}
++count;
} else {