aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party
diff options
context:
space:
mode:
authorGravatar skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com>2018-07-02 19:08:45 +0000
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-07-02 19:38:22 +0000
commit5155d38fdcd4d4e94181bf01ef4831e442a4380b (patch)
tree710a7e7c650aed6b81acf917c7272e1c07cffe1c /third_party
parent5dfd0694dc0b320e13eb7e253b77419b32ceab49 (diff)
Roll skia/third_party/skcms 14ea609fa6ca..99b01c076f47 (1 commits)
https://skia.googlesource.com/skcms.git/+log/14ea609fa6ca..99b01c076f47 2018-07-02 mtklein@chromium.org move skcms impl into skcms.c The AutoRoll server is located here: https://skcms-skia-roll.skia.org Documentation for the AutoRoller is here: https://skia.googlesource.com/buildbot/+/master/autoroll/README.md If the roll is causing failures, please contact the current sheriff, who should be CC'd on the roll, and stop the roller if necessary. CQ_INCLUDE_TRYBOTS=master.tryserver.blink:linux_trusty_blink_rel TBR=ethannicholas@google.com Change-Id: I950f7b604eef056641fec3e6691d8c8a928d2d37 Reviewed-on: https://skia-review.googlesource.com/138950 Commit-Queue: skcms-skia-autoroll <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com> Reviewed-by: skcms-skia-autoroll <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com>
Diffstat (limited to 'third_party')
-rw-r--r--third_party/skcms/skcms.c2328
-rw-r--r--third_party/skcms/skcms.gni7
-rw-r--r--third_party/skcms/src/Curve.c59
-rw-r--r--third_party/skcms/src/ICCProfile.c1052
-rw-r--r--third_party/skcms/src/LinearAlgebra.c88
-rw-r--r--third_party/skcms/src/PortableMath.c55
-rw-r--r--third_party/skcms/src/TransferFunction.c432
-rw-r--r--third_party/skcms/src/Transform.c694
-rwxr-xr-xthird_party/skcms/version.sha12
9 files changed, 2322 insertions, 2395 deletions
diff --git a/third_party/skcms/skcms.c b/third_party/skcms/skcms.c
index 6b1abf59dd..5b66128ab0 100644
--- a/third_party/skcms/skcms.c
+++ b/third_party/skcms/skcms.c
@@ -5,11 +5,2323 @@
* found in the LICENSE file.
*/
-// skcms.c is a unity build target for skcms, #including every other C source file.
-
-#include "src/Curve.c"
-#include "src/ICCProfile.c"
-#include "src/LinearAlgebra.c"
-#include "src/PortableMath.c"
-#include "src/TransferFunction.c"
-#include "src/Transform.c"
+#include "skcms.h"
+#include "skcms_internal.h"
+#include <assert.h>
+#include <float.h>
+#include <limits.h>
+#include <stdlib.h>
+#include <string.h>
+
+static float minus_1_ulp(float x) {
+ int32_t bits;
+ memcpy(&bits, &x, sizeof(bits));
+ bits = bits - 1;
+ memcpy(&x, &bits, sizeof(bits));
+ return x;
+}
+
+float skcms_eval_curve(const skcms_Curve* curve, float x) {
+ if (curve->table_entries == 0) {
+ return skcms_TransferFunction_eval(&curve->parametric, x);
+ }
+
+ float ix = fmaxf_(0, fminf_(x, 1)) * (curve->table_entries - 1);
+ int lo = (int) ix,
+ hi = (int)minus_1_ulp(ix + 1.0f);
+ float t = ix - (float)lo;
+
+ float l, h;
+ if (curve->table_8) {
+ l = curve->table_8[lo] * (1/255.0f);
+ h = curve->table_8[hi] * (1/255.0f);
+ } else {
+ uint16_t be_l, be_h;
+ memcpy(&be_l, curve->table_16 + 2*lo, 2);
+ memcpy(&be_h, curve->table_16 + 2*hi, 2);
+ uint16_t le_l = ((be_l << 8) | (be_l >> 8)) & 0xffff;
+ uint16_t le_h = ((be_h << 8) | (be_h >> 8)) & 0xffff;
+ l = le_l * (1/65535.0f);
+ h = le_h * (1/65535.0f);
+ }
+ return l + (h-l)*t;
+}
+
+float skcms_MaxRoundtripError(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
+ uint32_t N = curve->table_entries > 256 ? curve->table_entries : 256;
+ const float dx = 1.0f / (N - 1);
+ float err = 0;
+ for (uint32_t i = 0; i < N; i++) {
+ float x = i * dx,
+ y = skcms_eval_curve(curve, x);
+ err = fmaxf_(err, fabsf_(x - skcms_TransferFunction_eval(inv_tf, y)));
+ }
+ return err;
+}
+
+bool skcms_AreApproximateInverses(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
+ return skcms_MaxRoundtripError(curve, inv_tf) < (1/512.0f);
+}
+
+// Additional ICC signature values that are only used internally
+enum {
+ // File signature
+ skcms_Signature_acsp = 0x61637370,
+
+ // Tag signatures
+ skcms_Signature_rTRC = 0x72545243,
+ skcms_Signature_gTRC = 0x67545243,
+ skcms_Signature_bTRC = 0x62545243,
+ skcms_Signature_kTRC = 0x6B545243,
+
+ skcms_Signature_rXYZ = 0x7258595A,
+ skcms_Signature_gXYZ = 0x6758595A,
+ skcms_Signature_bXYZ = 0x6258595A,
+
+ skcms_Signature_A2B0 = 0x41324230,
+ skcms_Signature_A2B1 = 0x41324231,
+ skcms_Signature_mAB = 0x6D414220,
+
+ skcms_Signature_CHAD = 0x63686164,
+
+ // Type signatures
+ skcms_Signature_curv = 0x63757276,
+ skcms_Signature_mft1 = 0x6D667431,
+ skcms_Signature_mft2 = 0x6D667432,
+ skcms_Signature_para = 0x70617261,
+ skcms_Signature_sf32 = 0x73663332,
+ // XYZ is also a PCS signature, so it's defined in skcms.h
+ // skcms_Signature_XYZ = 0x58595A20,
+};
+
+static uint16_t read_big_u16(const uint8_t* ptr) {
+ uint16_t be;
+ memcpy(&be, ptr, sizeof(be));
+#if defined(_MSC_VER)
+ return _byteswap_ushort(be);
+#else
+ return __builtin_bswap16(be);
+#endif
+}
+
+static uint32_t read_big_u32(const uint8_t* ptr) {
+ uint32_t be;
+ memcpy(&be, ptr, sizeof(be));
+#if defined(_MSC_VER)
+ return _byteswap_ulong(be);
+#else
+ return __builtin_bswap32(be);
+#endif
+}
+
+static int32_t read_big_i32(const uint8_t* ptr) {
+ return (int32_t)read_big_u32(ptr);
+}
+
+static float read_big_fixed(const uint8_t* ptr) {
+ return read_big_i32(ptr) * (1.0f / 65536.0f);
+}
+
+// Maps to an in-memory profile so that fields line up to the locations specified
+// in ICC.1:2010, section 7.2
+typedef struct {
+ uint8_t size [ 4];
+ uint8_t cmm_type [ 4];
+ uint8_t version [ 4];
+ uint8_t profile_class [ 4];
+ uint8_t data_color_space [ 4];
+ uint8_t pcs [ 4];
+ uint8_t creation_date_time [12];
+ uint8_t signature [ 4];
+ uint8_t platform [ 4];
+ uint8_t flags [ 4];
+ uint8_t device_manufacturer [ 4];
+ uint8_t device_model [ 4];
+ uint8_t device_attributes [ 8];
+ uint8_t rendering_intent [ 4];
+ uint8_t illuminant_X [ 4];
+ uint8_t illuminant_Y [ 4];
+ uint8_t illuminant_Z [ 4];
+ uint8_t creator [ 4];
+ uint8_t profile_id [16];
+ uint8_t reserved [28];
+ uint8_t tag_count [ 4]; // Technically not part of header, but required
+} header_Layout;
+
+typedef struct {
+ uint8_t signature [4];
+ uint8_t offset [4];
+ uint8_t size [4];
+} tag_Layout;
+
+static const tag_Layout* get_tag_table(const skcms_ICCProfile* profile) {
+ return (const tag_Layout*)(profile->buffer + SAFE_SIZEOF(header_Layout));
+}
+
+// s15Fixed16ArrayType is technically variable sized, holding N values. However, the only valid
+// use of the type is for the CHAD tag that stores exactly nine values.
+typedef struct {
+ uint8_t type [ 4];
+ uint8_t reserved [ 4];
+ uint8_t values [36];
+} sf32_Layout;
+
+bool skcms_GetCHAD(const skcms_ICCProfile* profile, skcms_Matrix3x3* m) {
+ skcms_ICCTag tag;
+ if (!skcms_GetTagBySignature(profile, skcms_Signature_CHAD, &tag)) {
+ return false;
+ }
+
+ if (tag.type != skcms_Signature_sf32 || tag.size < SAFE_SIZEOF(sf32_Layout)) {
+ return false;
+ }
+
+ const sf32_Layout* sf32Tag = (const sf32_Layout*)tag.buf;
+ const uint8_t* values = sf32Tag->values;
+ for (int r = 0; r < 3; ++r)
+ for (int c = 0; c < 3; ++c, values += 4) {
+ m->vals[r][c] = read_big_fixed(values);
+ }
+ return true;
+}
+
+// XYZType is technically variable sized, holding N XYZ triples. However, the only valid uses of
+// the type are for tags/data that store exactly one triple.
+typedef struct {
+ uint8_t type [4];
+ uint8_t reserved [4];
+ uint8_t X [4];
+ uint8_t Y [4];
+ uint8_t Z [4];
+} XYZ_Layout;
+
+static bool read_tag_xyz(const skcms_ICCTag* tag, float* x, float* y, float* z) {
+ if (tag->type != skcms_Signature_XYZ || tag->size < SAFE_SIZEOF(XYZ_Layout)) {
+ return false;
+ }
+
+ const XYZ_Layout* xyzTag = (const XYZ_Layout*)tag->buf;
+
+ *x = read_big_fixed(xyzTag->X);
+ *y = read_big_fixed(xyzTag->Y);
+ *z = read_big_fixed(xyzTag->Z);
+ return true;
+}
+
+static bool read_to_XYZD50(const skcms_ICCTag* rXYZ, const skcms_ICCTag* gXYZ,
+ const skcms_ICCTag* bXYZ, skcms_Matrix3x3* toXYZ) {
+ return read_tag_xyz(rXYZ, &toXYZ->vals[0][0], &toXYZ->vals[1][0], &toXYZ->vals[2][0]) &&
+ read_tag_xyz(gXYZ, &toXYZ->vals[0][1], &toXYZ->vals[1][1], &toXYZ->vals[2][1]) &&
+ read_tag_xyz(bXYZ, &toXYZ->vals[0][2], &toXYZ->vals[1][2], &toXYZ->vals[2][2]);
+}
+
+typedef struct {
+ uint8_t type [4];
+ uint8_t reserved_a [4];
+ uint8_t function_type [2];
+ uint8_t reserved_b [2];
+ uint8_t parameters [ ]; // 1, 3, 4, 5, or 7 s15.16 parameters, depending on function_type
+} para_Layout;
+
+static bool read_curve_para(const uint8_t* buf, uint32_t size,
+ skcms_Curve* curve, uint32_t* curve_size) {
+ if (size < SAFE_SIZEOF(para_Layout)) {
+ return false;
+ }
+
+ const para_Layout* paraTag = (const para_Layout*)buf;
+
+ enum { kG = 0, kGAB = 1, kGABC = 2, kGABCD = 3, kGABCDEF = 4 };
+ uint16_t function_type = read_big_u16(paraTag->function_type);
+ if (function_type > kGABCDEF) {
+ return false;
+ }
+
+ static const uint32_t curve_bytes[] = { 4, 12, 16, 20, 28 };
+ if (size < SAFE_SIZEOF(para_Layout) + curve_bytes[function_type]) {
+ return false;
+ }
+
+ if (curve_size) {
+ *curve_size = SAFE_SIZEOF(para_Layout) + curve_bytes[function_type];
+ }
+
+ curve->table_entries = 0;
+ curve->parametric.a = 1.0f;
+ curve->parametric.b = 0.0f;
+ curve->parametric.c = 0.0f;
+ curve->parametric.d = 0.0f;
+ curve->parametric.e = 0.0f;
+ curve->parametric.f = 0.0f;
+ curve->parametric.g = read_big_fixed(paraTag->parameters);
+
+ switch (function_type) {
+ case kGAB:
+ curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
+ curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
+ if (curve->parametric.a == 0) {
+ return false;
+ }
+ curve->parametric.d = -curve->parametric.b / curve->parametric.a;
+ break;
+ case kGABC:
+ curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
+ curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
+ curve->parametric.e = read_big_fixed(paraTag->parameters + 12);
+ if (curve->parametric.a == 0) {
+ return false;
+ }
+ curve->parametric.d = -curve->parametric.b / curve->parametric.a;
+ curve->parametric.f = curve->parametric.e;
+ break;
+ case kGABCD:
+ curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
+ curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
+ curve->parametric.c = read_big_fixed(paraTag->parameters + 12);
+ curve->parametric.d = read_big_fixed(paraTag->parameters + 16);
+ break;
+ case kGABCDEF:
+ curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
+ curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
+ curve->parametric.c = read_big_fixed(paraTag->parameters + 12);
+ curve->parametric.d = read_big_fixed(paraTag->parameters + 16);
+ curve->parametric.e = read_big_fixed(paraTag->parameters + 20);
+ curve->parametric.f = read_big_fixed(paraTag->parameters + 24);
+ break;
+ }
+ return skcms_TransferFunction_isValid(&curve->parametric);
+}
+
+typedef struct {
+ uint8_t type [4];
+ uint8_t reserved [4];
+ uint8_t value_count [4];
+ uint8_t parameters [ ]; // value_count parameters (8.8 if 1, uint16 (n*65535) if > 1)
+} curv_Layout;
+
+static bool read_curve_curv(const uint8_t* buf, uint32_t size,
+ skcms_Curve* curve, uint32_t* curve_size) {
+ if (size < SAFE_SIZEOF(curv_Layout)) {
+ return false;
+ }
+
+ const curv_Layout* curvTag = (const curv_Layout*)buf;
+
+ uint32_t value_count = read_big_u32(curvTag->value_count);
+ if (size < SAFE_SIZEOF(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t)) {
+ return false;
+ }
+
+ if (curve_size) {
+ *curve_size = SAFE_SIZEOF(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t);
+ }
+
+ if (value_count < 2) {
+ curve->table_entries = 0;
+ curve->parametric.a = 1.0f;
+ curve->parametric.b = 0.0f;
+ curve->parametric.c = 0.0f;
+ curve->parametric.d = 0.0f;
+ curve->parametric.e = 0.0f;
+ curve->parametric.f = 0.0f;
+ if (value_count == 0) {
+ // Empty tables are a shorthand for an identity curve
+ curve->parametric.g = 1.0f;
+ } else {
+ // Single entry tables are a shorthand for simple gamma
+ curve->parametric.g = read_big_u16(curvTag->parameters) * (1.0f / 256.0f);
+ }
+ } else {
+ curve->table_8 = NULL;
+ curve->table_16 = curvTag->parameters;
+ curve->table_entries = value_count;
+ }
+
+ return true;
+}
+
+// Parses both curveType and parametricCurveType data. Ensures that at most 'size' bytes are read.
+// If curve_size is not NULL, writes the number of bytes used by the curve in (*curve_size).
+static bool read_curve(const uint8_t* buf, uint32_t size,
+ skcms_Curve* curve, uint32_t* curve_size) {
+ if (!buf || size < 4 || !curve) {
+ return false;
+ }
+
+ uint32_t type = read_big_u32(buf);
+ if (type == skcms_Signature_para) {
+ return read_curve_para(buf, size, curve, curve_size);
+ } else if (type == skcms_Signature_curv) {
+ return read_curve_curv(buf, size, curve, curve_size);
+ }
+
+ return false;
+}
+
+// mft1 and mft2 share a large chunk of data
+typedef struct {
+ uint8_t type [ 4];
+ uint8_t reserved_a [ 4];
+ uint8_t input_channels [ 1];
+ uint8_t output_channels [ 1];
+ uint8_t grid_points [ 1];
+ uint8_t reserved_b [ 1];
+ uint8_t matrix [36];
+} mft_CommonLayout;
+
+typedef struct {
+ mft_CommonLayout common [ 1];
+
+ uint8_t tables [ ];
+} mft1_Layout;
+
+typedef struct {
+ mft_CommonLayout common [ 1];
+
+ uint8_t input_table_entries [ 2];
+ uint8_t output_table_entries [ 2];
+ uint8_t tables [ ];
+} mft2_Layout;
+
+static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_A2B* a2b) {
+ // MFT matrices are applied before the first set of curves, but must be identity unless the
+ // input is PCSXYZ. We don't support PCSXYZ profiles, so we ignore this matrix. Note that the
+ // matrix in skcms_A2B is applied later in the pipe, so supporting this would require another
+ // field/flag.
+ a2b->matrix_channels = 0;
+
+ a2b->input_channels = mftTag->input_channels[0];
+ a2b->output_channels = mftTag->output_channels[0];
+
+ // We require exactly three (ie XYZ/Lab/RGB) output channels
+ if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
+ return false;
+ }
+ // We require at least one, and no more than four (ie CMYK) input channels
+ if (a2b->input_channels < 1 || a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
+ return false;
+ }
+
+ for (uint32_t i = 0; i < a2b->input_channels; ++i) {
+ a2b->grid_points[i] = mftTag->grid_points[0];
+ }
+ // The grid only makes sense with at least two points along each axis
+ if (a2b->grid_points[0] < 2) {
+ return false;
+ }
+
+ return true;
+}
+
+static bool init_a2b_tables(const uint8_t* table_base, uint64_t max_tables_len, uint32_t byte_width,
+ uint32_t input_table_entries, uint32_t output_table_entries,
+ skcms_A2B* a2b) {
+ // byte_width is 1 or 2, [input|output]_table_entries are in [2, 4096], so no overflow
+ uint32_t byte_len_per_input_table = input_table_entries * byte_width;
+ uint32_t byte_len_per_output_table = output_table_entries * byte_width;
+
+ // [input|output]_channels are <= 4, so still no overflow
+ uint32_t byte_len_all_input_tables = a2b->input_channels * byte_len_per_input_table;
+ uint32_t byte_len_all_output_tables = a2b->output_channels * byte_len_per_output_table;
+
+ uint64_t grid_size = a2b->output_channels * byte_width;
+ for (uint32_t axis = 0; axis < a2b->input_channels; ++axis) {
+ grid_size *= a2b->grid_points[axis];
+ }
+
+ if (max_tables_len < byte_len_all_input_tables + grid_size + byte_len_all_output_tables) {
+ return false;
+ }
+
+ for (uint32_t i = 0; i < a2b->input_channels; ++i) {
+ a2b->input_curves[i].table_entries = input_table_entries;
+ if (byte_width == 1) {
+ a2b->input_curves[i].table_8 = table_base + i * byte_len_per_input_table;
+ a2b->input_curves[i].table_16 = NULL;
+ } else {
+ a2b->input_curves[i].table_8 = NULL;
+ a2b->input_curves[i].table_16 = table_base + i * byte_len_per_input_table;
+ }
+ }
+
+ if (byte_width == 1) {
+ a2b->grid_8 = table_base + byte_len_all_input_tables;
+ a2b->grid_16 = NULL;
+ } else {
+ a2b->grid_8 = NULL;
+ a2b->grid_16 = table_base + byte_len_all_input_tables;
+ }
+
+ const uint8_t* output_table_base = table_base + byte_len_all_input_tables + grid_size;
+ for (uint32_t i = 0; i < a2b->output_channels; ++i) {
+ a2b->output_curves[i].table_entries = output_table_entries;
+ if (byte_width == 1) {
+ a2b->output_curves[i].table_8 = output_table_base + i * byte_len_per_output_table;
+ a2b->output_curves[i].table_16 = NULL;
+ } else {
+ a2b->output_curves[i].table_8 = NULL;
+ a2b->output_curves[i].table_16 = output_table_base + i * byte_len_per_output_table;
+ }
+ }
+
+ return true;
+}
+
+static bool read_tag_mft1(const skcms_ICCTag* tag, skcms_A2B* a2b) {
+ if (tag->size < SAFE_SIZEOF(mft1_Layout)) {
+ return false;
+ }
+
+ const mft1_Layout* mftTag = (const mft1_Layout*)tag->buf;
+ if (!read_mft_common(mftTag->common, a2b)) {
+ return false;
+ }
+
+ uint32_t input_table_entries = 256;
+ uint32_t output_table_entries = 256;
+
+ return init_a2b_tables(mftTag->tables, tag->size - SAFE_SIZEOF(mft1_Layout), 1,
+ input_table_entries, output_table_entries, a2b);
+}
+
+static bool read_tag_mft2(const skcms_ICCTag* tag, skcms_A2B* a2b) {
+ if (tag->size < SAFE_SIZEOF(mft2_Layout)) {
+ return false;
+ }
+
+ const mft2_Layout* mftTag = (const mft2_Layout*)tag->buf;
+ if (!read_mft_common(mftTag->common, a2b)) {
+ return false;
+ }
+
+ uint32_t input_table_entries = read_big_u16(mftTag->input_table_entries);
+ uint32_t output_table_entries = read_big_u16(mftTag->output_table_entries);
+
+ // ICC spec mandates that 2 <= table_entries <= 4096
+ if (input_table_entries < 2 || input_table_entries > 4096 ||
+ output_table_entries < 2 || output_table_entries > 4096) {
+ return false;
+ }
+
+ return init_a2b_tables(mftTag->tables, tag->size - SAFE_SIZEOF(mft2_Layout), 2,
+ input_table_entries, output_table_entries, a2b);
+}
+
+static bool read_curves(const uint8_t* buf, uint32_t size, uint32_t curve_offset,
+ uint32_t num_curves, skcms_Curve* curves) {
+ for (uint32_t i = 0; i < num_curves; ++i) {
+ if (curve_offset > size) {
+ return false;
+ }
+
+ uint32_t curve_bytes;
+ if (!read_curve(buf + curve_offset, size - curve_offset, &curves[i], &curve_bytes)) {
+ return false;
+ }
+
+ if (curve_bytes > UINT32_MAX - 3) {
+ return false;
+ }
+ curve_bytes = (curve_bytes + 3) & ~3U;
+
+ uint64_t new_offset_64 = (uint64_t)curve_offset + curve_bytes;
+ curve_offset = (uint32_t)new_offset_64;
+ if (new_offset_64 != curve_offset) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+typedef struct {
+ uint8_t type [ 4];
+ uint8_t reserved_a [ 4];
+ uint8_t input_channels [ 1];
+ uint8_t output_channels [ 1];
+ uint8_t reserved_b [ 2];
+ uint8_t b_curve_offset [ 4];
+ uint8_t matrix_offset [ 4];
+ uint8_t m_curve_offset [ 4];
+ uint8_t clut_offset [ 4];
+ uint8_t a_curve_offset [ 4];
+} mAB_Layout;
+
+typedef struct {
+ uint8_t grid_points [16];
+ uint8_t grid_byte_width [ 1];
+ uint8_t reserved [ 3];
+ uint8_t data [ ];
+} mABCLUT_Layout;
+
+static bool read_tag_mab(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
+ if (tag->size < SAFE_SIZEOF(mAB_Layout)) {
+ return false;
+ }
+
+ const mAB_Layout* mABTag = (const mAB_Layout*)tag->buf;
+
+ a2b->input_channels = mABTag->input_channels[0];
+ a2b->output_channels = mABTag->output_channels[0];
+
+ // We require exactly three (ie XYZ/Lab/RGB) output channels
+ if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
+ return false;
+ }
+ // We require no more than four (ie CMYK) input channels
+ if (a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
+ return false;
+ }
+
+ uint32_t b_curve_offset = read_big_u32(mABTag->b_curve_offset);
+ uint32_t matrix_offset = read_big_u32(mABTag->matrix_offset);
+ uint32_t m_curve_offset = read_big_u32(mABTag->m_curve_offset);
+ uint32_t clut_offset = read_big_u32(mABTag->clut_offset);
+ uint32_t a_curve_offset = read_big_u32(mABTag->a_curve_offset);
+
+ // "B" curves must be present
+ if (0 == b_curve_offset) {
+ return false;
+ }
+
+ if (!read_curves(tag->buf, tag->size, b_curve_offset, a2b->output_channels,
+ a2b->output_curves)) {
+ return false;
+ }
+
+ // "M" curves and Matrix must be used together
+ if (0 != m_curve_offset) {
+ if (0 == matrix_offset) {
+ return false;
+ }
+ a2b->matrix_channels = a2b->output_channels;
+ if (!read_curves(tag->buf, tag->size, m_curve_offset, a2b->matrix_channels,
+ a2b->matrix_curves)) {
+ return false;
+ }
+
+ // Read matrix, which is stored as a row-major 3x3, followed by the fourth column
+ if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) {
+ return false;
+ }
+ float encoding_factor = pcs_is_xyz ? 65535 / 32768.0f : 1.0f;
+ const uint8_t* mtx_buf = tag->buf + matrix_offset;
+ a2b->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0);
+ a2b->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4);
+ a2b->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8);
+ a2b->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12);
+ a2b->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16);
+ a2b->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20);
+ a2b->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24);
+ a2b->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28);
+ a2b->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32);
+ a2b->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36);
+ a2b->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40);
+ a2b->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44);
+ } else {
+ if (0 != matrix_offset) {
+ return false;
+ }
+ a2b->matrix_channels = 0;
+ }
+
+ // "A" curves and CLUT must be used together
+ if (0 != a_curve_offset) {
+ if (0 == clut_offset) {
+ return false;
+ }
+ if (!read_curves(tag->buf, tag->size, a_curve_offset, a2b->input_channels,
+ a2b->input_curves)) {
+ return false;
+ }
+
+ if (tag->size < clut_offset + SAFE_SIZEOF(mABCLUT_Layout)) {
+ return false;
+ }
+ const mABCLUT_Layout* clut = (const mABCLUT_Layout*)(tag->buf + clut_offset);
+
+ if (clut->grid_byte_width[0] == 1) {
+ a2b->grid_8 = clut->data;
+ a2b->grid_16 = NULL;
+ } else if (clut->grid_byte_width[0] == 2) {
+ a2b->grid_8 = NULL;
+ a2b->grid_16 = clut->data;
+ } else {
+ return false;
+ }
+
+ uint64_t grid_size = a2b->output_channels * clut->grid_byte_width[0];
+ for (uint32_t i = 0; i < a2b->input_channels; ++i) {
+ a2b->grid_points[i] = clut->grid_points[i];
+ // The grid only makes sense with at least two points along each axis
+ if (a2b->grid_points[i] < 2) {
+ return false;
+ }
+ grid_size *= a2b->grid_points[i];
+ }
+ if (tag->size < clut_offset + SAFE_SIZEOF(mABCLUT_Layout) + grid_size) {
+ return false;
+ }
+ } else {
+ if (0 != clut_offset) {
+ return false;
+ }
+
+ // If there is no CLUT, the number of input and output channels must match
+ if (a2b->input_channels != a2b->output_channels) {
+ return false;
+ }
+
+ // Zero out the number of input channels to signal that we're skipping this stage
+ a2b->input_channels = 0;
+ }
+
+ return true;
+}
+
+static bool read_a2b(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
+ bool ok = false;
+ if (tag->type == skcms_Signature_mft1) {
+ ok = read_tag_mft1(tag, a2b);
+ } else if (tag->type == skcms_Signature_mft2) {
+ ok = read_tag_mft2(tag, a2b);
+ } else if (tag->type == skcms_Signature_mAB) {
+ ok = read_tag_mab(tag, a2b, pcs_is_xyz);
+ }
+ if (!ok) {
+ return false;
+ }
+
+ // Detect and canonicalize identity tables.
+ skcms_Curve* curves[] = {
+ a2b->input_channels > 0 ? a2b->input_curves + 0 : NULL,
+ a2b->input_channels > 1 ? a2b->input_curves + 1 : NULL,
+ a2b->input_channels > 2 ? a2b->input_curves + 2 : NULL,
+ a2b->input_channels > 3 ? a2b->input_curves + 3 : NULL,
+ a2b->matrix_channels > 0 ? a2b->matrix_curves + 0 : NULL,
+ a2b->matrix_channels > 1 ? a2b->matrix_curves + 1 : NULL,
+ a2b->matrix_channels > 2 ? a2b->matrix_curves + 2 : NULL,
+ a2b->output_channels > 0 ? a2b->output_curves + 0 : NULL,
+ a2b->output_channels > 1 ? a2b->output_curves + 1 : NULL,
+ a2b->output_channels > 2 ? a2b->output_curves + 2 : NULL,
+ };
+
+ for (int i = 0; i < ARRAY_COUNT(curves); i++) {
+ skcms_Curve* curve = curves[i];
+
+ if (curve && curve->table_entries && curve->table_entries <= (uint32_t)INT_MAX) {
+ int N = (int)curve->table_entries;
+
+ float c,d,f;
+ if (N == skcms_fit_linear(curve, N, 1.0f/(2*N), &c,&d,&f)
+ && c == 1.0f
+ && f == 0.0f) {
+ curve->table_entries = 0;
+ curve->table_8 = NULL;
+ curve->table_16 = NULL;
+ curve->parametric = (skcms_TransferFunction){1,1,0,0,0,0,0};
+ }
+ }
+ }
+
+ return true;
+}
+
+void skcms_GetTagByIndex(const skcms_ICCProfile* profile, uint32_t idx, skcms_ICCTag* tag) {
+ if (!profile || !profile->buffer || !tag) { return; }
+ if (idx > profile->tag_count) { return; }
+ const tag_Layout* tags = get_tag_table(profile);
+ tag->signature = read_big_u32(tags[idx].signature);
+ tag->size = read_big_u32(tags[idx].size);
+ tag->buf = read_big_u32(tags[idx].offset) + profile->buffer;
+ tag->type = read_big_u32(tag->buf);
+}
+
+bool skcms_GetTagBySignature(const skcms_ICCProfile* profile, uint32_t sig, skcms_ICCTag* tag) {
+ if (!profile || !profile->buffer || !tag) { return false; }
+ const tag_Layout* tags = get_tag_table(profile);
+ for (uint32_t i = 0; i < profile->tag_count; ++i) {
+ if (read_big_u32(tags[i].signature) == sig) {
+ tag->signature = sig;
+ tag->size = read_big_u32(tags[i].size);
+ tag->buf = read_big_u32(tags[i].offset) + profile->buffer;
+ tag->type = read_big_u32(tag->buf);
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool usable_as_src(const skcms_ICCProfile* profile) {
+ return profile->has_A2B
+ || (profile->has_trc && profile->has_toXYZD50);
+}
+
+bool skcms_Parse(const void* buf, size_t len, skcms_ICCProfile* profile) {
+ assert(SAFE_SIZEOF(header_Layout) == 132);
+
+ if (!profile) {
+ return false;
+ }
+ memset(profile, 0, SAFE_SIZEOF(*profile));
+
+ if (len < SAFE_SIZEOF(header_Layout)) {
+ return false;
+ }
+
+ // Byte-swap all header fields
+ const header_Layout* header = buf;
+ profile->buffer = buf;
+ profile->size = read_big_u32(header->size);
+ uint32_t version = read_big_u32(header->version);
+ profile->data_color_space = read_big_u32(header->data_color_space);
+ profile->pcs = read_big_u32(header->pcs);
+ uint32_t signature = read_big_u32(header->signature);
+ float illuminant_X = read_big_fixed(header->illuminant_X);
+ float illuminant_Y = read_big_fixed(header->illuminant_Y);
+ float illuminant_Z = read_big_fixed(header->illuminant_Z);
+ profile->tag_count = read_big_u32(header->tag_count);
+
+ // Validate signature, size (smaller than buffer, large enough to hold tag table),
+ // and major version
+ uint64_t tag_table_size = profile->tag_count * SAFE_SIZEOF(tag_Layout);
+ if (signature != skcms_Signature_acsp ||
+ profile->size > len ||
+ profile->size < SAFE_SIZEOF(header_Layout) + tag_table_size ||
+ (version >> 24) > 4) {
+ return false;
+ }
+
+ // Validate that illuminant is D50 white
+ if (fabsf_(illuminant_X - 0.9642f) > 0.0100f ||
+ fabsf_(illuminant_Y - 1.0000f) > 0.0100f ||
+ fabsf_(illuminant_Z - 0.8249f) > 0.0100f) {
+ return false;
+ }
+
+ // Validate that all tag entries have sane offset + size
+ const tag_Layout* tags = get_tag_table(profile);
+ for (uint32_t i = 0; i < profile->tag_count; ++i) {
+ uint32_t tag_offset = read_big_u32(tags[i].offset);
+ uint32_t tag_size = read_big_u32(tags[i].size);
+ uint64_t tag_end = (uint64_t)tag_offset + (uint64_t)tag_size;
+ if (tag_size < 4 || tag_end > profile->size) {
+ return false;
+ }
+ }
+
+ if (profile->pcs != skcms_Signature_XYZ && profile->pcs != skcms_Signature_Lab) {
+ return false;
+ }
+
+ bool pcs_is_xyz = profile->pcs == skcms_Signature_XYZ;
+
+ // Pre-parse commonly used tags.
+ skcms_ICCTag kTRC;
+ if (profile->data_color_space == skcms_Signature_Gray &&
+ skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &kTRC)) {
+ if (!read_curve(kTRC.buf, kTRC.size, &profile->trc[0], NULL)) {
+ // Malformed tag
+ return false;
+ }
+ profile->trc[1] = profile->trc[0];
+ profile->trc[2] = profile->trc[0];
+ profile->has_trc = true;
+
+ if (pcs_is_xyz) {
+ profile->toXYZD50.vals[0][0] = illuminant_X;
+ profile->toXYZD50.vals[1][1] = illuminant_Y;
+ profile->toXYZD50.vals[2][2] = illuminant_Z;
+ profile->has_toXYZD50 = true;
+ }
+ } else {
+ skcms_ICCTag rTRC, gTRC, bTRC;
+ if (skcms_GetTagBySignature(profile, skcms_Signature_rTRC, &rTRC) &&
+ skcms_GetTagBySignature(profile, skcms_Signature_gTRC, &gTRC) &&
+ skcms_GetTagBySignature(profile, skcms_Signature_bTRC, &bTRC)) {
+ if (!read_curve(rTRC.buf, rTRC.size, &profile->trc[0], NULL) ||
+ !read_curve(gTRC.buf, gTRC.size, &profile->trc[1], NULL) ||
+ !read_curve(bTRC.buf, bTRC.size, &profile->trc[2], NULL)) {
+ // Malformed TRC tags
+ return false;
+ }
+ profile->has_trc = true;
+ }
+
+ skcms_ICCTag rXYZ, gXYZ, bXYZ;
+ if (skcms_GetTagBySignature(profile, skcms_Signature_rXYZ, &rXYZ) &&
+ skcms_GetTagBySignature(profile, skcms_Signature_gXYZ, &gXYZ) &&
+ skcms_GetTagBySignature(profile, skcms_Signature_bXYZ, &bXYZ)) {
+ if (!read_to_XYZD50(&rXYZ, &gXYZ, &bXYZ, &profile->toXYZD50)) {
+ // Malformed XYZ tags
+ return false;
+ }
+ profile->has_toXYZD50 = true;
+ }
+ }
+
+ skcms_ICCTag a2b_tag;
+
+ // For now, we're preferring A2B0, like Skia does and the ICC spec tells us to.
+ // TODO: prefer A2B1 (relative colormetric) over A2B0 (perceptual)?
+ // This breaks with the ICC spec, but we think it's a good idea, given that TRC curves
+ // and all our known users are thinking exclusively in terms of relative colormetric.
+ const uint32_t sigs[] = { skcms_Signature_A2B0, skcms_Signature_A2B1 };
+ for (int i = 0; i < ARRAY_COUNT(sigs); i++) {
+ if (skcms_GetTagBySignature(profile, sigs[i], &a2b_tag)) {
+ if (!read_a2b(&a2b_tag, &profile->A2B, pcs_is_xyz)) {
+ // Malformed A2B tag
+ return false;
+ }
+ profile->has_A2B = true;
+ break;
+ }
+ }
+
+ return usable_as_src(profile);
+}
+
+
+const skcms_ICCProfile* skcms_sRGB_profile() {
+ static const skcms_ICCProfile sRGB_profile = {
+ // These fields are moot when not a skcms_Parse()'d profile.
+ .buffer = NULL,
+ .size = 0,
+ .tag_count = 0,
+
+ // We choose to represent sRGB with its canonical transfer function,
+ // and with its canonical XYZD50 gamut matrix.
+ .data_color_space = skcms_Signature_RGB,
+ .pcs = skcms_Signature_XYZ,
+ .has_trc = true,
+ .has_toXYZD50 = true,
+ .has_A2B = false,
+
+ .trc = {
+ {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
+ {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
+ {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
+ },
+
+ .toXYZD50 = {{
+ { 0.436065674f, 0.385147095f, 0.143066406f },
+ { 0.222488403f, 0.716873169f, 0.060607910f },
+ { 0.013916016f, 0.097076416f, 0.714096069f },
+ }},
+ };
+ return &sRGB_profile;
+}
+
+const skcms_ICCProfile* skcms_XYZD50_profile() {
+ static const skcms_ICCProfile XYZD50_profile = {
+ .buffer = NULL,
+ .size = 0,
+ .tag_count = 0,
+
+ .data_color_space = skcms_Signature_RGB,
+ .pcs = skcms_Signature_XYZ,
+ .has_trc = true,
+ .has_toXYZD50 = true,
+ .has_A2B = false,
+
+ .trc = {
+ {{0, {1,1,0,0,0,0,0}}},
+ {{0, {1,1,0,0,0,0,0}}},
+ {{0, {1,1,0,0,0,0,0}}},
+ },
+
+ .toXYZD50 = {{
+ {1,0,0},
+ {0,1,0},
+ {0,0,1},
+ }},
+ };
+
+ return &XYZD50_profile;
+}
+
+const skcms_TransferFunction* skcms_sRGB_TransferFunction() {
+ return &skcms_sRGB_profile()->trc[0].parametric;
+}
+
+const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() {
+ static const skcms_TransferFunction sRGB_inv =
+ { (float)(1/2.4), 1.137119f, 0, 12.92f, 0.0031308f, -0.055f, 0 };
+ return &sRGB_inv;
+}
+
+const skcms_TransferFunction* skcms_Identity_TransferFunction() {
+ static const skcms_TransferFunction identity = {1,1,0,0,0,0,0};
+ return &identity;
+}
+
+const uint8_t skcms_252_random_bytes[] = {
+ 8, 179, 128, 204, 253, 38, 134, 184, 68, 102, 32, 138, 99, 39, 169, 215,
+ 119, 26, 3, 223, 95, 239, 52, 132, 114, 74, 81, 234, 97, 116, 244, 205, 30,
+ 154, 173, 12, 51, 159, 122, 153, 61, 226, 236, 178, 229, 55, 181, 220, 191,
+ 194, 160, 126, 168, 82, 131, 18, 180, 245, 163, 22, 246, 69, 235, 252, 57,
+ 108, 14, 6, 152, 240, 255, 171, 242, 20, 227, 177, 238, 96, 85, 16, 211,
+ 70, 200, 149, 155, 146, 127, 145, 100, 151, 109, 19, 165, 208, 195, 164,
+ 137, 254, 182, 248, 64, 201, 45, 209, 5, 147, 207, 210, 113, 162, 83, 225,
+ 9, 31, 15, 231, 115, 37, 58, 53, 24, 49, 197, 56, 120, 172, 48, 21, 214,
+ 129, 111, 11, 50, 187, 196, 34, 60, 103, 71, 144, 47, 203, 77, 80, 232,
+ 140, 222, 250, 206, 166, 247, 139, 249, 221, 72, 106, 27, 199, 117, 54,
+ 219, 135, 118, 40, 79, 41, 251, 46, 93, 212, 92, 233, 148, 28, 121, 63,
+ 123, 158, 105, 59, 29, 42, 143, 23, 0, 107, 176, 87, 104, 183, 156, 193,
+ 189, 90, 188, 65, 190, 17, 198, 7, 186, 161, 1, 124, 78, 125, 170, 133,
+ 174, 218, 67, 157, 75, 101, 89, 217, 62, 33, 141, 228, 25, 35, 91, 230, 4,
+ 2, 13, 73, 86, 167, 237, 84, 243, 44, 185, 66, 130, 110, 150, 142, 216, 88,
+ 112, 36, 224, 136, 202, 76, 94, 98, 175, 213
+};
+
+bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A, const skcms_ICCProfile* B) {
+ // For now this is the essentially the same strategy we use in test_only.c
+ // for our skcms_Transform() smoke tests:
+ // 1) transform A to XYZD50
+ // 2) transform B to XYZD50
+ // 3) return true if they're similar enough
+ // Our current criterion in 3) is maximum 1 bit error per XYZD50 byte.
+
+ // Here are 252 of a random shuffle of all possible bytes.
+ // 252 is evenly divisible by 3 and 4. Only 192, 10, 241, and 43 are missing.
+
+ if (A->data_color_space != B->data_color_space) {
+ return false;
+ }
+
+ // Interpret as RGB_888 if data color space is RGB or GRAY, RGBA_8888 if CMYK.
+ skcms_PixelFormat fmt = skcms_PixelFormat_RGB_888;
+ size_t npixels = 84;
+ if (A->data_color_space == skcms_Signature_CMYK) {
+ fmt = skcms_PixelFormat_RGBA_8888;
+ npixels = 63;
+ }
+
+ uint8_t dstA[252],
+ dstB[252];
+ if (!skcms_Transform(
+ skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, A,
+ dstA, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
+ npixels)) {
+ return false;
+ }
+ if (!skcms_Transform(
+ skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, B,
+ dstB, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
+ npixels)) {
+ return false;
+ }
+
+ for (size_t i = 0; i < 252; i++) {
+ if (abs((int)dstA[i] - (int)dstB[i]) > 1) {
+ return false;
+ }
+ }
+ return true;
+}
+
+bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile,
+ const skcms_TransferFunction* inv_tf) {
+ if (!profile || !profile->has_trc) {
+ return false;
+ }
+
+ return skcms_AreApproximateInverses(&profile->trc[0], inv_tf) &&
+ skcms_AreApproximateInverses(&profile->trc[1], inv_tf) &&
+ skcms_AreApproximateInverses(&profile->trc[2], inv_tf);
+}
+
+static bool is_zero_to_one(float x) {
+ return 0 <= x && x <= 1;
+}
+
+bool skcms_PrimariesToXYZD50(float rx, float ry,
+ float gx, float gy,
+ float bx, float by,
+ float wx, float wy,
+ skcms_Matrix3x3* toXYZD50) {
+ if (!is_zero_to_one(rx) || !is_zero_to_one(ry) ||
+ !is_zero_to_one(gx) || !is_zero_to_one(gy) ||
+ !is_zero_to_one(bx) || !is_zero_to_one(by) ||
+ !is_zero_to_one(wx) || !is_zero_to_one(wy) ||
+ !toXYZD50) {
+ return false;
+ }
+
+ // First, we need to convert xy values (primaries) to XYZ.
+ skcms_Matrix3x3 primaries = {{
+ { rx, gx, bx },
+ { ry, gy, by },
+ { 1 - rx - ry, 1 - gx - gy, 1 - bx - by },
+ }};
+ skcms_Matrix3x3 primaries_inv;
+ if (!skcms_Matrix3x3_invert(&primaries, &primaries_inv)) {
+ return false;
+ }
+
+ // Assumes that Y is 1.0f.
+ skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } };
+ skcms_Vector3 XYZ = skcms_MV_mul(&primaries_inv, &wXYZ);
+
+ skcms_Matrix3x3 toXYZ = {{
+ { XYZ.vals[0], 0, 0 },
+ { 0, XYZ.vals[1], 0 },
+ { 0, 0, XYZ.vals[2] },
+ }};
+ toXYZ = skcms_Matrix3x3_concat(&primaries, &toXYZ);
+
+ // Now convert toXYZ matrix to toXYZD50.
+ skcms_Vector3 wXYZD50 = { { 0.96422f, 1.0f, 0.82521f } };
+
+ // Calculate the chromatic adaptation matrix. We will use the Bradford method, thus
+ // the matrices below. The Bradford method is used by Adobe and is widely considered
+ // to be the best.
+ skcms_Matrix3x3 xyz_to_lms = {{
+ { 0.8951f, 0.2664f, -0.1614f },
+ { -0.7502f, 1.7135f, 0.0367f },
+ { 0.0389f, -0.0685f, 1.0296f },
+ }};
+ skcms_Matrix3x3 lms_to_xyz = {{
+ { 0.9869929f, -0.1470543f, 0.1599627f },
+ { 0.4323053f, 0.5183603f, 0.0492912f },
+ { -0.0085287f, 0.0400428f, 0.9684867f },
+ }};
+
+ skcms_Vector3 srcCone = skcms_MV_mul(&xyz_to_lms, &wXYZ);
+ skcms_Vector3 dstCone = skcms_MV_mul(&xyz_to_lms, &wXYZD50);
+
+ skcms_Matrix3x3 DXtoD50 = {{
+ { dstCone.vals[0] / srcCone.vals[0], 0, 0 },
+ { 0, dstCone.vals[1] / srcCone.vals[1], 0 },
+ { 0, 0, dstCone.vals[2] / srcCone.vals[2] },
+ }};
+ DXtoD50 = skcms_Matrix3x3_concat(&DXtoD50, &xyz_to_lms);
+ DXtoD50 = skcms_Matrix3x3_concat(&lms_to_xyz, &DXtoD50);
+
+ *toXYZD50 = skcms_Matrix3x3_concat(&DXtoD50, &toXYZ);
+ return true;
+}
+
+
+bool skcms_Matrix3x3_invert(const skcms_Matrix3x3* src, skcms_Matrix3x3* dst) {
+ double a00 = src->vals[0][0],
+ a01 = src->vals[1][0],
+ a02 = src->vals[2][0],
+ a10 = src->vals[0][1],
+ a11 = src->vals[1][1],
+ a12 = src->vals[2][1],
+ a20 = src->vals[0][2],
+ a21 = src->vals[1][2],
+ a22 = src->vals[2][2];
+
+ double b0 = a00*a11 - a01*a10,
+ b1 = a00*a12 - a02*a10,
+ b2 = a01*a12 - a02*a11,
+ b3 = a20,
+ b4 = a21,
+ b5 = a22;
+
+ double determinant = b0*b5
+ - b1*b4
+ + b2*b3;
+
+ if (determinant == 0) {
+ return false;
+ }
+
+ double invdet = 1.0 / determinant;
+ if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) {
+ return false;
+ }
+
+ b0 *= invdet;
+ b1 *= invdet;
+ b2 *= invdet;
+ b3 *= invdet;
+ b4 *= invdet;
+ b5 *= invdet;
+
+ dst->vals[0][0] = (float)( a11*b5 - a12*b4 );
+ dst->vals[1][0] = (float)( a02*b4 - a01*b5 );
+ dst->vals[2][0] = (float)( + b2 );
+ dst->vals[0][1] = (float)( a12*b3 - a10*b5 );
+ dst->vals[1][1] = (float)( a00*b5 - a02*b3 );
+ dst->vals[2][1] = (float)( - b1 );
+ dst->vals[0][2] = (float)( a10*b4 - a11*b3 );
+ dst->vals[1][2] = (float)( a01*b3 - a00*b4 );
+ dst->vals[2][2] = (float)( + b0 );
+
+ for (int r = 0; r < 3; ++r)
+ for (int c = 0; c < 3; ++c) {
+ if (!isfinitef_(dst->vals[r][c])) {
+ return false;
+ }
+ }
+ return true;
+}
+
+skcms_Matrix3x3 skcms_Matrix3x3_concat(const skcms_Matrix3x3* A, const skcms_Matrix3x3* B) {
+ skcms_Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } };
+ for (int r = 0; r < 3; r++)
+ for (int c = 0; c < 3; c++) {
+ m.vals[r][c] = A->vals[r][0] * B->vals[0][c]
+ + A->vals[r][1] * B->vals[1][c]
+ + A->vals[r][2] * B->vals[2][c];
+ }
+ return m;
+}
+
+skcms_Vector3 skcms_MV_mul(const skcms_Matrix3x3* m, const skcms_Vector3* v) {
+ skcms_Vector3 dst = {{0,0,0}};
+ for (int row = 0; row < 3; ++row) {
+ dst.vals[row] = m->vals[row][0] * v->vals[0]
+ + m->vals[row][1] * v->vals[1]
+ + m->vals[row][2] * v->vals[2];
+ }
+ return dst;
+}
+
+#if defined(__clang__) || defined(__GNUC__)
+ #define small_memcpy __builtin_memcpy
+#else
+ #define small_memcpy memcpy
+#endif
+
+float log2f_(float x) {
+ // The first approximation of log2(x) is its exponent 'e', minus 127.
+ int32_t bits;
+ small_memcpy(&bits, &x, sizeof(bits));
+
+ float e = (float)bits * (1.0f / (1<<23));
+
+ // If we use the mantissa too we can refine the error signficantly.
+ int32_t m_bits = (bits & 0x007fffff) | 0x3f000000;
+ float m;
+ small_memcpy(&m, &m_bits, sizeof(m));
+
+ return (e - 124.225514990f
+ - 1.498030302f*m
+ - 1.725879990f/(0.3520887068f + m));
+}
+
+float exp2f_(float x) {
+ float fract = x - floorf_(x);
+
+ float fbits = (1.0f * (1<<23)) * (x + 121.274057500f
+ - 1.490129070f*fract
+ + 27.728023300f/(4.84252568f - fract));
+ if (fbits > INT_MAX) {
+ return INFINITY_;
+ } else if (fbits < INT_MIN) {
+ return -INFINITY_;
+ }
+ int32_t bits = (int32_t)fbits;
+ small_memcpy(&x, &bits, sizeof(x));
+ return x;
+}
+
+float powf_(float x, float y) {
+ return (x == 0) || (x == 1) ? x
+ : exp2f_(log2f_(x) * y);
+}
+
+float skcms_TransferFunction_eval(const skcms_TransferFunction* tf, float x) {
+ float sign = x < 0 ? -1.0f : 1.0f;
+ x *= sign;
+
+ return sign * (x < tf->d ? tf->c * x + tf->f
+ : powf_(tf->a * x + tf->b, tf->g) + tf->e);
+}
+
+bool skcms_TransferFunction_isValid(const skcms_TransferFunction* tf) {
+ // Reject obviously malformed inputs
+ if (!isfinitef_(tf->a + tf->b + tf->c + tf->d + tf->e + tf->f + tf->g)) {
+ return false;
+ }
+
+ // All of these parameters should be non-negative
+ if (tf->a < 0 || tf->c < 0 || tf->d < 0 || tf->g < 0) {
+ return false;
+ }
+
+ return true;
+}
+
+// TODO: Adjust logic here? This still assumes that purely linear inputs will have D > 1, which
+// we never generate. It also emits inverted linear using the same formulation. Standardize on
+// G == 1 here, too?
+bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) {
+ // Original equation is: y = (ax + b)^g + e for x >= d
+ // y = cx + f otherwise
+ //
+ // so 1st inverse is: (y - e)^(1/g) = ax + b
+ // x = ((y - e)^(1/g) - b) / a
+ //
+ // which can be re-written as: x = (1/a)(y - e)^(1/g) - b/a
+ // x = ((1/a)^g)^(1/g) * (y - e)^(1/g) - b/a
+ // x = ([(1/a)^g]y + [-((1/a)^g)e]) ^ [1/g] + [-b/a]
+ //
+ // and 2nd inverse is: x = (y - f) / c
+ // which can be re-written as: x = [1/c]y + [-f/c]
+ //
+ // and now both can be expressed in terms of the same parametric form as the
+ // original - parameters are enclosed in square brackets.
+ skcms_TransferFunction tf_inv = { 0, 0, 0, 0, 0, 0, 0 };
+
+ // This rejects obviously malformed inputs, as well as decreasing functions
+ if (!skcms_TransferFunction_isValid(src)) {
+ return false;
+ }
+
+ // There are additional constraints to be invertible
+ bool has_nonlinear = (src->d <= 1);
+ bool has_linear = (src->d > 0);
+
+ // Is the linear section not invertible?
+ if (has_linear && src->c == 0) {
+ return false;
+ }
+
+ // Is the nonlinear section not invertible?
+ if (has_nonlinear && (src->a == 0 || src->g == 0)) {
+ return false;
+ }
+
+ // If both segments are present, they need to line up
+ if (has_linear && has_nonlinear) {
+ float l_at_d = src->c * src->d + src->f;
+ float n_at_d = powf_(src->a * src->d + src->b, src->g) + src->e;
+ if (fabsf_(l_at_d - n_at_d) > (1 / 512.0f)) {
+ return false;
+ }
+ }
+
+ // Invert linear segment
+ if (has_linear) {
+ tf_inv.c = 1.0f / src->c;
+ tf_inv.f = -src->f / src->c;
+ }
+
+ // Invert nonlinear segment
+ if (has_nonlinear) {
+ tf_inv.g = 1.0f / src->g;
+ tf_inv.a = powf_(1.0f / src->a, src->g);
+ tf_inv.b = -tf_inv.a * src->e;
+ tf_inv.e = -src->b / src->a;
+ }
+
+ if (!has_linear) {
+ tf_inv.d = 0;
+ } else if (!has_nonlinear) {
+ // Any value larger than 1 works
+ tf_inv.d = 2.0f;
+ } else {
+ tf_inv.d = src->c * src->d + src->f;
+ }
+
+ *dst = tf_inv;
+ return true;
+}
+
+// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
+
+// From here below we're approximating an skcms_Curve with an skcms_TransferFunction{g,a,b,c,d,e,f}:
+//
+// tf(x) = cx + f x < d
+// tf(x) = (ax + b)^g + e x ≥ d
+//
+// When fitting, we add the additional constraint that both pieces meet at d:
+//
+// cd + f = (ad + b)^g + e
+//
+// Solving for e and folding it through gives an alternate formulation of the non-linear piece:
+//
+// tf(x) = cx + f x < d
+// tf(x) = (ax + b)^g - (ad + b)^g + cd + f x ≥ d
+//
+// Our overall strategy is then:
+// For a couple tolerances,
+// - skcms_fit_linear(): fit c,d,f iteratively to as many points as our tolerance allows
+// - invert c,d,f
+// - fit_nonlinear(): fit g,a,b using Gauss-Newton given those inverted c,d,f
+// (and by constraint, inverted e) to the inverse of the table.
+// Return the parameters with least maximum error.
+//
+// To run Gauss-Newton to find g,a,b, we'll also need the gradient of the residuals
+// of round-trip f_inv(x), the inverse of the non-linear piece of f(x).
+//
+// let y = Table(x)
+// r(x) = x - f_inv(y)
+//
+// ∂r/∂g = ln(ay + b)*(ay + b)^g
+// - ln(ad + b)*(ad + b)^g
+// ∂r/∂a = yg(ay + b)^(g-1)
+// - dg(ad + b)^(g-1)
+// ∂r/∂b = g(ay + b)^(g-1)
+// - g(ad + b)^(g-1)
+
+// Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P,
+// and fill out the gradient of the residual into dfdP.
+static float rg_nonlinear(float x,
+ const skcms_Curve* curve,
+ const skcms_TransferFunction* tf,
+ const float P[3],
+ float dfdP[3]) {
+ const float y = skcms_eval_curve(curve, x);
+
+ const float g = P[0], a = P[1], b = P[2],
+ c = tf->c, d = tf->d, f = tf->f;
+
+ const float Y = fmaxf_(a*y + b, 0.0f),
+ D = a*d + b;
+ assert (D >= 0);
+
+ // The gradient.
+ dfdP[0] = 0.69314718f*log2f_(Y)*powf_(Y, g)
+ - 0.69314718f*log2f_(D)*powf_(D, g);
+ dfdP[1] = y*g*powf_(Y, g-1)
+ - d*g*powf_(D, g-1);
+ dfdP[2] = g*powf_(Y, g-1)
+ - g*powf_(D, g-1);
+
+ // The residual.
+ const float f_inv = powf_(Y, g)
+ - powf_(D, g)
+ + c*d + f;
+ return x - f_inv;
+}
+
+int skcms_fit_linear(const skcms_Curve* curve, int N, float tol, float* c, float* d, float* f) {
+ assert(N > 1);
+ // We iteratively fit the first points to the TF's linear piece.
+ // We want the cx + f line to pass through the first and last points we fit exactly.
+ //
+ // As we walk along the points we find the minimum and maximum slope of the line before the
+ // error would exceed our tolerance. We stop when the range [slope_min, slope_max] becomes
+ // emtpy, when we definitely can't add any more points.
+ //
+ // Some points' error intervals may intersect the running interval but not lie fully
+ // within it. So we keep track of the last point we saw that is a valid end point candidate,
+ // and once the search is done, back up to build the line through *that* point.
+ const float dx = 1.0f / (N - 1);
+
+ int lin_points = 1;
+ *f = skcms_eval_curve(curve, 0);
+
+ float slope_min = -INFINITY_;
+ float slope_max = +INFINITY_;
+ for (int i = 1; i < N; ++i) {
+ float x = i * dx;
+ float y = skcms_eval_curve(curve, x);
+
+ float slope_max_i = (y + tol - *f) / x,
+ slope_min_i = (y - tol - *f) / x;
+ if (slope_max_i < slope_min || slope_max < slope_min_i) {
+ // Slope intervals would no longer overlap.
+ break;
+ }
+ slope_max = fminf_(slope_max, slope_max_i);
+ slope_min = fmaxf_(slope_min, slope_min_i);
+
+ float cur_slope = (y - *f) / x;
+ if (slope_min <= cur_slope && cur_slope <= slope_max) {
+ lin_points = i + 1;
+ *c = cur_slope;
+ }
+ }
+
+ // Set D to the last point that met our tolerance.
+ *d = (lin_points - 1) * dx;
+ return lin_points;
+}
+
+static bool gauss_newton_step(const skcms_Curve* curve,
+ const skcms_TransferFunction* tf,
+ float P[3],
+ float x0, float dx, int N) {
+ // We'll sample x from the range [x0,x1] (both inclusive) N times with even spacing.
+ //
+ // We want to do P' = P + (Jf^T Jf)^-1 Jf^T r(P),
+ // where r(P) is the residual vector
+ // and Jf is the Jacobian matrix of f(), ∂r/∂P.
+ //
+ // Let's review the shape of each of these expressions:
+ // r(P) is [N x 1], a column vector with one entry per value of x tested
+ // Jf is [N x 3], a matrix with an entry for each (x,P) pair
+ // Jf^T is [3 x N], the transpose of Jf
+ //
+ // Jf^T Jf is [3 x N] * [N x 3] == [3 x 3], a 3x3 matrix,
+ // and so is its inverse (Jf^T Jf)^-1
+ // Jf^T r(P) is [3 x N] * [N x 1] == [3 x 1], a column vector with the same shape as P
+ //
+ // Our implementation strategy to get to the final ∆P is
+ // 1) evaluate Jf^T Jf, call that lhs
+ // 2) evaluate Jf^T r(P), call that rhs
+ // 3) invert lhs
+ // 4) multiply inverse lhs by rhs
+ //
+ // This is a friendly implementation strategy because we don't have to have any
+ // buffers that scale with N, and equally nice don't have to perform any matrix
+ // operations that are variable size.
+ //
+ // Other implementation strategies could trade this off, e.g. evaluating the
+ // pseudoinverse of Jf ( (Jf^T Jf)^-1 Jf^T ) directly, then multiplying that by
+ // the residuals. That would probably require implementing singular value
+ // decomposition, and would create a [3 x N] matrix to be multiplied by the
+ // [N x 1] residual vector, but on the upside I think that'd eliminate the
+ // possibility of this gauss_newton_step() function ever failing.
+
+ // 0) start off with lhs and rhs safely zeroed.
+ skcms_Matrix3x3 lhs = {{ {0,0,0}, {0,0,0}, {0,0,0} }};
+ skcms_Vector3 rhs = { {0,0,0} };
+
+ // 1,2) evaluate lhs and evaluate rhs
+ // We want to evaluate Jf only once, but both lhs and rhs involve Jf^T,
+ // so we'll have to update lhs and rhs at the same time.
+ for (int i = 0; i < N; i++) {
+ float x = x0 + i*dx;
+
+ float dfdP[3] = {0,0,0};
+ float resid = rg_nonlinear(x,curve,tf,P, dfdP);
+
+ for (int r = 0; r < 3; r++) {
+ for (int c = 0; c < 3; c++) {
+ lhs.vals[r][c] += dfdP[r] * dfdP[c];
+ }
+ rhs.vals[r] += dfdP[r] * resid;
+ }
+ }
+
+ // If any of the 3 P parameters are unused, this matrix will be singular.
+ // Detect those cases and fix them up to indentity instead, so we can invert.
+ for (int k = 0; k < 3; k++) {
+ if (lhs.vals[0][k]==0 && lhs.vals[1][k]==0 && lhs.vals[2][k]==0 &&
+ lhs.vals[k][0]==0 && lhs.vals[k][1]==0 && lhs.vals[k][2]==0) {
+ lhs.vals[k][k] = 1;
+ }
+ }
+
+ // 3) invert lhs
+ skcms_Matrix3x3 lhs_inv;
+ if (!skcms_Matrix3x3_invert(&lhs, &lhs_inv)) {
+ return false;
+ }
+
+ // 4) multiply inverse lhs by rhs
+ skcms_Vector3 dP = skcms_MV_mul(&lhs_inv, &rhs);
+ P[0] += dP.vals[0];
+ P[1] += dP.vals[1];
+ P[2] += dP.vals[2];
+ return isfinitef_(P[0]) && isfinitef_(P[1]) && isfinitef_(P[2]);
+}
+
+
+// Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't.
+static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) {
+ float P[3] = { tf->g, tf->a, tf->b };
+
+ // No matter where we start, dx should always represent N even steps from 0 to 1.
+ const float dx = 1.0f / (N-1);
+
+ for (int j = 0; j < 3/*TODO: tune*/; j++) {
+ // These extra constraints a >= 0 and ad+b >= 0 are not modeled in the optimization.
+ // We don't really know how to fix up a if it goes negative.
+ if (P[1] < 0) {
+ return false;
+ }
+ // If ad+b goes negative, we feel just barely not uneasy enough to tweak b so ad+b is zero.
+ if (P[1] * tf->d + P[2] < 0) {
+ P[2] = -P[1] * tf->d;
+ }
+ assert (P[1] >= 0 &&
+ P[1] * tf->d + P[2] >= 0);
+
+ if (!gauss_newton_step(curve, tf,
+ P,
+ L*dx, dx, N-L)) {
+ return false;
+ }
+ }
+
+ // We need to apply our fixups one last time
+ if (P[1] < 0) {
+ return false;
+ }
+ if (P[1] * tf->d + P[2] < 0) {
+ P[2] = -P[1] * tf->d;
+ }
+
+ tf->g = P[0];
+ tf->a = P[1];
+ tf->b = P[2];
+ tf->e = tf->c*tf->d + tf->f
+ - powf_(tf->a*tf->d + tf->b, tf->g);
+ return true;
+}
+
+bool skcms_ApproximateCurve(const skcms_Curve* curve,
+ skcms_TransferFunction* approx,
+ float* max_error) {
+ if (!curve || !approx || !max_error) {
+ return false;
+ }
+
+ if (curve->table_entries == 0) {
+ // No point approximating an skcms_TransferFunction with an skcms_TransferFunction!
+ return false;
+ }
+
+ if (curve->table_entries == 1 || curve->table_entries > (uint32_t)INT_MAX) {
+ // We need at least two points, and must put some reasonable cap on the maximum number.
+ return false;
+ }
+
+ int N = (int)curve->table_entries;
+ const float dx = 1.0f / (N - 1);
+
+ *max_error = INFINITY_;
+ const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f };
+ for (int t = 0; t < ARRAY_COUNT(kTolerances); t++) {
+ skcms_TransferFunction tf,
+ tf_inv;
+ int L = skcms_fit_linear(curve, N, kTolerances[t], &tf.c, &tf.d, &tf.f);
+
+ if (L == N) {
+ // If the entire data set was linear, move the coefficients to the nonlinear portion
+ // with G == 1. This lets use a canonical representation with d == 0.
+ tf.g = 1;
+ tf.a = tf.c;
+ tf.b = tf.f;
+ tf.c = tf.d = tf.e = tf.f = 0;
+ } else if (L == N - 1) {
+ // Degenerate case with only two points in the nonlinear segment. Solve directly.
+ tf.g = 1;
+ tf.a = (skcms_eval_curve(curve, (N-1)*dx) -
+ skcms_eval_curve(curve, (N-2)*dx))
+ / dx;
+ tf.b = skcms_eval_curve(curve, (N-2)*dx)
+ - tf.a * (N-2)*dx;
+ tf.e = 0;
+ } else {
+ // Start by guessing a gamma-only curve through the midpoint.
+ int mid = (L + N) / 2;
+ float mid_x = mid / (N - 1.0f);
+ float mid_y = skcms_eval_curve(curve, mid_x);
+ tf.g = log2f_(mid_y) / log2f_(mid_x);;
+ tf.a = 1;
+ tf.b = 0;
+ tf.e = tf.c*tf.d + tf.f
+ - powf_(tf.a*tf.d + tf.b, tf.g);
+
+
+ if (!skcms_TransferFunction_invert(&tf, &tf_inv) ||
+ !fit_nonlinear(curve, L,N, &tf_inv)) {
+ continue;
+ }
+
+ // We fit tf_inv, so calculate tf to keep in sync.
+ if (!skcms_TransferFunction_invert(&tf_inv, &tf)) {
+ continue;
+ }
+ }
+
+ // We find our error by roundtripping the table through tf_inv.
+ //
+ // (The most likely use case for this approximation is to be inverted and
+ // used as the transfer function for a destination color space.)
+ //
+ // We've kept tf and tf_inv in sync above, but we can't guarantee that tf is
+ // invertible, so re-verify that here (and use the new inverse for testing).
+ if (!skcms_TransferFunction_invert(&tf, &tf_inv)) {
+ continue;
+ }
+
+ float err = skcms_MaxRoundtripError(curve, &tf_inv);
+ if (*max_error > err) {
+ *max_error = err;
+ *approx = tf;
+ }
+ }
+ return isfinitef_(*max_error);
+}
+
+// Without this wasm would try to use the N=4 128-bit vector code path,
+// which while ideal, causes tons of compiler problems. This would be
+// a good thing to revisit as emcc matures (currently 1.38.5).
+#if 1 && defined(__EMSCRIPTEN_major__)
+ #if !defined(SKCMS_PORTABLE)
+ #define SKCMS_PORTABLE
+ #endif
+#endif
+
+extern bool g_skcms_dump_profile;
+bool g_skcms_dump_profile = false;
+
+#if !defined(NDEBUG) && defined(__clang__)
+ // Basic profiling tools to time each Op. Not at all thread safe.
+
+ #include <stdio.h>
+ #include <stdlib.h>
+
+ #if defined(__arm__) || defined(__aarch64__)
+ #include <time.h>
+ static const char* now_units = "ticks";
+ static uint64_t now() { return (uint64_t)clock(); }
+ #else
+ static const char* now_units = "cycles";
+ static uint64_t now() { return __builtin_readcyclecounter(); }
+ #endif
+
+ #define M(op) +1
+ static uint64_t counts[FOREACH_Op(M)];
+ #undef M
+
+ static void profile_dump_stats() {
+ #define M(op) #op,
+ static const char* names[] = { FOREACH_Op(M) };
+ #undef M
+ for (int i = 0; i < ARRAY_COUNT(counts); i++) {
+ if (counts[i]) {
+ fprintf(stderr, "%16s: %12llu %s\n",
+ names[i], (unsigned long long)counts[i], now_units);
+ }
+ }
+ }
+
+ static inline Op profile_next_op(Op op) {
+ if (__builtin_expect(g_skcms_dump_profile, false)) {
+ static uint64_t start = 0;
+ static uint64_t* current = NULL;
+
+ if (!current) {
+ atexit(profile_dump_stats);
+ } else {
+ *current += now() - start;
+ }
+
+ current = &counts[op];
+ start = now();
+ }
+ return op;
+ }
+#else
+ static inline Op profile_next_op(Op op) {
+ (void)g_skcms_dump_profile;
+ return op;
+ }
+#endif
+
+#if defined(__clang__)
+ typedef float __attribute__((ext_vector_type(4))) Fx4;
+ typedef int32_t __attribute__((ext_vector_type(4))) I32x4;
+ typedef uint64_t __attribute__((ext_vector_type(4))) U64x4;
+ typedef uint32_t __attribute__((ext_vector_type(4))) U32x4;
+ typedef uint16_t __attribute__((ext_vector_type(4))) U16x4;
+ typedef uint8_t __attribute__((ext_vector_type(4))) U8x4;
+
+ typedef float __attribute__((ext_vector_type(8))) Fx8;
+ typedef int32_t __attribute__((ext_vector_type(8))) I32x8;
+ typedef uint64_t __attribute__((ext_vector_type(8))) U64x8;
+ typedef uint32_t __attribute__((ext_vector_type(8))) U32x8;
+ typedef uint16_t __attribute__((ext_vector_type(8))) U16x8;
+ typedef uint8_t __attribute__((ext_vector_type(8))) U8x8;
+
+ typedef float __attribute__((ext_vector_type(16))) Fx16;
+ typedef int32_t __attribute__((ext_vector_type(16))) I32x16;
+ typedef uint64_t __attribute__((ext_vector_type(16))) U64x16;
+ typedef uint32_t __attribute__((ext_vector_type(16))) U32x16;
+ typedef uint16_t __attribute__((ext_vector_type(16))) U16x16;
+ typedef uint8_t __attribute__((ext_vector_type(16))) U8x16;
+#elif defined(__GNUC__)
+ typedef float __attribute__((vector_size(16))) Fx4;
+ typedef int32_t __attribute__((vector_size(16))) I32x4;
+ typedef uint64_t __attribute__((vector_size(32))) U64x4;
+ typedef uint32_t __attribute__((vector_size(16))) U32x4;
+ typedef uint16_t __attribute__((vector_size( 8))) U16x4;
+ typedef uint8_t __attribute__((vector_size( 4))) U8x4;
+
+ typedef float __attribute__((vector_size(32))) Fx8;
+ typedef int32_t __attribute__((vector_size(32))) I32x8;
+ typedef uint64_t __attribute__((vector_size(64))) U64x8;
+ typedef uint32_t __attribute__((vector_size(32))) U32x8;
+ typedef uint16_t __attribute__((vector_size(16))) U16x8;
+ typedef uint8_t __attribute__((vector_size( 8))) U8x8;
+
+ typedef float __attribute__((vector_size( 64))) Fx16;
+ typedef int32_t __attribute__((vector_size( 64))) I32x16;
+ typedef uint64_t __attribute__((vector_size(128))) U64x16;
+ typedef uint32_t __attribute__((vector_size( 64))) U32x16;
+ typedef uint16_t __attribute__((vector_size( 32))) U16x16;
+ typedef uint8_t __attribute__((vector_size( 16))) U8x16;
+#endif
+
+// First, instantiate our default exec_ops() implementation using the default compiliation target.
+
+#if defined(SKCMS_PORTABLE) || !(defined(__clang__) || defined(__GNUC__))
+ #define N 1
+
+ #define F float
+ #define U64 uint64_t
+ #define U32 uint32_t
+ #define I32 int32_t
+ #define U16 uint16_t
+ #define U8 uint8_t
+
+ #define F0 0.0f
+ #define F1 1.0f
+
+#elif defined(__AVX512F__)
+ #define N 16
+
+ #define F Fx16
+ #define U64 U64x16
+ #define U32 U32x16
+ #define I32 I32x16
+ #define U16 U16x16
+ #define U8 U8x16
+
+ #define F0 (F){0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0}
+ #define F1 (F){1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1}
+#elif defined(__AVX__)
+ #define N 8
+
+ #define F Fx8
+ #define U64 U64x8
+ #define U32 U32x8
+ #define I32 I32x8
+ #define U16 U16x8
+ #define U8 U8x8
+
+ #define F0 (F){0,0,0,0, 0,0,0,0}
+ #define F1 (F){1,1,1,1, 1,1,1,1}
+#else
+ #define N 4
+
+ #define F Fx4
+ #define U64 U64x4
+ #define U32 U32x4
+ #define I32 I32x4
+ #define U16 U16x4
+ #define U8 U8x4
+
+ #define F0 (F){0,0,0,0}
+ #define F1 (F){1,1,1,1}
+#endif
+
+#define NS(id) id
+#define ATTR
+ #include "src/Transform_inl.h"
+#undef N
+#undef F
+#undef U64
+#undef U32
+#undef I32
+#undef U16
+#undef U8
+#undef F0
+#undef F1
+#undef NS
+#undef ATTR
+
+// Now, instantiate any other versions of run_program() we may want for runtime detection.
+#if !defined(SKCMS_PORTABLE) && (defined(__clang__) || defined(__GNUC__)) \
+ && defined(__x86_64__) && !defined(__AVX2__)
+ #define N 8
+ #define F Fx8
+ #define U64 U64x8
+ #define U32 U32x8
+ #define I32 I32x8
+ #define U16 U16x8
+ #define U8 U8x8
+ #define F0 (F){0,0,0,0, 0,0,0,0}
+ #define F1 (F){1,1,1,1, 1,1,1,1}
+
+ #define NS(id) id ## _hsw
+ #define ATTR __attribute__((target("avx2,f16c")))
+
+ // We check these guards to see if we have support for these features.
+ // They're likely _not_ defined here in our baseline build config.
+ #ifndef __AVX__
+ #define __AVX__ 1
+ #define UNDEF_AVX
+ #endif
+ #ifndef __F16C__
+ #define __F16C__ 1
+ #define UNDEF_F16C
+ #endif
+ #ifndef __AVX2__
+ #define __AVX2__ 1
+ #define UNDEF_AVX2
+ #endif
+
+ #include "src/Transform_inl.h"
+
+ #undef N
+ #undef F
+ #undef U64
+ #undef U32
+ #undef I32
+ #undef U16
+ #undef U8
+ #undef F0
+ #undef F1
+ #undef NS
+ #undef ATTR
+
+ #ifdef UNDEF_AVX
+ #undef __AVX__
+ #undef UNDEF_AVX
+ #endif
+ #ifdef UNDEF_F16C
+ #undef __F16C__
+ #undef UNDEF_F16C
+ #endif
+ #ifdef UNDEF_AVX2
+ #undef __AVX2__
+ #undef UNDEF_AVX2
+ #endif
+
+ #define TEST_FOR_HSW
+
+ static bool hsw_ok_ = false;
+ static void check_hsw_ok() {
+ // See http://www.sandpile.org/x86/cpuid.htm
+
+ // First, a basic cpuid(1).
+ uint32_t eax, ebx, ecx, edx;
+ __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
+ : "0"(1), "2"(0));
+
+ // Sanity check for prerequisites.
+ if ((edx & (1<<25)) != (1<<25)) { return; } // SSE
+ if ((edx & (1<<26)) != (1<<26)) { return; } // SSE2
+ if ((ecx & (1<< 0)) != (1<< 0)) { return; } // SSE3
+ if ((ecx & (1<< 9)) != (1<< 9)) { return; } // SSSE3
+ if ((ecx & (1<<19)) != (1<<19)) { return; } // SSE4.1
+ if ((ecx & (1<<20)) != (1<<20)) { return; } // SSE4.2
+
+ if ((ecx & (3<<26)) != (3<<26)) { return; } // XSAVE + OSXSAVE
+
+ {
+ uint32_t eax_xgetbv, edx_xgetbv;
+ __asm__ __volatile__("xgetbv" : "=a"(eax_xgetbv), "=d"(edx_xgetbv) : "c"(0));
+ if ((eax_xgetbv & (3<<1)) != (3<<1)) { return; } // XMM+YMM state saved?
+ }
+
+ if ((ecx & (1<<28)) != (1<<28)) { return; } // AVX
+ if ((ecx & (1<<29)) != (1<<29)) { return; } // F16C
+ if ((ecx & (1<<12)) != (1<<12)) { return; } // FMA (TODO: not currently used)
+
+ // Call cpuid(7) to check for our final AVX2 feature bit!
+ __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
+ : "0"(7), "2"(0));
+ if ((ebx & (1<< 5)) != (1<< 5)) { return; } // AVX2
+
+ hsw_ok_ = true;
+ }
+
+ #if defined(_MSC_VER)
+ #include <Windows.h>
+ INIT_ONCE check_hsw_ok_once = INIT_ONCE_STATIC_INIT;
+
+ static BOOL check_hsw_ok_InitOnce_wrapper(INIT_ONCE* once, void* param, void** ctx) {
+ (void)once;
+ (void)param;
+ (void)ctx;
+ check_hsw_ok();
+ return TRUE;
+ }
+
+ static bool hsw_ok() {
+ InitOnceExecuteOnce(&check_hsw_ok_once, check_hsw_ok_InitOnce_wrapper, NULL, NULL);
+ return hsw_ok_;
+ }
+ #else
+ #include <pthread.h>
+ static pthread_once_t check_hsw_ok_once = PTHREAD_ONCE_INIT;
+
+ static bool hsw_ok() {
+ pthread_once(&check_hsw_ok_once, check_hsw_ok);
+ return hsw_ok_;
+ }
+ #endif
+
+#endif
+
+static bool is_identity_tf(const skcms_TransferFunction* tf) {
+ return tf->g == 1 && tf->a == 1
+ && tf->b == 0 && tf->c == 0 && tf->d == 0 && tf->e == 0 && tf->f == 0;
+}
+
+typedef struct {
+ Op op;
+ const void* arg;
+} OpAndArg;
+
+static OpAndArg select_curve_op(const skcms_Curve* curve, int channel) {
+ static const struct { Op parametric, table_8, table_16; } ops[] = {
+ { Op_tf_r, Op_table_8_r, Op_table_16_r },
+ { Op_tf_g, Op_table_8_g, Op_table_16_g },
+ { Op_tf_b, Op_table_8_b, Op_table_16_b },
+ { Op_tf_a, Op_table_8_a, Op_table_16_a },
+ };
+
+ if (curve->table_entries == 0) {
+ return is_identity_tf(&curve->parametric)
+ ? (OpAndArg){ Op_noop, NULL }
+ : (OpAndArg){ ops[channel].parametric, &curve->parametric };
+ } else if (curve->table_8) {
+ return (OpAndArg){ ops[channel].table_8, curve };
+ } else if (curve->table_16) {
+ return (OpAndArg){ ops[channel].table_16, curve };
+ }
+
+ assert(false);
+ return (OpAndArg){Op_noop,NULL};
+}
+
+static size_t bytes_per_pixel(skcms_PixelFormat fmt) {
+ switch (fmt >> 1) { // ignore rgb/bgr
+ case skcms_PixelFormat_A_8 >> 1: return 1;
+ case skcms_PixelFormat_G_8 >> 1: return 1;
+ case skcms_PixelFormat_ABGR_4444 >> 1: return 2;
+ case skcms_PixelFormat_RGB_565 >> 1: return 2;
+ case skcms_PixelFormat_RGB_888 >> 1: return 3;
+ case skcms_PixelFormat_RGBA_8888 >> 1: return 4;
+ case skcms_PixelFormat_RGBA_1010102 >> 1: return 4;
+ case skcms_PixelFormat_RGB_161616 >> 1: return 6;
+ case skcms_PixelFormat_RGBA_16161616 >> 1: return 8;
+ case skcms_PixelFormat_RGB_hhh >> 1: return 6;
+ case skcms_PixelFormat_RGBA_hhhh >> 1: return 8;
+ case skcms_PixelFormat_RGB_fff >> 1: return 12;
+ case skcms_PixelFormat_RGBA_ffff >> 1: return 16;
+ }
+ assert(false);
+ return 0;
+}
+
+static bool prep_for_destination(const skcms_ICCProfile* profile,
+ skcms_Matrix3x3* fromXYZD50,
+ skcms_TransferFunction* invR,
+ skcms_TransferFunction* invG,
+ skcms_TransferFunction* invB) {
+ // We only support destinations with parametric transfer functions
+ // and with gamuts that can be transformed from XYZD50.
+ return profile->has_trc
+ && profile->has_toXYZD50
+ && profile->trc[0].table_entries == 0
+ && profile->trc[1].table_entries == 0
+ && profile->trc[2].table_entries == 0
+ && skcms_TransferFunction_invert(&profile->trc[0].parametric, invR)
+ && skcms_TransferFunction_invert(&profile->trc[1].parametric, invG)
+ && skcms_TransferFunction_invert(&profile->trc[2].parametric, invB)
+ && skcms_Matrix3x3_invert(&profile->toXYZD50, fromXYZD50);
+}
+
+bool skcms_Transform(const void* src,
+ skcms_PixelFormat srcFmt,
+ skcms_AlphaFormat srcAlpha,
+ const skcms_ICCProfile* srcProfile,
+ void* dst,
+ skcms_PixelFormat dstFmt,
+ skcms_AlphaFormat dstAlpha,
+ const skcms_ICCProfile* dstProfile,
+ size_t nz) {
+ const size_t dst_bpp = bytes_per_pixel(dstFmt),
+ src_bpp = bytes_per_pixel(srcFmt);
+ // Let's just refuse if the request is absurdly big.
+ if (nz * dst_bpp > INT_MAX || nz * src_bpp > INT_MAX) {
+ return false;
+ }
+ int n = (int)nz;
+
+ // Null profiles default to sRGB. Passing null for both is handy when doing format conversion.
+ if (!srcProfile) {
+ srcProfile = skcms_sRGB_profile();
+ }
+ if (!dstProfile) {
+ dstProfile = skcms_sRGB_profile();
+ }
+
+ // We can't transform in place unless the PixelFormats are the same size.
+ if (dst == src && (dstFmt >> 1) != (srcFmt >> 1)) {
+ return false;
+ }
+ // TODO: this check lazilly disallows U16 <-> F16, but that would actually be fine.
+ // TODO: more careful alias rejection (like, dst == src + 1)?
+
+ Op program [32];
+ const void* arguments[32];
+
+ Op* ops = program;
+ const void** args = arguments;
+
+ skcms_TransferFunction inv_dst_tf_r, inv_dst_tf_g, inv_dst_tf_b;
+ skcms_Matrix3x3 from_xyz;
+
+ switch (srcFmt >> 1) {
+ default: return false;
+ case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_load_a8; break;
+ case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_load_g8; break;
+ case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_load_4444; break;
+ case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_load_565; break;
+ case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_load_888; break;
+ case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_load_8888; break;
+ case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_load_1010102; break;
+ case skcms_PixelFormat_RGB_161616 >> 1: *ops++ = Op_load_161616; break;
+ case skcms_PixelFormat_RGBA_16161616 >> 1: *ops++ = Op_load_16161616; break;
+ case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_load_hhh; break;
+ case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_load_hhhh; break;
+ case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_load_fff; break;
+ case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_load_ffff; break;
+ }
+ if (srcFmt & 1) {
+ *ops++ = Op_swap_rb;
+ }
+ skcms_ICCProfile gray_dst_profile;
+ if ((dstFmt >> 1) == (skcms_PixelFormat_G_8 >> 1)) {
+ // When transforming to gray, stop at XYZ (by setting toXYZ to identity), then transform
+ // luminance (Y) by the destination transfer function.
+ gray_dst_profile = *dstProfile;
+ skcms_SetXYZD50(&gray_dst_profile, &skcms_XYZD50_profile()->toXYZD50);
+ dstProfile = &gray_dst_profile;
+ }
+
+ if (srcProfile->data_color_space == skcms_Signature_CMYK) {
+ // Photoshop creates CMYK images as inverse CMYK.
+ // These happen to be the only ones we've _ever_ seen.
+ *ops++ = Op_invert;
+ // With CMYK, ignore the alpha type, to avoid changing K or conflating CMY with K.
+ srcAlpha = skcms_AlphaFormat_Unpremul;
+ }
+
+ if (srcAlpha == skcms_AlphaFormat_Opaque) {
+ *ops++ = Op_force_opaque;
+ } else if (srcAlpha == skcms_AlphaFormat_PremulAsEncoded) {
+ *ops++ = Op_unpremul;
+ }
+
+ // TODO: We can skip this work if both srcAlpha and dstAlpha are PremulLinear, and the profiles
+ // are the same. Also, if dstAlpha is PremulLinear, and SrcAlpha is Opaque.
+ if (dstProfile != srcProfile ||
+ srcAlpha == skcms_AlphaFormat_PremulLinear ||
+ dstAlpha == skcms_AlphaFormat_PremulLinear) {
+
+ if (!prep_for_destination(dstProfile,
+ &from_xyz, &inv_dst_tf_r, &inv_dst_tf_b, &inv_dst_tf_g)) {
+ return false;
+ }
+
+ if (srcProfile->has_A2B) {
+ if (srcProfile->A2B.input_channels) {
+ for (int i = 0; i < (int)srcProfile->A2B.input_channels; i++) {
+ OpAndArg oa = select_curve_op(&srcProfile->A2B.input_curves[i], i);
+ if (oa.op != Op_noop) {
+ *ops++ = oa.op;
+ *args++ = oa.arg;
+ }
+ }
+ switch (srcProfile->A2B.input_channels) {
+ case 3: *ops++ = srcProfile->A2B.grid_8 ? Op_clut_3D_8 : Op_clut_3D_16; break;
+ case 4: *ops++ = srcProfile->A2B.grid_8 ? Op_clut_4D_8 : Op_clut_4D_16; break;
+ default: return false;
+ }
+ *args++ = &srcProfile->A2B;
+ }
+
+ if (srcProfile->A2B.matrix_channels == 3) {
+ for (int i = 0; i < 3; i++) {
+ OpAndArg oa = select_curve_op(&srcProfile->A2B.matrix_curves[i], i);
+ if (oa.op != Op_noop) {
+ *ops++ = oa.op;
+ *args++ = oa.arg;
+ }
+ }
+
+ static const skcms_Matrix3x4 I = {{
+ {1,0,0,0},
+ {0,1,0,0},
+ {0,0,1,0},
+ }};
+ if (0 != memcmp(&I, &srcProfile->A2B.matrix, sizeof(I))) {
+ *ops++ = Op_matrix_3x4;
+ *args++ = &srcProfile->A2B.matrix;
+ }
+ }
+
+ if (srcProfile->A2B.output_channels == 3) {
+ for (int i = 0; i < 3; i++) {
+ OpAndArg oa = select_curve_op(&srcProfile->A2B.output_curves[i], i);
+ if (oa.op != Op_noop) {
+ *ops++ = oa.op;
+ *args++ = oa.arg;
+ }
+ }
+ }
+
+ if (srcProfile->pcs == skcms_Signature_Lab) {
+ *ops++ = Op_lab_to_xyz;
+ }
+
+ } else if (srcProfile->has_trc && srcProfile->has_toXYZD50) {
+ for (int i = 0; i < 3; i++) {
+ OpAndArg oa = select_curve_op(&srcProfile->trc[i], i);
+ if (oa.op != Op_noop) {
+ *ops++ = oa.op;
+ *args++ = oa.arg;
+ }
+ }
+ } else {
+ return false;
+ }
+
+ // At this point our source colors are linear, either RGB (XYZ-type profiles)
+ // or XYZ (A2B-type profiles). Unpremul is a linear operation (multiply by a
+ // constant 1/a), so either way we can do it now if needed.
+ if (srcAlpha == skcms_AlphaFormat_PremulLinear) {
+ *ops++ = Op_unpremul;
+ }
+
+ // A2B sources should already be in XYZD50 at this point.
+ // Others still need to be transformed using their toXYZD50 matrix.
+ // N.B. There are profiles that contain both A2B tags and toXYZD50 matrices.
+ // If we use the A2B tags, we need to ignore the XYZD50 matrix entirely.
+ assert (srcProfile->has_A2B || srcProfile->has_toXYZD50);
+ static const skcms_Matrix3x3 I = {{
+ { 1.0f, 0.0f, 0.0f },
+ { 0.0f, 1.0f, 0.0f },
+ { 0.0f, 0.0f, 1.0f },
+ }};
+ const skcms_Matrix3x3* to_xyz = srcProfile->has_A2B ? &I : &srcProfile->toXYZD50;
+
+ // There's a chance the source and destination gamuts are identical,
+ // in which case we can skip the gamut transform.
+ if (0 != memcmp(&dstProfile->toXYZD50, to_xyz, sizeof(skcms_Matrix3x3))) {
+ // Concat the entire gamut transform into from_xyz,
+ // now slightly misnamed but it's a handy spot to stash the result.
+ from_xyz = skcms_Matrix3x3_concat(&from_xyz, to_xyz);
+ *ops++ = Op_matrix_3x3;
+ *args++ = &from_xyz;
+ }
+
+ if (dstAlpha == skcms_AlphaFormat_PremulLinear) {
+ *ops++ = Op_premul;
+ }
+
+ // Encode back to dst RGB using its parametric transfer functions.
+ if (!is_identity_tf(&inv_dst_tf_r)) { *ops++ = Op_tf_r; *args++ = &inv_dst_tf_r; }
+ if (!is_identity_tf(&inv_dst_tf_g)) { *ops++ = Op_tf_g; *args++ = &inv_dst_tf_g; }
+ if (!is_identity_tf(&inv_dst_tf_b)) { *ops++ = Op_tf_b; *args++ = &inv_dst_tf_b; }
+ }
+
+ if (dstAlpha == skcms_AlphaFormat_Opaque) {
+ *ops++ = Op_force_opaque;
+ } else if (dstAlpha == skcms_AlphaFormat_PremulAsEncoded) {
+ *ops++ = Op_premul;
+ }
+ if (dstFmt & 1) {
+ *ops++ = Op_swap_rb;
+ }
+ if (dstFmt < skcms_PixelFormat_RGB_hhh) {
+ *ops++ = Op_clamp;
+ }
+ switch (dstFmt >> 1) {
+ default: return false;
+ case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_store_a8; break;
+ case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_store_g8; break;
+ case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_store_4444; break;
+ case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_store_565; break;
+ case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_store_888; break;
+ case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_store_8888; break;
+ case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_store_1010102; break;
+ case skcms_PixelFormat_RGB_161616 >> 1: *ops++ = Op_store_161616; break;
+ case skcms_PixelFormat_RGBA_16161616 >> 1: *ops++ = Op_store_16161616; break;
+ case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_store_hhh; break;
+ case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_store_hhhh; break;
+ case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_store_fff; break;
+ case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_store_ffff; break;
+ }
+
+ void (*run)(const Op*, const void**, const char*, char*, int, size_t,size_t) = run_program;
+#if defined(TEST_FOR_HSW)
+ if (hsw_ok()) {
+ run = run_program_hsw;
+ }
+#endif
+ run(program, arguments, src, dst, n, src_bpp,dst_bpp);
+ return true;
+}
+
+static void assert_usable_as_destination(const skcms_ICCProfile* profile) {
+#if defined(NDEBUG)
+ (void)profile;
+#else
+ skcms_Matrix3x3 fromXYZD50;
+ skcms_TransferFunction invR, invG, invB;
+ assert(prep_for_destination(profile, &fromXYZD50, &invR, &invG, &invB));
+#endif
+}
+
+bool skcms_MakeUsableAsDestination(skcms_ICCProfile* profile) {
+ skcms_Matrix3x3 fromXYZD50;
+ if (!profile->has_trc || !profile->has_toXYZD50
+ || !skcms_Matrix3x3_invert(&profile->toXYZD50, &fromXYZD50)) {
+ return false;
+ }
+
+ skcms_TransferFunction tf[3];
+ for (int i = 0; i < 3; i++) {
+ skcms_TransferFunction inv;
+ if (profile->trc[i].table_entries == 0
+ && skcms_TransferFunction_invert(&profile->trc[i].parametric, &inv)) {
+ tf[i] = profile->trc[i].parametric;
+ continue;
+ }
+
+ float max_error;
+ // Parametric curves from skcms_ApproximateCurve() are guaranteed to be invertible.
+ if (!skcms_ApproximateCurve(&profile->trc[i], &tf[i], &max_error)) {
+ return false;
+ }
+ }
+
+ for (int i = 0; i < 3; ++i) {
+ profile->trc[i].table_entries = 0;
+ profile->trc[i].parametric = tf[i];
+ }
+
+ assert_usable_as_destination(profile);
+ return true;
+}
+
+bool skcms_MakeUsableAsDestinationWithSingleCurve(skcms_ICCProfile* profile) {
+ // Operate on a copy of profile, so we can choose the best TF for the original curves
+ skcms_ICCProfile result = *profile;
+ if (!skcms_MakeUsableAsDestination(&result)) {
+ return false;
+ }
+
+ int best_tf = 0;
+ float min_max_error = INFINITY_;
+ for (int i = 0; i < 3; i++) {
+ skcms_TransferFunction inv;
+ skcms_TransferFunction_invert(&result.trc[i].parametric, &inv);
+
+ float err = 0;
+ for (int j = 0; j < 3; ++j) {
+ err = fmaxf_(err, skcms_MaxRoundtripError(&profile->trc[j], &inv));
+ }
+ if (min_max_error > err) {
+ min_max_error = err;
+ best_tf = i;
+ }
+ }
+
+ for (int i = 0; i < 3; i++) {
+ result.trc[i].parametric = result.trc[best_tf].parametric;
+ }
+
+ *profile = result;
+ assert_usable_as_destination(profile);
+ return true;
+}
diff --git a/third_party/skcms/skcms.gni b/third_party/skcms/skcms.gni
index fbd816cf4e..2cfe2fbe68 100644
--- a/third_party/skcms/skcms.gni
+++ b/third_party/skcms/skcms.gni
@@ -4,13 +4,8 @@
# found in the LICENSE file.
skcms_sources = [
+ "skcms.c",
"skcms.h",
"skcms_internal.h",
- "src/Curve.c",
- "src/ICCProfile.c",
- "src/LinearAlgebra.c",
- "src/PortableMath.c",
- "src/TransferFunction.c",
- "src/Transform.c",
"src/Transform_inl.h",
]
diff --git a/third_party/skcms/src/Curve.c b/third_party/skcms/src/Curve.c
deleted file mode 100644
index 2b99fd7bf4..0000000000
--- a/third_party/skcms/src/Curve.c
+++ /dev/null
@@ -1,59 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "../skcms_internal.h"
-#include <assert.h>
-
-static float minus_1_ulp(float x) {
- int32_t bits;
- memcpy(&bits, &x, sizeof(bits));
- bits = bits - 1;
- memcpy(&x, &bits, sizeof(bits));
- return x;
-}
-
-float skcms_eval_curve(const skcms_Curve* curve, float x) {
- if (curve->table_entries == 0) {
- return skcms_TransferFunction_eval(&curve->parametric, x);
- }
-
- float ix = fmaxf_(0, fminf_(x, 1)) * (curve->table_entries - 1);
- int lo = (int) ix,
- hi = (int)minus_1_ulp(ix + 1.0f);
- float t = ix - (float)lo;
-
- float l, h;
- if (curve->table_8) {
- l = curve->table_8[lo] * (1/255.0f);
- h = curve->table_8[hi] * (1/255.0f);
- } else {
- uint16_t be_l, be_h;
- memcpy(&be_l, curve->table_16 + 2*lo, 2);
- memcpy(&be_h, curve->table_16 + 2*hi, 2);
- uint16_t le_l = ((be_l << 8) | (be_l >> 8)) & 0xffff;
- uint16_t le_h = ((be_h << 8) | (be_h >> 8)) & 0xffff;
- l = le_l * (1/65535.0f);
- h = le_h * (1/65535.0f);
- }
- return l + (h-l)*t;
-}
-
-float skcms_MaxRoundtripError(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
- uint32_t N = curve->table_entries > 256 ? curve->table_entries : 256;
- const float dx = 1.0f / (N - 1);
- float err = 0;
- for (uint32_t i = 0; i < N; i++) {
- float x = i * dx,
- y = skcms_eval_curve(curve, x);
- err = fmaxf_(err, fabsf_(x - skcms_TransferFunction_eval(inv_tf, y)));
- }
- return err;
-}
-
-bool skcms_AreApproximateInverses(const skcms_Curve* curve, const skcms_TransferFunction* inv_tf) {
- return skcms_MaxRoundtripError(curve, inv_tf) < (1/512.0f);
-}
diff --git a/third_party/skcms/src/ICCProfile.c b/third_party/skcms/src/ICCProfile.c
deleted file mode 100644
index 257e111025..0000000000
--- a/third_party/skcms/src/ICCProfile.c
+++ /dev/null
@@ -1,1052 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "../skcms.h"
-#include "../skcms_internal.h"
-#include <assert.h>
-#include <limits.h>
-#include <stdlib.h>
-#include <string.h>
-
-// Additional ICC signature values that are only used internally
-enum {
- // File signature
- skcms_Signature_acsp = 0x61637370,
-
- // Tag signatures
- skcms_Signature_rTRC = 0x72545243,
- skcms_Signature_gTRC = 0x67545243,
- skcms_Signature_bTRC = 0x62545243,
- skcms_Signature_kTRC = 0x6B545243,
-
- skcms_Signature_rXYZ = 0x7258595A,
- skcms_Signature_gXYZ = 0x6758595A,
- skcms_Signature_bXYZ = 0x6258595A,
-
- skcms_Signature_A2B0 = 0x41324230,
- skcms_Signature_A2B1 = 0x41324231,
- skcms_Signature_mAB = 0x6D414220,
-
- skcms_Signature_CHAD = 0x63686164,
-
- // Type signatures
- skcms_Signature_curv = 0x63757276,
- skcms_Signature_mft1 = 0x6D667431,
- skcms_Signature_mft2 = 0x6D667432,
- skcms_Signature_para = 0x70617261,
- skcms_Signature_sf32 = 0x73663332,
- // XYZ is also a PCS signature, so it's defined in skcms.h
- // skcms_Signature_XYZ = 0x58595A20,
-};
-
-static uint16_t read_big_u16(const uint8_t* ptr) {
- uint16_t be;
- memcpy(&be, ptr, sizeof(be));
-#if defined(_MSC_VER)
- return _byteswap_ushort(be);
-#else
- return __builtin_bswap16(be);
-#endif
-}
-
-static uint32_t read_big_u32(const uint8_t* ptr) {
- uint32_t be;
- memcpy(&be, ptr, sizeof(be));
-#if defined(_MSC_VER)
- return _byteswap_ulong(be);
-#else
- return __builtin_bswap32(be);
-#endif
-}
-
-static int32_t read_big_i32(const uint8_t* ptr) {
- return (int32_t)read_big_u32(ptr);
-}
-
-static float read_big_fixed(const uint8_t* ptr) {
- return read_big_i32(ptr) * (1.0f / 65536.0f);
-}
-
-// Maps to an in-memory profile so that fields line up to the locations specified
-// in ICC.1:2010, section 7.2
-typedef struct {
- uint8_t size [ 4];
- uint8_t cmm_type [ 4];
- uint8_t version [ 4];
- uint8_t profile_class [ 4];
- uint8_t data_color_space [ 4];
- uint8_t pcs [ 4];
- uint8_t creation_date_time [12];
- uint8_t signature [ 4];
- uint8_t platform [ 4];
- uint8_t flags [ 4];
- uint8_t device_manufacturer [ 4];
- uint8_t device_model [ 4];
- uint8_t device_attributes [ 8];
- uint8_t rendering_intent [ 4];
- uint8_t illuminant_X [ 4];
- uint8_t illuminant_Y [ 4];
- uint8_t illuminant_Z [ 4];
- uint8_t creator [ 4];
- uint8_t profile_id [16];
- uint8_t reserved [28];
- uint8_t tag_count [ 4]; // Technically not part of header, but required
-} header_Layout;
-
-typedef struct {
- uint8_t signature [4];
- uint8_t offset [4];
- uint8_t size [4];
-} tag_Layout;
-
-static const tag_Layout* get_tag_table(const skcms_ICCProfile* profile) {
- return (const tag_Layout*)(profile->buffer + SAFE_SIZEOF(header_Layout));
-}
-
-// s15Fixed16ArrayType is technically variable sized, holding N values. However, the only valid
-// use of the type is for the CHAD tag that stores exactly nine values.
-typedef struct {
- uint8_t type [ 4];
- uint8_t reserved [ 4];
- uint8_t values [36];
-} sf32_Layout;
-
-bool skcms_GetCHAD(const skcms_ICCProfile* profile, skcms_Matrix3x3* m) {
- skcms_ICCTag tag;
- if (!skcms_GetTagBySignature(profile, skcms_Signature_CHAD, &tag)) {
- return false;
- }
-
- if (tag.type != skcms_Signature_sf32 || tag.size < SAFE_SIZEOF(sf32_Layout)) {
- return false;
- }
-
- const sf32_Layout* sf32Tag = (const sf32_Layout*)tag.buf;
- const uint8_t* values = sf32Tag->values;
- for (int r = 0; r < 3; ++r)
- for (int c = 0; c < 3; ++c, values += 4) {
- m->vals[r][c] = read_big_fixed(values);
- }
- return true;
-}
-
-// XYZType is technically variable sized, holding N XYZ triples. However, the only valid uses of
-// the type are for tags/data that store exactly one triple.
-typedef struct {
- uint8_t type [4];
- uint8_t reserved [4];
- uint8_t X [4];
- uint8_t Y [4];
- uint8_t Z [4];
-} XYZ_Layout;
-
-static bool read_tag_xyz(const skcms_ICCTag* tag, float* x, float* y, float* z) {
- if (tag->type != skcms_Signature_XYZ || tag->size < SAFE_SIZEOF(XYZ_Layout)) {
- return false;
- }
-
- const XYZ_Layout* xyzTag = (const XYZ_Layout*)tag->buf;
-
- *x = read_big_fixed(xyzTag->X);
- *y = read_big_fixed(xyzTag->Y);
- *z = read_big_fixed(xyzTag->Z);
- return true;
-}
-
-static bool read_to_XYZD50(const skcms_ICCTag* rXYZ, const skcms_ICCTag* gXYZ,
- const skcms_ICCTag* bXYZ, skcms_Matrix3x3* toXYZ) {
- return read_tag_xyz(rXYZ, &toXYZ->vals[0][0], &toXYZ->vals[1][0], &toXYZ->vals[2][0]) &&
- read_tag_xyz(gXYZ, &toXYZ->vals[0][1], &toXYZ->vals[1][1], &toXYZ->vals[2][1]) &&
- read_tag_xyz(bXYZ, &toXYZ->vals[0][2], &toXYZ->vals[1][2], &toXYZ->vals[2][2]);
-}
-
-typedef struct {
- uint8_t type [4];
- uint8_t reserved_a [4];
- uint8_t function_type [2];
- uint8_t reserved_b [2];
- uint8_t parameters [ ]; // 1, 3, 4, 5, or 7 s15.16 parameters, depending on function_type
-} para_Layout;
-
-static bool read_curve_para(const uint8_t* buf, uint32_t size,
- skcms_Curve* curve, uint32_t* curve_size) {
- if (size < SAFE_SIZEOF(para_Layout)) {
- return false;
- }
-
- const para_Layout* paraTag = (const para_Layout*)buf;
-
- enum { kG = 0, kGAB = 1, kGABC = 2, kGABCD = 3, kGABCDEF = 4 };
- uint16_t function_type = read_big_u16(paraTag->function_type);
- if (function_type > kGABCDEF) {
- return false;
- }
-
- static const uint32_t curve_bytes[] = { 4, 12, 16, 20, 28 };
- if (size < SAFE_SIZEOF(para_Layout) + curve_bytes[function_type]) {
- return false;
- }
-
- if (curve_size) {
- *curve_size = SAFE_SIZEOF(para_Layout) + curve_bytes[function_type];
- }
-
- curve->table_entries = 0;
- curve->parametric.a = 1.0f;
- curve->parametric.b = 0.0f;
- curve->parametric.c = 0.0f;
- curve->parametric.d = 0.0f;
- curve->parametric.e = 0.0f;
- curve->parametric.f = 0.0f;
- curve->parametric.g = read_big_fixed(paraTag->parameters);
-
- switch (function_type) {
- case kGAB:
- curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
- curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
- if (curve->parametric.a == 0) {
- return false;
- }
- curve->parametric.d = -curve->parametric.b / curve->parametric.a;
- break;
- case kGABC:
- curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
- curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
- curve->parametric.e = read_big_fixed(paraTag->parameters + 12);
- if (curve->parametric.a == 0) {
- return false;
- }
- curve->parametric.d = -curve->parametric.b / curve->parametric.a;
- curve->parametric.f = curve->parametric.e;
- break;
- case kGABCD:
- curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
- curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
- curve->parametric.c = read_big_fixed(paraTag->parameters + 12);
- curve->parametric.d = read_big_fixed(paraTag->parameters + 16);
- break;
- case kGABCDEF:
- curve->parametric.a = read_big_fixed(paraTag->parameters + 4);
- curve->parametric.b = read_big_fixed(paraTag->parameters + 8);
- curve->parametric.c = read_big_fixed(paraTag->parameters + 12);
- curve->parametric.d = read_big_fixed(paraTag->parameters + 16);
- curve->parametric.e = read_big_fixed(paraTag->parameters + 20);
- curve->parametric.f = read_big_fixed(paraTag->parameters + 24);
- break;
- }
- return skcms_TransferFunction_isValid(&curve->parametric);
-}
-
-typedef struct {
- uint8_t type [4];
- uint8_t reserved [4];
- uint8_t value_count [4];
- uint8_t parameters [ ]; // value_count parameters (8.8 if 1, uint16 (n*65535) if > 1)
-} curv_Layout;
-
-static bool read_curve_curv(const uint8_t* buf, uint32_t size,
- skcms_Curve* curve, uint32_t* curve_size) {
- if (size < SAFE_SIZEOF(curv_Layout)) {
- return false;
- }
-
- const curv_Layout* curvTag = (const curv_Layout*)buf;
-
- uint32_t value_count = read_big_u32(curvTag->value_count);
- if (size < SAFE_SIZEOF(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t)) {
- return false;
- }
-
- if (curve_size) {
- *curve_size = SAFE_SIZEOF(curv_Layout) + value_count * SAFE_SIZEOF(uint16_t);
- }
-
- if (value_count < 2) {
- curve->table_entries = 0;
- curve->parametric.a = 1.0f;
- curve->parametric.b = 0.0f;
- curve->parametric.c = 0.0f;
- curve->parametric.d = 0.0f;
- curve->parametric.e = 0.0f;
- curve->parametric.f = 0.0f;
- if (value_count == 0) {
- // Empty tables are a shorthand for an identity curve
- curve->parametric.g = 1.0f;
- } else {
- // Single entry tables are a shorthand for simple gamma
- curve->parametric.g = read_big_u16(curvTag->parameters) * (1.0f / 256.0f);
- }
- } else {
- curve->table_8 = NULL;
- curve->table_16 = curvTag->parameters;
- curve->table_entries = value_count;
- }
-
- return true;
-}
-
-// Parses both curveType and parametricCurveType data. Ensures that at most 'size' bytes are read.
-// If curve_size is not NULL, writes the number of bytes used by the curve in (*curve_size).
-static bool read_curve(const uint8_t* buf, uint32_t size,
- skcms_Curve* curve, uint32_t* curve_size) {
- if (!buf || size < 4 || !curve) {
- return false;
- }
-
- uint32_t type = read_big_u32(buf);
- if (type == skcms_Signature_para) {
- return read_curve_para(buf, size, curve, curve_size);
- } else if (type == skcms_Signature_curv) {
- return read_curve_curv(buf, size, curve, curve_size);
- }
-
- return false;
-}
-
-// mft1 and mft2 share a large chunk of data
-typedef struct {
- uint8_t type [ 4];
- uint8_t reserved_a [ 4];
- uint8_t input_channels [ 1];
- uint8_t output_channels [ 1];
- uint8_t grid_points [ 1];
- uint8_t reserved_b [ 1];
- uint8_t matrix [36];
-} mft_CommonLayout;
-
-typedef struct {
- mft_CommonLayout common [ 1];
-
- uint8_t tables [ ];
-} mft1_Layout;
-
-typedef struct {
- mft_CommonLayout common [ 1];
-
- uint8_t input_table_entries [ 2];
- uint8_t output_table_entries [ 2];
- uint8_t tables [ ];
-} mft2_Layout;
-
-static bool read_mft_common(const mft_CommonLayout* mftTag, skcms_A2B* a2b) {
- // MFT matrices are applied before the first set of curves, but must be identity unless the
- // input is PCSXYZ. We don't support PCSXYZ profiles, so we ignore this matrix. Note that the
- // matrix in skcms_A2B is applied later in the pipe, so supporting this would require another
- // field/flag.
- a2b->matrix_channels = 0;
-
- a2b->input_channels = mftTag->input_channels[0];
- a2b->output_channels = mftTag->output_channels[0];
-
- // We require exactly three (ie XYZ/Lab/RGB) output channels
- if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
- return false;
- }
- // We require at least one, and no more than four (ie CMYK) input channels
- if (a2b->input_channels < 1 || a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
- return false;
- }
-
- for (uint32_t i = 0; i < a2b->input_channels; ++i) {
- a2b->grid_points[i] = mftTag->grid_points[0];
- }
- // The grid only makes sense with at least two points along each axis
- if (a2b->grid_points[0] < 2) {
- return false;
- }
-
- return true;
-}
-
-static bool init_a2b_tables(const uint8_t* table_base, uint64_t max_tables_len, uint32_t byte_width,
- uint32_t input_table_entries, uint32_t output_table_entries,
- skcms_A2B* a2b) {
- // byte_width is 1 or 2, [input|output]_table_entries are in [2, 4096], so no overflow
- uint32_t byte_len_per_input_table = input_table_entries * byte_width;
- uint32_t byte_len_per_output_table = output_table_entries * byte_width;
-
- // [input|output]_channels are <= 4, so still no overflow
- uint32_t byte_len_all_input_tables = a2b->input_channels * byte_len_per_input_table;
- uint32_t byte_len_all_output_tables = a2b->output_channels * byte_len_per_output_table;
-
- uint64_t grid_size = a2b->output_channels * byte_width;
- for (uint32_t axis = 0; axis < a2b->input_channels; ++axis) {
- grid_size *= a2b->grid_points[axis];
- }
-
- if (max_tables_len < byte_len_all_input_tables + grid_size + byte_len_all_output_tables) {
- return false;
- }
-
- for (uint32_t i = 0; i < a2b->input_channels; ++i) {
- a2b->input_curves[i].table_entries = input_table_entries;
- if (byte_width == 1) {
- a2b->input_curves[i].table_8 = table_base + i * byte_len_per_input_table;
- a2b->input_curves[i].table_16 = NULL;
- } else {
- a2b->input_curves[i].table_8 = NULL;
- a2b->input_curves[i].table_16 = table_base + i * byte_len_per_input_table;
- }
- }
-
- if (byte_width == 1) {
- a2b->grid_8 = table_base + byte_len_all_input_tables;
- a2b->grid_16 = NULL;
- } else {
- a2b->grid_8 = NULL;
- a2b->grid_16 = table_base + byte_len_all_input_tables;
- }
-
- const uint8_t* output_table_base = table_base + byte_len_all_input_tables + grid_size;
- for (uint32_t i = 0; i < a2b->output_channels; ++i) {
- a2b->output_curves[i].table_entries = output_table_entries;
- if (byte_width == 1) {
- a2b->output_curves[i].table_8 = output_table_base + i * byte_len_per_output_table;
- a2b->output_curves[i].table_16 = NULL;
- } else {
- a2b->output_curves[i].table_8 = NULL;
- a2b->output_curves[i].table_16 = output_table_base + i * byte_len_per_output_table;
- }
- }
-
- return true;
-}
-
-static bool read_tag_mft1(const skcms_ICCTag* tag, skcms_A2B* a2b) {
- if (tag->size < SAFE_SIZEOF(mft1_Layout)) {
- return false;
- }
-
- const mft1_Layout* mftTag = (const mft1_Layout*)tag->buf;
- if (!read_mft_common(mftTag->common, a2b)) {
- return false;
- }
-
- uint32_t input_table_entries = 256;
- uint32_t output_table_entries = 256;
-
- return init_a2b_tables(mftTag->tables, tag->size - SAFE_SIZEOF(mft1_Layout), 1,
- input_table_entries, output_table_entries, a2b);
-}
-
-static bool read_tag_mft2(const skcms_ICCTag* tag, skcms_A2B* a2b) {
- if (tag->size < SAFE_SIZEOF(mft2_Layout)) {
- return false;
- }
-
- const mft2_Layout* mftTag = (const mft2_Layout*)tag->buf;
- if (!read_mft_common(mftTag->common, a2b)) {
- return false;
- }
-
- uint32_t input_table_entries = read_big_u16(mftTag->input_table_entries);
- uint32_t output_table_entries = read_big_u16(mftTag->output_table_entries);
-
- // ICC spec mandates that 2 <= table_entries <= 4096
- if (input_table_entries < 2 || input_table_entries > 4096 ||
- output_table_entries < 2 || output_table_entries > 4096) {
- return false;
- }
-
- return init_a2b_tables(mftTag->tables, tag->size - SAFE_SIZEOF(mft2_Layout), 2,
- input_table_entries, output_table_entries, a2b);
-}
-
-static bool read_curves(const uint8_t* buf, uint32_t size, uint32_t curve_offset,
- uint32_t num_curves, skcms_Curve* curves) {
- for (uint32_t i = 0; i < num_curves; ++i) {
- if (curve_offset > size) {
- return false;
- }
-
- uint32_t curve_bytes;
- if (!read_curve(buf + curve_offset, size - curve_offset, &curves[i], &curve_bytes)) {
- return false;
- }
-
- if (curve_bytes > UINT32_MAX - 3) {
- return false;
- }
- curve_bytes = (curve_bytes + 3) & ~3U;
-
- uint64_t new_offset_64 = (uint64_t)curve_offset + curve_bytes;
- curve_offset = (uint32_t)new_offset_64;
- if (new_offset_64 != curve_offset) {
- return false;
- }
- }
-
- return true;
-}
-
-typedef struct {
- uint8_t type [ 4];
- uint8_t reserved_a [ 4];
- uint8_t input_channels [ 1];
- uint8_t output_channels [ 1];
- uint8_t reserved_b [ 2];
- uint8_t b_curve_offset [ 4];
- uint8_t matrix_offset [ 4];
- uint8_t m_curve_offset [ 4];
- uint8_t clut_offset [ 4];
- uint8_t a_curve_offset [ 4];
-} mAB_Layout;
-
-typedef struct {
- uint8_t grid_points [16];
- uint8_t grid_byte_width [ 1];
- uint8_t reserved [ 3];
- uint8_t data [ ];
-} mABCLUT_Layout;
-
-static bool read_tag_mab(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
- if (tag->size < SAFE_SIZEOF(mAB_Layout)) {
- return false;
- }
-
- const mAB_Layout* mABTag = (const mAB_Layout*)tag->buf;
-
- a2b->input_channels = mABTag->input_channels[0];
- a2b->output_channels = mABTag->output_channels[0];
-
- // We require exactly three (ie XYZ/Lab/RGB) output channels
- if (a2b->output_channels != ARRAY_COUNT(a2b->output_curves)) {
- return false;
- }
- // We require no more than four (ie CMYK) input channels
- if (a2b->input_channels > ARRAY_COUNT(a2b->input_curves)) {
- return false;
- }
-
- uint32_t b_curve_offset = read_big_u32(mABTag->b_curve_offset);
- uint32_t matrix_offset = read_big_u32(mABTag->matrix_offset);
- uint32_t m_curve_offset = read_big_u32(mABTag->m_curve_offset);
- uint32_t clut_offset = read_big_u32(mABTag->clut_offset);
- uint32_t a_curve_offset = read_big_u32(mABTag->a_curve_offset);
-
- // "B" curves must be present
- if (0 == b_curve_offset) {
- return false;
- }
-
- if (!read_curves(tag->buf, tag->size, b_curve_offset, a2b->output_channels,
- a2b->output_curves)) {
- return false;
- }
-
- // "M" curves and Matrix must be used together
- if (0 != m_curve_offset) {
- if (0 == matrix_offset) {
- return false;
- }
- a2b->matrix_channels = a2b->output_channels;
- if (!read_curves(tag->buf, tag->size, m_curve_offset, a2b->matrix_channels,
- a2b->matrix_curves)) {
- return false;
- }
-
- // Read matrix, which is stored as a row-major 3x3, followed by the fourth column
- if (tag->size < matrix_offset + 12 * SAFE_SIZEOF(uint32_t)) {
- return false;
- }
- float encoding_factor = pcs_is_xyz ? 65535 / 32768.0f : 1.0f;
- const uint8_t* mtx_buf = tag->buf + matrix_offset;
- a2b->matrix.vals[0][0] = encoding_factor * read_big_fixed(mtx_buf + 0);
- a2b->matrix.vals[0][1] = encoding_factor * read_big_fixed(mtx_buf + 4);
- a2b->matrix.vals[0][2] = encoding_factor * read_big_fixed(mtx_buf + 8);
- a2b->matrix.vals[1][0] = encoding_factor * read_big_fixed(mtx_buf + 12);
- a2b->matrix.vals[1][1] = encoding_factor * read_big_fixed(mtx_buf + 16);
- a2b->matrix.vals[1][2] = encoding_factor * read_big_fixed(mtx_buf + 20);
- a2b->matrix.vals[2][0] = encoding_factor * read_big_fixed(mtx_buf + 24);
- a2b->matrix.vals[2][1] = encoding_factor * read_big_fixed(mtx_buf + 28);
- a2b->matrix.vals[2][2] = encoding_factor * read_big_fixed(mtx_buf + 32);
- a2b->matrix.vals[0][3] = encoding_factor * read_big_fixed(mtx_buf + 36);
- a2b->matrix.vals[1][3] = encoding_factor * read_big_fixed(mtx_buf + 40);
- a2b->matrix.vals[2][3] = encoding_factor * read_big_fixed(mtx_buf + 44);
- } else {
- if (0 != matrix_offset) {
- return false;
- }
- a2b->matrix_channels = 0;
- }
-
- // "A" curves and CLUT must be used together
- if (0 != a_curve_offset) {
- if (0 == clut_offset) {
- return false;
- }
- if (!read_curves(tag->buf, tag->size, a_curve_offset, a2b->input_channels,
- a2b->input_curves)) {
- return false;
- }
-
- if (tag->size < clut_offset + SAFE_SIZEOF(mABCLUT_Layout)) {
- return false;
- }
- const mABCLUT_Layout* clut = (const mABCLUT_Layout*)(tag->buf + clut_offset);
-
- if (clut->grid_byte_width[0] == 1) {
- a2b->grid_8 = clut->data;
- a2b->grid_16 = NULL;
- } else if (clut->grid_byte_width[0] == 2) {
- a2b->grid_8 = NULL;
- a2b->grid_16 = clut->data;
- } else {
- return false;
- }
-
- uint64_t grid_size = a2b->output_channels * clut->grid_byte_width[0];
- for (uint32_t i = 0; i < a2b->input_channels; ++i) {
- a2b->grid_points[i] = clut->grid_points[i];
- // The grid only makes sense with at least two points along each axis
- if (a2b->grid_points[i] < 2) {
- return false;
- }
- grid_size *= a2b->grid_points[i];
- }
- if (tag->size < clut_offset + SAFE_SIZEOF(mABCLUT_Layout) + grid_size) {
- return false;
- }
- } else {
- if (0 != clut_offset) {
- return false;
- }
-
- // If there is no CLUT, the number of input and output channels must match
- if (a2b->input_channels != a2b->output_channels) {
- return false;
- }
-
- // Zero out the number of input channels to signal that we're skipping this stage
- a2b->input_channels = 0;
- }
-
- return true;
-}
-
-static bool read_a2b(const skcms_ICCTag* tag, skcms_A2B* a2b, bool pcs_is_xyz) {
- bool ok = false;
- if (tag->type == skcms_Signature_mft1) {
- ok = read_tag_mft1(tag, a2b);
- } else if (tag->type == skcms_Signature_mft2) {
- ok = read_tag_mft2(tag, a2b);
- } else if (tag->type == skcms_Signature_mAB) {
- ok = read_tag_mab(tag, a2b, pcs_is_xyz);
- }
- if (!ok) {
- return false;
- }
-
- // Detect and canonicalize identity tables.
- skcms_Curve* curves[] = {
- a2b->input_channels > 0 ? a2b->input_curves + 0 : NULL,
- a2b->input_channels > 1 ? a2b->input_curves + 1 : NULL,
- a2b->input_channels > 2 ? a2b->input_curves + 2 : NULL,
- a2b->input_channels > 3 ? a2b->input_curves + 3 : NULL,
- a2b->matrix_channels > 0 ? a2b->matrix_curves + 0 : NULL,
- a2b->matrix_channels > 1 ? a2b->matrix_curves + 1 : NULL,
- a2b->matrix_channels > 2 ? a2b->matrix_curves + 2 : NULL,
- a2b->output_channels > 0 ? a2b->output_curves + 0 : NULL,
- a2b->output_channels > 1 ? a2b->output_curves + 1 : NULL,
- a2b->output_channels > 2 ? a2b->output_curves + 2 : NULL,
- };
-
- for (int i = 0; i < ARRAY_COUNT(curves); i++) {
- skcms_Curve* curve = curves[i];
-
- if (curve && curve->table_entries && curve->table_entries <= (uint32_t)INT_MAX) {
- int N = (int)curve->table_entries;
-
- float c,d,f;
- if (N == skcms_fit_linear(curve, N, 1.0f/(2*N), &c,&d,&f)
- && c == 1.0f
- && f == 0.0f) {
- curve->table_entries = 0;
- curve->table_8 = NULL;
- curve->table_16 = NULL;
- curve->parametric = (skcms_TransferFunction){1,1,0,0,0,0,0};
- }
- }
- }
-
- return true;
-}
-
-void skcms_GetTagByIndex(const skcms_ICCProfile* profile, uint32_t idx, skcms_ICCTag* tag) {
- if (!profile || !profile->buffer || !tag) { return; }
- if (idx > profile->tag_count) { return; }
- const tag_Layout* tags = get_tag_table(profile);
- tag->signature = read_big_u32(tags[idx].signature);
- tag->size = read_big_u32(tags[idx].size);
- tag->buf = read_big_u32(tags[idx].offset) + profile->buffer;
- tag->type = read_big_u32(tag->buf);
-}
-
-bool skcms_GetTagBySignature(const skcms_ICCProfile* profile, uint32_t sig, skcms_ICCTag* tag) {
- if (!profile || !profile->buffer || !tag) { return false; }
- const tag_Layout* tags = get_tag_table(profile);
- for (uint32_t i = 0; i < profile->tag_count; ++i) {
- if (read_big_u32(tags[i].signature) == sig) {
- tag->signature = sig;
- tag->size = read_big_u32(tags[i].size);
- tag->buf = read_big_u32(tags[i].offset) + profile->buffer;
- tag->type = read_big_u32(tag->buf);
- return true;
- }
- }
- return false;
-}
-
-static bool usable_as_src(const skcms_ICCProfile* profile) {
- return profile->has_A2B
- || (profile->has_trc && profile->has_toXYZD50);
-}
-
-bool skcms_Parse(const void* buf, size_t len, skcms_ICCProfile* profile) {
- assert(SAFE_SIZEOF(header_Layout) == 132);
-
- if (!profile) {
- return false;
- }
- memset(profile, 0, SAFE_SIZEOF(*profile));
-
- if (len < SAFE_SIZEOF(header_Layout)) {
- return false;
- }
-
- // Byte-swap all header fields
- const header_Layout* header = buf;
- profile->buffer = buf;
- profile->size = read_big_u32(header->size);
- uint32_t version = read_big_u32(header->version);
- profile->data_color_space = read_big_u32(header->data_color_space);
- profile->pcs = read_big_u32(header->pcs);
- uint32_t signature = read_big_u32(header->signature);
- float illuminant_X = read_big_fixed(header->illuminant_X);
- float illuminant_Y = read_big_fixed(header->illuminant_Y);
- float illuminant_Z = read_big_fixed(header->illuminant_Z);
- profile->tag_count = read_big_u32(header->tag_count);
-
- // Validate signature, size (smaller than buffer, large enough to hold tag table),
- // and major version
- uint64_t tag_table_size = profile->tag_count * SAFE_SIZEOF(tag_Layout);
- if (signature != skcms_Signature_acsp ||
- profile->size > len ||
- profile->size < SAFE_SIZEOF(header_Layout) + tag_table_size ||
- (version >> 24) > 4) {
- return false;
- }
-
- // Validate that illuminant is D50 white
- if (fabsf_(illuminant_X - 0.9642f) > 0.0100f ||
- fabsf_(illuminant_Y - 1.0000f) > 0.0100f ||
- fabsf_(illuminant_Z - 0.8249f) > 0.0100f) {
- return false;
- }
-
- // Validate that all tag entries have sane offset + size
- const tag_Layout* tags = get_tag_table(profile);
- for (uint32_t i = 0; i < profile->tag_count; ++i) {
- uint32_t tag_offset = read_big_u32(tags[i].offset);
- uint32_t tag_size = read_big_u32(tags[i].size);
- uint64_t tag_end = (uint64_t)tag_offset + (uint64_t)tag_size;
- if (tag_size < 4 || tag_end > profile->size) {
- return false;
- }
- }
-
- if (profile->pcs != skcms_Signature_XYZ && profile->pcs != skcms_Signature_Lab) {
- return false;
- }
-
- bool pcs_is_xyz = profile->pcs == skcms_Signature_XYZ;
-
- // Pre-parse commonly used tags.
- skcms_ICCTag kTRC;
- if (profile->data_color_space == skcms_Signature_Gray &&
- skcms_GetTagBySignature(profile, skcms_Signature_kTRC, &kTRC)) {
- if (!read_curve(kTRC.buf, kTRC.size, &profile->trc[0], NULL)) {
- // Malformed tag
- return false;
- }
- profile->trc[1] = profile->trc[0];
- profile->trc[2] = profile->trc[0];
- profile->has_trc = true;
-
- if (pcs_is_xyz) {
- profile->toXYZD50.vals[0][0] = illuminant_X;
- profile->toXYZD50.vals[1][1] = illuminant_Y;
- profile->toXYZD50.vals[2][2] = illuminant_Z;
- profile->has_toXYZD50 = true;
- }
- } else {
- skcms_ICCTag rTRC, gTRC, bTRC;
- if (skcms_GetTagBySignature(profile, skcms_Signature_rTRC, &rTRC) &&
- skcms_GetTagBySignature(profile, skcms_Signature_gTRC, &gTRC) &&
- skcms_GetTagBySignature(profile, skcms_Signature_bTRC, &bTRC)) {
- if (!read_curve(rTRC.buf, rTRC.size, &profile->trc[0], NULL) ||
- !read_curve(gTRC.buf, gTRC.size, &profile->trc[1], NULL) ||
- !read_curve(bTRC.buf, bTRC.size, &profile->trc[2], NULL)) {
- // Malformed TRC tags
- return false;
- }
- profile->has_trc = true;
- }
-
- skcms_ICCTag rXYZ, gXYZ, bXYZ;
- if (skcms_GetTagBySignature(profile, skcms_Signature_rXYZ, &rXYZ) &&
- skcms_GetTagBySignature(profile, skcms_Signature_gXYZ, &gXYZ) &&
- skcms_GetTagBySignature(profile, skcms_Signature_bXYZ, &bXYZ)) {
- if (!read_to_XYZD50(&rXYZ, &gXYZ, &bXYZ, &profile->toXYZD50)) {
- // Malformed XYZ tags
- return false;
- }
- profile->has_toXYZD50 = true;
- }
- }
-
- skcms_ICCTag a2b_tag;
-
- // For now, we're preferring A2B0, like Skia does and the ICC spec tells us to.
- // TODO: prefer A2B1 (relative colormetric) over A2B0 (perceptual)?
- // This breaks with the ICC spec, but we think it's a good idea, given that TRC curves
- // and all our known users are thinking exclusively in terms of relative colormetric.
- const uint32_t sigs[] = { skcms_Signature_A2B0, skcms_Signature_A2B1 };
- for (int i = 0; i < ARRAY_COUNT(sigs); i++) {
- if (skcms_GetTagBySignature(profile, sigs[i], &a2b_tag)) {
- if (!read_a2b(&a2b_tag, &profile->A2B, pcs_is_xyz)) {
- // Malformed A2B tag
- return false;
- }
- profile->has_A2B = true;
- break;
- }
- }
-
- return usable_as_src(profile);
-}
-
-
-const skcms_ICCProfile* skcms_sRGB_profile() {
- static const skcms_ICCProfile sRGB_profile = {
- // These fields are moot when not a skcms_Parse()'d profile.
- .buffer = NULL,
- .size = 0,
- .tag_count = 0,
-
- // We choose to represent sRGB with its canonical transfer function,
- // and with its canonical XYZD50 gamut matrix.
- .data_color_space = skcms_Signature_RGB,
- .pcs = skcms_Signature_XYZ,
- .has_trc = true,
- .has_toXYZD50 = true,
- .has_A2B = false,
-
- .trc = {
- {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
- {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
- {{0, {2.4f, (float)(1/1.055), (float)(0.055/1.055), (float)(1/12.92), 0.04045f, 0, 0 }}},
- },
-
- .toXYZD50 = {{
- { 0.436065674f, 0.385147095f, 0.143066406f },
- { 0.222488403f, 0.716873169f, 0.060607910f },
- { 0.013916016f, 0.097076416f, 0.714096069f },
- }},
- };
- return &sRGB_profile;
-}
-
-const skcms_ICCProfile* skcms_XYZD50_profile() {
- static const skcms_ICCProfile XYZD50_profile = {
- .buffer = NULL,
- .size = 0,
- .tag_count = 0,
-
- .data_color_space = skcms_Signature_RGB,
- .pcs = skcms_Signature_XYZ,
- .has_trc = true,
- .has_toXYZD50 = true,
- .has_A2B = false,
-
- .trc = {
- {{0, {1,1,0,0,0,0,0}}},
- {{0, {1,1,0,0,0,0,0}}},
- {{0, {1,1,0,0,0,0,0}}},
- },
-
- .toXYZD50 = {{
- {1,0,0},
- {0,1,0},
- {0,0,1},
- }},
- };
-
- return &XYZD50_profile;
-}
-
-const skcms_TransferFunction* skcms_sRGB_TransferFunction() {
- return &skcms_sRGB_profile()->trc[0].parametric;
-}
-
-const skcms_TransferFunction* skcms_sRGB_Inverse_TransferFunction() {
- static const skcms_TransferFunction sRGB_inv =
- { (float)(1/2.4), 1.137119f, 0, 12.92f, 0.0031308f, -0.055f, 0 };
- return &sRGB_inv;
-}
-
-const skcms_TransferFunction* skcms_Identity_TransferFunction() {
- static const skcms_TransferFunction identity = {1,1,0,0,0,0,0};
- return &identity;
-}
-
-const uint8_t skcms_252_random_bytes[] = {
- 8, 179, 128, 204, 253, 38, 134, 184, 68, 102, 32, 138, 99, 39, 169, 215,
- 119, 26, 3, 223, 95, 239, 52, 132, 114, 74, 81, 234, 97, 116, 244, 205, 30,
- 154, 173, 12, 51, 159, 122, 153, 61, 226, 236, 178, 229, 55, 181, 220, 191,
- 194, 160, 126, 168, 82, 131, 18, 180, 245, 163, 22, 246, 69, 235, 252, 57,
- 108, 14, 6, 152, 240, 255, 171, 242, 20, 227, 177, 238, 96, 85, 16, 211,
- 70, 200, 149, 155, 146, 127, 145, 100, 151, 109, 19, 165, 208, 195, 164,
- 137, 254, 182, 248, 64, 201, 45, 209, 5, 147, 207, 210, 113, 162, 83, 225,
- 9, 31, 15, 231, 115, 37, 58, 53, 24, 49, 197, 56, 120, 172, 48, 21, 214,
- 129, 111, 11, 50, 187, 196, 34, 60, 103, 71, 144, 47, 203, 77, 80, 232,
- 140, 222, 250, 206, 166, 247, 139, 249, 221, 72, 106, 27, 199, 117, 54,
- 219, 135, 118, 40, 79, 41, 251, 46, 93, 212, 92, 233, 148, 28, 121, 63,
- 123, 158, 105, 59, 29, 42, 143, 23, 0, 107, 176, 87, 104, 183, 156, 193,
- 189, 90, 188, 65, 190, 17, 198, 7, 186, 161, 1, 124, 78, 125, 170, 133,
- 174, 218, 67, 157, 75, 101, 89, 217, 62, 33, 141, 228, 25, 35, 91, 230, 4,
- 2, 13, 73, 86, 167, 237, 84, 243, 44, 185, 66, 130, 110, 150, 142, 216, 88,
- 112, 36, 224, 136, 202, 76, 94, 98, 175, 213
-};
-
-bool skcms_ApproximatelyEqualProfiles(const skcms_ICCProfile* A, const skcms_ICCProfile* B) {
- // For now this is the essentially the same strategy we use in test_only.c
- // for our skcms_Transform() smoke tests:
- // 1) transform A to XYZD50
- // 2) transform B to XYZD50
- // 3) return true if they're similar enough
- // Our current criterion in 3) is maximum 1 bit error per XYZD50 byte.
-
- // Here are 252 of a random shuffle of all possible bytes.
- // 252 is evenly divisible by 3 and 4. Only 192, 10, 241, and 43 are missing.
-
- if (A->data_color_space != B->data_color_space) {
- return false;
- }
-
- // Interpret as RGB_888 if data color space is RGB or GRAY, RGBA_8888 if CMYK.
- skcms_PixelFormat fmt = skcms_PixelFormat_RGB_888;
- size_t npixels = 84;
- if (A->data_color_space == skcms_Signature_CMYK) {
- fmt = skcms_PixelFormat_RGBA_8888;
- npixels = 63;
- }
-
- uint8_t dstA[252],
- dstB[252];
- if (!skcms_Transform(
- skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, A,
- dstA, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
- npixels)) {
- return false;
- }
- if (!skcms_Transform(
- skcms_252_random_bytes, fmt, skcms_AlphaFormat_Unpremul, B,
- dstB, skcms_PixelFormat_RGB_888, skcms_AlphaFormat_Unpremul, skcms_XYZD50_profile(),
- npixels)) {
- return false;
- }
-
- for (size_t i = 0; i < 252; i++) {
- if (abs((int)dstA[i] - (int)dstB[i]) > 1) {
- return false;
- }
- }
- return true;
-}
-
-bool skcms_TRCs_AreApproximateInverse(const skcms_ICCProfile* profile,
- const skcms_TransferFunction* inv_tf) {
- if (!profile || !profile->has_trc) {
- return false;
- }
-
- return skcms_AreApproximateInverses(&profile->trc[0], inv_tf) &&
- skcms_AreApproximateInverses(&profile->trc[1], inv_tf) &&
- skcms_AreApproximateInverses(&profile->trc[2], inv_tf);
-}
-
-static bool is_zero_to_one(float x) {
- return 0 <= x && x <= 1;
-}
-
-bool skcms_PrimariesToXYZD50(float rx, float ry,
- float gx, float gy,
- float bx, float by,
- float wx, float wy,
- skcms_Matrix3x3* toXYZD50) {
- if (!is_zero_to_one(rx) || !is_zero_to_one(ry) ||
- !is_zero_to_one(gx) || !is_zero_to_one(gy) ||
- !is_zero_to_one(bx) || !is_zero_to_one(by) ||
- !is_zero_to_one(wx) || !is_zero_to_one(wy) ||
- !toXYZD50) {
- return false;
- }
-
- // First, we need to convert xy values (primaries) to XYZ.
- skcms_Matrix3x3 primaries = {{
- { rx, gx, bx },
- { ry, gy, by },
- { 1 - rx - ry, 1 - gx - gy, 1 - bx - by },
- }};
- skcms_Matrix3x3 primaries_inv;
- if (!skcms_Matrix3x3_invert(&primaries, &primaries_inv)) {
- return false;
- }
-
- // Assumes that Y is 1.0f.
- skcms_Vector3 wXYZ = { { wx / wy, 1, (1 - wx - wy) / wy } };
- skcms_Vector3 XYZ = skcms_MV_mul(&primaries_inv, &wXYZ);
-
- skcms_Matrix3x3 toXYZ = {{
- { XYZ.vals[0], 0, 0 },
- { 0, XYZ.vals[1], 0 },
- { 0, 0, XYZ.vals[2] },
- }};
- toXYZ = skcms_Matrix3x3_concat(&primaries, &toXYZ);
-
- // Now convert toXYZ matrix to toXYZD50.
- skcms_Vector3 wXYZD50 = { { 0.96422f, 1.0f, 0.82521f } };
-
- // Calculate the chromatic adaptation matrix. We will use the Bradford method, thus
- // the matrices below. The Bradford method is used by Adobe and is widely considered
- // to be the best.
- skcms_Matrix3x3 xyz_to_lms = {{
- { 0.8951f, 0.2664f, -0.1614f },
- { -0.7502f, 1.7135f, 0.0367f },
- { 0.0389f, -0.0685f, 1.0296f },
- }};
- skcms_Matrix3x3 lms_to_xyz = {{
- { 0.9869929f, -0.1470543f, 0.1599627f },
- { 0.4323053f, 0.5183603f, 0.0492912f },
- { -0.0085287f, 0.0400428f, 0.9684867f },
- }};
-
- skcms_Vector3 srcCone = skcms_MV_mul(&xyz_to_lms, &wXYZ);
- skcms_Vector3 dstCone = skcms_MV_mul(&xyz_to_lms, &wXYZD50);
-
- skcms_Matrix3x3 DXtoD50 = {{
- { dstCone.vals[0] / srcCone.vals[0], 0, 0 },
- { 0, dstCone.vals[1] / srcCone.vals[1], 0 },
- { 0, 0, dstCone.vals[2] / srcCone.vals[2] },
- }};
- DXtoD50 = skcms_Matrix3x3_concat(&DXtoD50, &xyz_to_lms);
- DXtoD50 = skcms_Matrix3x3_concat(&lms_to_xyz, &DXtoD50);
-
- *toXYZD50 = skcms_Matrix3x3_concat(&DXtoD50, &toXYZ);
- return true;
-}
diff --git a/third_party/skcms/src/LinearAlgebra.c b/third_party/skcms/src/LinearAlgebra.c
deleted file mode 100644
index 1cd8b3cb32..0000000000
--- a/third_party/skcms/src/LinearAlgebra.c
+++ /dev/null
@@ -1,88 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "../skcms.h"
-#include "../skcms_internal.h"
-#include <float.h>
-
-bool skcms_Matrix3x3_invert(const skcms_Matrix3x3* src, skcms_Matrix3x3* dst) {
- double a00 = src->vals[0][0],
- a01 = src->vals[1][0],
- a02 = src->vals[2][0],
- a10 = src->vals[0][1],
- a11 = src->vals[1][1],
- a12 = src->vals[2][1],
- a20 = src->vals[0][2],
- a21 = src->vals[1][2],
- a22 = src->vals[2][2];
-
- double b0 = a00*a11 - a01*a10,
- b1 = a00*a12 - a02*a10,
- b2 = a01*a12 - a02*a11,
- b3 = a20,
- b4 = a21,
- b5 = a22;
-
- double determinant = b0*b5
- - b1*b4
- + b2*b3;
-
- if (determinant == 0) {
- return false;
- }
-
- double invdet = 1.0 / determinant;
- if (invdet > +FLT_MAX || invdet < -FLT_MAX || !isfinitef_((float)invdet)) {
- return false;
- }
-
- b0 *= invdet;
- b1 *= invdet;
- b2 *= invdet;
- b3 *= invdet;
- b4 *= invdet;
- b5 *= invdet;
-
- dst->vals[0][0] = (float)( a11*b5 - a12*b4 );
- dst->vals[1][0] = (float)( a02*b4 - a01*b5 );
- dst->vals[2][0] = (float)( + b2 );
- dst->vals[0][1] = (float)( a12*b3 - a10*b5 );
- dst->vals[1][1] = (float)( a00*b5 - a02*b3 );
- dst->vals[2][1] = (float)( - b1 );
- dst->vals[0][2] = (float)( a10*b4 - a11*b3 );
- dst->vals[1][2] = (float)( a01*b3 - a00*b4 );
- dst->vals[2][2] = (float)( + b0 );
-
- for (int r = 0; r < 3; ++r)
- for (int c = 0; c < 3; ++c) {
- if (!isfinitef_(dst->vals[r][c])) {
- return false;
- }
- }
- return true;
-}
-
-skcms_Matrix3x3 skcms_Matrix3x3_concat(const skcms_Matrix3x3* A, const skcms_Matrix3x3* B) {
- skcms_Matrix3x3 m = { { { 0,0,0 },{ 0,0,0 },{ 0,0,0 } } };
- for (int r = 0; r < 3; r++)
- for (int c = 0; c < 3; c++) {
- m.vals[r][c] = A->vals[r][0] * B->vals[0][c]
- + A->vals[r][1] * B->vals[1][c]
- + A->vals[r][2] * B->vals[2][c];
- }
- return m;
-}
-
-skcms_Vector3 skcms_MV_mul(const skcms_Matrix3x3* m, const skcms_Vector3* v) {
- skcms_Vector3 dst = {{0,0,0}};
- for (int row = 0; row < 3; ++row) {
- dst.vals[row] = m->vals[row][0] * v->vals[0]
- + m->vals[row][1] * v->vals[1]
- + m->vals[row][2] * v->vals[2];
- }
- return dst;
-}
diff --git a/third_party/skcms/src/PortableMath.c b/third_party/skcms/src/PortableMath.c
deleted file mode 100644
index 52e8b7d1c8..0000000000
--- a/third_party/skcms/src/PortableMath.c
+++ /dev/null
@@ -1,55 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "../skcms.h"
-#include "../skcms_internal.h"
-#include <limits.h>
-#include <string.h>
-
-#if defined(__clang__) || defined(__GNUC__)
- #define small_memcpy __builtin_memcpy
-#else
- #define small_memcpy memcpy
-#endif
-
-float log2f_(float x) {
- // The first approximation of log2(x) is its exponent 'e', minus 127.
- int32_t bits;
- small_memcpy(&bits, &x, sizeof(bits));
-
- float e = (float)bits * (1.0f / (1<<23));
-
- // If we use the mantissa too we can refine the error signficantly.
- int32_t m_bits = (bits & 0x007fffff) | 0x3f000000;
- float m;
- small_memcpy(&m, &m_bits, sizeof(m));
-
- return (e - 124.225514990f
- - 1.498030302f*m
- - 1.725879990f/(0.3520887068f + m));
-}
-
-float exp2f_(float x) {
- float fract = x - floorf_(x);
-
- float fbits = (1.0f * (1<<23)) * (x + 121.274057500f
- - 1.490129070f*fract
- + 27.728023300f/(4.84252568f - fract));
- if (fbits > INT_MAX) {
- return INFINITY_;
- } else if (fbits < INT_MIN) {
- return -INFINITY_;
- }
- int32_t bits = (int32_t)fbits;
- small_memcpy(&x, &bits, sizeof(x));
- return x;
-}
-
-float powf_(float x, float y) {
- return (x == 0) || (x == 1) ? x
- : exp2f_(log2f_(x) * y);
-}
diff --git a/third_party/skcms/src/TransferFunction.c b/third_party/skcms/src/TransferFunction.c
deleted file mode 100644
index 7bab9d9286..0000000000
--- a/third_party/skcms/src/TransferFunction.c
+++ /dev/null
@@ -1,432 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "../skcms.h"
-#include "../skcms_internal.h"
-#include <assert.h>
-#include <limits.h>
-#include <string.h>
-
-float skcms_TransferFunction_eval(const skcms_TransferFunction* tf, float x) {
- float sign = x < 0 ? -1.0f : 1.0f;
- x *= sign;
-
- return sign * (x < tf->d ? tf->c * x + tf->f
- : powf_(tf->a * x + tf->b, tf->g) + tf->e);
-}
-
-bool skcms_TransferFunction_isValid(const skcms_TransferFunction* tf) {
- // Reject obviously malformed inputs
- if (!isfinitef_(tf->a + tf->b + tf->c + tf->d + tf->e + tf->f + tf->g)) {
- return false;
- }
-
- // All of these parameters should be non-negative
- if (tf->a < 0 || tf->c < 0 || tf->d < 0 || tf->g < 0) {
- return false;
- }
-
- return true;
-}
-
-// TODO: Adjust logic here? This still assumes that purely linear inputs will have D > 1, which
-// we never generate. It also emits inverted linear using the same formulation. Standardize on
-// G == 1 here, too?
-bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_TransferFunction* dst) {
- // Original equation is: y = (ax + b)^g + e for x >= d
- // y = cx + f otherwise
- //
- // so 1st inverse is: (y - e)^(1/g) = ax + b
- // x = ((y - e)^(1/g) - b) / a
- //
- // which can be re-written as: x = (1/a)(y - e)^(1/g) - b/a
- // x = ((1/a)^g)^(1/g) * (y - e)^(1/g) - b/a
- // x = ([(1/a)^g]y + [-((1/a)^g)e]) ^ [1/g] + [-b/a]
- //
- // and 2nd inverse is: x = (y - f) / c
- // which can be re-written as: x = [1/c]y + [-f/c]
- //
- // and now both can be expressed in terms of the same parametric form as the
- // original - parameters are enclosed in square brackets.
- skcms_TransferFunction tf_inv = { 0, 0, 0, 0, 0, 0, 0 };
-
- // This rejects obviously malformed inputs, as well as decreasing functions
- if (!skcms_TransferFunction_isValid(src)) {
- return false;
- }
-
- // There are additional constraints to be invertible
- bool has_nonlinear = (src->d <= 1);
- bool has_linear = (src->d > 0);
-
- // Is the linear section not invertible?
- if (has_linear && src->c == 0) {
- return false;
- }
-
- // Is the nonlinear section not invertible?
- if (has_nonlinear && (src->a == 0 || src->g == 0)) {
- return false;
- }
-
- // If both segments are present, they need to line up
- if (has_linear && has_nonlinear) {
- float l_at_d = src->c * src->d + src->f;
- float n_at_d = powf_(src->a * src->d + src->b, src->g) + src->e;
- if (fabsf_(l_at_d - n_at_d) > (1 / 512.0f)) {
- return false;
- }
- }
-
- // Invert linear segment
- if (has_linear) {
- tf_inv.c = 1.0f / src->c;
- tf_inv.f = -src->f / src->c;
- }
-
- // Invert nonlinear segment
- if (has_nonlinear) {
- tf_inv.g = 1.0f / src->g;
- tf_inv.a = powf_(1.0f / src->a, src->g);
- tf_inv.b = -tf_inv.a * src->e;
- tf_inv.e = -src->b / src->a;
- }
-
- if (!has_linear) {
- tf_inv.d = 0;
- } else if (!has_nonlinear) {
- // Any value larger than 1 works
- tf_inv.d = 2.0f;
- } else {
- tf_inv.d = src->c * src->d + src->f;
- }
-
- *dst = tf_inv;
- return true;
-}
-
-// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
-
-// From here below we're approximating an skcms_Curve with an skcms_TransferFunction{g,a,b,c,d,e,f}:
-//
-// tf(x) = cx + f x < d
-// tf(x) = (ax + b)^g + e x ≥ d
-//
-// When fitting, we add the additional constraint that both pieces meet at d:
-//
-// cd + f = (ad + b)^g + e
-//
-// Solving for e and folding it through gives an alternate formulation of the non-linear piece:
-//
-// tf(x) = cx + f x < d
-// tf(x) = (ax + b)^g - (ad + b)^g + cd + f x ≥ d
-//
-// Our overall strategy is then:
-// For a couple tolerances,
-// - skcms_fit_linear(): fit c,d,f iteratively to as many points as our tolerance allows
-// - invert c,d,f
-// - fit_nonlinear(): fit g,a,b using Gauss-Newton given those inverted c,d,f
-// (and by constraint, inverted e) to the inverse of the table.
-// Return the parameters with least maximum error.
-//
-// To run Gauss-Newton to find g,a,b, we'll also need the gradient of the residuals
-// of round-trip f_inv(x), the inverse of the non-linear piece of f(x).
-//
-// let y = Table(x)
-// r(x) = x - f_inv(y)
-//
-// ∂r/∂g = ln(ay + b)*(ay + b)^g
-// - ln(ad + b)*(ad + b)^g
-// ∂r/∂a = yg(ay + b)^(g-1)
-// - dg(ad + b)^(g-1)
-// ∂r/∂b = g(ay + b)^(g-1)
-// - g(ad + b)^(g-1)
-
-// Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P,
-// and fill out the gradient of the residual into dfdP.
-static float rg_nonlinear(float x,
- const skcms_Curve* curve,
- const skcms_TransferFunction* tf,
- const float P[3],
- float dfdP[3]) {
- const float y = skcms_eval_curve(curve, x);
-
- const float g = P[0], a = P[1], b = P[2],
- c = tf->c, d = tf->d, f = tf->f;
-
- const float Y = fmaxf_(a*y + b, 0.0f),
- D = a*d + b;
- assert (D >= 0);
-
- // The gradient.
- dfdP[0] = 0.69314718f*log2f_(Y)*powf_(Y, g)
- - 0.69314718f*log2f_(D)*powf_(D, g);
- dfdP[1] = y*g*powf_(Y, g-1)
- - d*g*powf_(D, g-1);
- dfdP[2] = g*powf_(Y, g-1)
- - g*powf_(D, g-1);
-
- // The residual.
- const float f_inv = powf_(Y, g)
- - powf_(D, g)
- + c*d + f;
- return x - f_inv;
-}
-
-int skcms_fit_linear(const skcms_Curve* curve, int N, float tol, float* c, float* d, float* f) {
- assert(N > 1);
- // We iteratively fit the first points to the TF's linear piece.
- // We want the cx + f line to pass through the first and last points we fit exactly.
- //
- // As we walk along the points we find the minimum and maximum slope of the line before the
- // error would exceed our tolerance. We stop when the range [slope_min, slope_max] becomes
- // emtpy, when we definitely can't add any more points.
- //
- // Some points' error intervals may intersect the running interval but not lie fully
- // within it. So we keep track of the last point we saw that is a valid end point candidate,
- // and once the search is done, back up to build the line through *that* point.
- const float dx = 1.0f / (N - 1);
-
- int lin_points = 1;
- *f = skcms_eval_curve(curve, 0);
-
- float slope_min = -INFINITY_;
- float slope_max = +INFINITY_;
- for (int i = 1; i < N; ++i) {
- float x = i * dx;
- float y = skcms_eval_curve(curve, x);
-
- float slope_max_i = (y + tol - *f) / x,
- slope_min_i = (y - tol - *f) / x;
- if (slope_max_i < slope_min || slope_max < slope_min_i) {
- // Slope intervals would no longer overlap.
- break;
- }
- slope_max = fminf_(slope_max, slope_max_i);
- slope_min = fmaxf_(slope_min, slope_min_i);
-
- float cur_slope = (y - *f) / x;
- if (slope_min <= cur_slope && cur_slope <= slope_max) {
- lin_points = i + 1;
- *c = cur_slope;
- }
- }
-
- // Set D to the last point that met our tolerance.
- *d = (lin_points - 1) * dx;
- return lin_points;
-}
-
-static bool gauss_newton_step(const skcms_Curve* curve,
- const skcms_TransferFunction* tf,
- float P[3],
- float x0, float dx, int N) {
- // We'll sample x from the range [x0,x1] (both inclusive) N times with even spacing.
- //
- // We want to do P' = P + (Jf^T Jf)^-1 Jf^T r(P),
- // where r(P) is the residual vector
- // and Jf is the Jacobian matrix of f(), ∂r/∂P.
- //
- // Let's review the shape of each of these expressions:
- // r(P) is [N x 1], a column vector with one entry per value of x tested
- // Jf is [N x 3], a matrix with an entry for each (x,P) pair
- // Jf^T is [3 x N], the transpose of Jf
- //
- // Jf^T Jf is [3 x N] * [N x 3] == [3 x 3], a 3x3 matrix,
- // and so is its inverse (Jf^T Jf)^-1
- // Jf^T r(P) is [3 x N] * [N x 1] == [3 x 1], a column vector with the same shape as P
- //
- // Our implementation strategy to get to the final ∆P is
- // 1) evaluate Jf^T Jf, call that lhs
- // 2) evaluate Jf^T r(P), call that rhs
- // 3) invert lhs
- // 4) multiply inverse lhs by rhs
- //
- // This is a friendly implementation strategy because we don't have to have any
- // buffers that scale with N, and equally nice don't have to perform any matrix
- // operations that are variable size.
- //
- // Other implementation strategies could trade this off, e.g. evaluating the
- // pseudoinverse of Jf ( (Jf^T Jf)^-1 Jf^T ) directly, then multiplying that by
- // the residuals. That would probably require implementing singular value
- // decomposition, and would create a [3 x N] matrix to be multiplied by the
- // [N x 1] residual vector, but on the upside I think that'd eliminate the
- // possibility of this gauss_newton_step() function ever failing.
-
- // 0) start off with lhs and rhs safely zeroed.
- skcms_Matrix3x3 lhs = {{ {0,0,0}, {0,0,0}, {0,0,0} }};
- skcms_Vector3 rhs = { {0,0,0} };
-
- // 1,2) evaluate lhs and evaluate rhs
- // We want to evaluate Jf only once, but both lhs and rhs involve Jf^T,
- // so we'll have to update lhs and rhs at the same time.
- for (int i = 0; i < N; i++) {
- float x = x0 + i*dx;
-
- float dfdP[3] = {0,0,0};
- float resid = rg_nonlinear(x,curve,tf,P, dfdP);
-
- for (int r = 0; r < 3; r++) {
- for (int c = 0; c < 3; c++) {
- lhs.vals[r][c] += dfdP[r] * dfdP[c];
- }
- rhs.vals[r] += dfdP[r] * resid;
- }
- }
-
- // If any of the 3 P parameters are unused, this matrix will be singular.
- // Detect those cases and fix them up to indentity instead, so we can invert.
- for (int k = 0; k < 3; k++) {
- if (lhs.vals[0][k]==0 && lhs.vals[1][k]==0 && lhs.vals[2][k]==0 &&
- lhs.vals[k][0]==0 && lhs.vals[k][1]==0 && lhs.vals[k][2]==0) {
- lhs.vals[k][k] = 1;
- }
- }
-
- // 3) invert lhs
- skcms_Matrix3x3 lhs_inv;
- if (!skcms_Matrix3x3_invert(&lhs, &lhs_inv)) {
- return false;
- }
-
- // 4) multiply inverse lhs by rhs
- skcms_Vector3 dP = skcms_MV_mul(&lhs_inv, &rhs);
- P[0] += dP.vals[0];
- P[1] += dP.vals[1];
- P[2] += dP.vals[2];
- return isfinitef_(P[0]) && isfinitef_(P[1]) && isfinitef_(P[2]);
-}
-
-
-// Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't.
-static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) {
- float P[3] = { tf->g, tf->a, tf->b };
-
- // No matter where we start, dx should always represent N even steps from 0 to 1.
- const float dx = 1.0f / (N-1);
-
- for (int j = 0; j < 3/*TODO: tune*/; j++) {
- // These extra constraints a >= 0 and ad+b >= 0 are not modeled in the optimization.
- // We don't really know how to fix up a if it goes negative.
- if (P[1] < 0) {
- return false;
- }
- // If ad+b goes negative, we feel just barely not uneasy enough to tweak b so ad+b is zero.
- if (P[1] * tf->d + P[2] < 0) {
- P[2] = -P[1] * tf->d;
- }
- assert (P[1] >= 0 &&
- P[1] * tf->d + P[2] >= 0);
-
- if (!gauss_newton_step(curve, tf,
- P,
- L*dx, dx, N-L)) {
- return false;
- }
- }
-
- // We need to apply our fixups one last time
- if (P[1] < 0) {
- return false;
- }
- if (P[1] * tf->d + P[2] < 0) {
- P[2] = -P[1] * tf->d;
- }
-
- tf->g = P[0];
- tf->a = P[1];
- tf->b = P[2];
- tf->e = tf->c*tf->d + tf->f
- - powf_(tf->a*tf->d + tf->b, tf->g);
- return true;
-}
-
-bool skcms_ApproximateCurve(const skcms_Curve* curve,
- skcms_TransferFunction* approx,
- float* max_error) {
- if (!curve || !approx || !max_error) {
- return false;
- }
-
- if (curve->table_entries == 0) {
- // No point approximating an skcms_TransferFunction with an skcms_TransferFunction!
- return false;
- }
-
- if (curve->table_entries == 1 || curve->table_entries > (uint32_t)INT_MAX) {
- // We need at least two points, and must put some reasonable cap on the maximum number.
- return false;
- }
-
- int N = (int)curve->table_entries;
- const float dx = 1.0f / (N - 1);
-
- *max_error = INFINITY_;
- const float kTolerances[] = { 1.5f / 65535.0f, 1.0f / 512.0f };
- for (int t = 0; t < ARRAY_COUNT(kTolerances); t++) {
- skcms_TransferFunction tf,
- tf_inv;
- int L = skcms_fit_linear(curve, N, kTolerances[t], &tf.c, &tf.d, &tf.f);
-
- if (L == N) {
- // If the entire data set was linear, move the coefficients to the nonlinear portion
- // with G == 1. This lets use a canonical representation with d == 0.
- tf.g = 1;
- tf.a = tf.c;
- tf.b = tf.f;
- tf.c = tf.d = tf.e = tf.f = 0;
- } else if (L == N - 1) {
- // Degenerate case with only two points in the nonlinear segment. Solve directly.
- tf.g = 1;
- tf.a = (skcms_eval_curve(curve, (N-1)*dx) -
- skcms_eval_curve(curve, (N-2)*dx))
- / dx;
- tf.b = skcms_eval_curve(curve, (N-2)*dx)
- - tf.a * (N-2)*dx;
- tf.e = 0;
- } else {
- // Start by guessing a gamma-only curve through the midpoint.
- int mid = (L + N) / 2;
- float mid_x = mid / (N - 1.0f);
- float mid_y = skcms_eval_curve(curve, mid_x);
- tf.g = log2f_(mid_y) / log2f_(mid_x);;
- tf.a = 1;
- tf.b = 0;
- tf.e = tf.c*tf.d + tf.f
- - powf_(tf.a*tf.d + tf.b, tf.g);
-
-
- if (!skcms_TransferFunction_invert(&tf, &tf_inv) ||
- !fit_nonlinear(curve, L,N, &tf_inv)) {
- continue;
- }
-
- // We fit tf_inv, so calculate tf to keep in sync.
- if (!skcms_TransferFunction_invert(&tf_inv, &tf)) {
- continue;
- }
- }
-
- // We find our error by roundtripping the table through tf_inv.
- //
- // (The most likely use case for this approximation is to be inverted and
- // used as the transfer function for a destination color space.)
- //
- // We've kept tf and tf_inv in sync above, but we can't guarantee that tf is
- // invertible, so re-verify that here (and use the new inverse for testing).
- if (!skcms_TransferFunction_invert(&tf, &tf_inv)) {
- continue;
- }
-
- float err = skcms_MaxRoundtripError(curve, &tf_inv);
- if (*max_error > err) {
- *max_error = err;
- *approx = tf;
- }
- }
- return isfinitef_(*max_error);
-}
diff --git a/third_party/skcms/src/Transform.c b/third_party/skcms/src/Transform.c
deleted file mode 100644
index 2f4216ba8b..0000000000
--- a/third_party/skcms/src/Transform.c
+++ /dev/null
@@ -1,694 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "../skcms.h"
-#include "../skcms_internal.h"
-#include <assert.h>
-#include <limits.h>
-#include <stdint.h>
-#include <string.h>
-
-// Without this wasm would try to use the N=4 128-bit vector code path,
-// which while ideal, causes tons of compiler problems. This would be
-// a good thing to revisit as emcc matures (currently 1.38.5).
-#if 1 && defined(__EMSCRIPTEN_major__)
- #if !defined(SKCMS_PORTABLE)
- #define SKCMS_PORTABLE
- #endif
-#endif
-
-extern bool g_skcms_dump_profile;
-bool g_skcms_dump_profile = false;
-
-#if !defined(NDEBUG) && defined(__clang__)
- // Basic profiling tools to time each Op. Not at all thread safe.
-
- #include <stdio.h>
- #include <stdlib.h>
-
- #if defined(__arm__) || defined(__aarch64__)
- #include <time.h>
- static const char* now_units = "ticks";
- static uint64_t now() { return (uint64_t)clock(); }
- #else
- static const char* now_units = "cycles";
- static uint64_t now() { return __builtin_readcyclecounter(); }
- #endif
-
- #define M(op) +1
- static uint64_t counts[FOREACH_Op(M)];
- #undef M
-
- static void profile_dump_stats() {
- #define M(op) #op,
- static const char* names[] = { FOREACH_Op(M) };
- #undef M
- for (int i = 0; i < ARRAY_COUNT(counts); i++) {
- if (counts[i]) {
- fprintf(stderr, "%16s: %12llu %s\n",
- names[i], (unsigned long long)counts[i], now_units);
- }
- }
- }
-
- static inline Op profile_next_op(Op op) {
- if (__builtin_expect(g_skcms_dump_profile, false)) {
- static uint64_t start = 0;
- static uint64_t* current = NULL;
-
- if (!current) {
- atexit(profile_dump_stats);
- } else {
- *current += now() - start;
- }
-
- current = &counts[op];
- start = now();
- }
- return op;
- }
-#else
- static inline Op profile_next_op(Op op) {
- (void)g_skcms_dump_profile;
- return op;
- }
-#endif
-
-#if defined(__clang__)
- typedef float __attribute__((ext_vector_type(4))) Fx4;
- typedef int32_t __attribute__((ext_vector_type(4))) I32x4;
- typedef uint64_t __attribute__((ext_vector_type(4))) U64x4;
- typedef uint32_t __attribute__((ext_vector_type(4))) U32x4;
- typedef uint16_t __attribute__((ext_vector_type(4))) U16x4;
- typedef uint8_t __attribute__((ext_vector_type(4))) U8x4;
-
- typedef float __attribute__((ext_vector_type(8))) Fx8;
- typedef int32_t __attribute__((ext_vector_type(8))) I32x8;
- typedef uint64_t __attribute__((ext_vector_type(8))) U64x8;
- typedef uint32_t __attribute__((ext_vector_type(8))) U32x8;
- typedef uint16_t __attribute__((ext_vector_type(8))) U16x8;
- typedef uint8_t __attribute__((ext_vector_type(8))) U8x8;
-
- typedef float __attribute__((ext_vector_type(16))) Fx16;
- typedef int32_t __attribute__((ext_vector_type(16))) I32x16;
- typedef uint64_t __attribute__((ext_vector_type(16))) U64x16;
- typedef uint32_t __attribute__((ext_vector_type(16))) U32x16;
- typedef uint16_t __attribute__((ext_vector_type(16))) U16x16;
- typedef uint8_t __attribute__((ext_vector_type(16))) U8x16;
-#elif defined(__GNUC__)
- typedef float __attribute__((vector_size(16))) Fx4;
- typedef int32_t __attribute__((vector_size(16))) I32x4;
- typedef uint64_t __attribute__((vector_size(32))) U64x4;
- typedef uint32_t __attribute__((vector_size(16))) U32x4;
- typedef uint16_t __attribute__((vector_size( 8))) U16x4;
- typedef uint8_t __attribute__((vector_size( 4))) U8x4;
-
- typedef float __attribute__((vector_size(32))) Fx8;
- typedef int32_t __attribute__((vector_size(32))) I32x8;
- typedef uint64_t __attribute__((vector_size(64))) U64x8;
- typedef uint32_t __attribute__((vector_size(32))) U32x8;
- typedef uint16_t __attribute__((vector_size(16))) U16x8;
- typedef uint8_t __attribute__((vector_size( 8))) U8x8;
-
- typedef float __attribute__((vector_size( 64))) Fx16;
- typedef int32_t __attribute__((vector_size( 64))) I32x16;
- typedef uint64_t __attribute__((vector_size(128))) U64x16;
- typedef uint32_t __attribute__((vector_size( 64))) U32x16;
- typedef uint16_t __attribute__((vector_size( 32))) U16x16;
- typedef uint8_t __attribute__((vector_size( 16))) U8x16;
-#endif
-
-// First, instantiate our default exec_ops() implementation using the default compiliation target.
-
-#if defined(SKCMS_PORTABLE) || !(defined(__clang__) || defined(__GNUC__))
- #define N 1
-
- #define F float
- #define U64 uint64_t
- #define U32 uint32_t
- #define I32 int32_t
- #define U16 uint16_t
- #define U8 uint8_t
-
- #define F0 0.0f
- #define F1 1.0f
-
-#elif defined(__AVX512F__)
- #define N 16
-
- #define F Fx16
- #define U64 U64x16
- #define U32 U32x16
- #define I32 I32x16
- #define U16 U16x16
- #define U8 U8x16
-
- #define F0 (F){0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0}
- #define F1 (F){1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1}
-#elif defined(__AVX__)
- #define N 8
-
- #define F Fx8
- #define U64 U64x8
- #define U32 U32x8
- #define I32 I32x8
- #define U16 U16x8
- #define U8 U8x8
-
- #define F0 (F){0,0,0,0, 0,0,0,0}
- #define F1 (F){1,1,1,1, 1,1,1,1}
-#else
- #define N 4
-
- #define F Fx4
- #define U64 U64x4
- #define U32 U32x4
- #define I32 I32x4
- #define U16 U16x4
- #define U8 U8x4
-
- #define F0 (F){0,0,0,0}
- #define F1 (F){1,1,1,1}
-#endif
-
-#define NS(id) id
-#define ATTR
- #include "Transform_inl.h"
-#undef N
-#undef F
-#undef U64
-#undef U32
-#undef I32
-#undef U16
-#undef U8
-#undef F0
-#undef F1
-#undef NS
-#undef ATTR
-
-// Now, instantiate any other versions of run_program() we may want for runtime detection.
-#if !defined(SKCMS_PORTABLE) && (defined(__clang__) || defined(__GNUC__)) \
- && defined(__x86_64__) && !defined(__AVX2__)
- #define N 8
- #define F Fx8
- #define U64 U64x8
- #define U32 U32x8
- #define I32 I32x8
- #define U16 U16x8
- #define U8 U8x8
- #define F0 (F){0,0,0,0, 0,0,0,0}
- #define F1 (F){1,1,1,1, 1,1,1,1}
-
- #define NS(id) id ## _hsw
- #define ATTR __attribute__((target("avx2,f16c")))
-
- // We check these guards to see if we have support for these features.
- // They're likely _not_ defined here in our baseline build config.
- #ifndef __AVX__
- #define __AVX__ 1
- #define UNDEF_AVX
- #endif
- #ifndef __F16C__
- #define __F16C__ 1
- #define UNDEF_F16C
- #endif
- #ifndef __AVX2__
- #define __AVX2__ 1
- #define UNDEF_AVX2
- #endif
-
- #include "Transform_inl.h"
-
- #undef N
- #undef F
- #undef U64
- #undef U32
- #undef I32
- #undef U16
- #undef U8
- #undef F0
- #undef F1
- #undef NS
- #undef ATTR
-
- #ifdef UNDEF_AVX
- #undef __AVX__
- #undef UNDEF_AVX
- #endif
- #ifdef UNDEF_F16C
- #undef __F16C__
- #undef UNDEF_F16C
- #endif
- #ifdef UNDEF_AVX2
- #undef __AVX2__
- #undef UNDEF_AVX2
- #endif
-
- #define TEST_FOR_HSW
-
- static bool hsw_ok_ = false;
- static void check_hsw_ok() {
- // See http://www.sandpile.org/x86/cpuid.htm
-
- // First, a basic cpuid(1).
- uint32_t eax, ebx, ecx, edx;
- __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
- : "0"(1), "2"(0));
-
- // Sanity check for prerequisites.
- if ((edx & (1<<25)) != (1<<25)) { return; } // SSE
- if ((edx & (1<<26)) != (1<<26)) { return; } // SSE2
- if ((ecx & (1<< 0)) != (1<< 0)) { return; } // SSE3
- if ((ecx & (1<< 9)) != (1<< 9)) { return; } // SSSE3
- if ((ecx & (1<<19)) != (1<<19)) { return; } // SSE4.1
- if ((ecx & (1<<20)) != (1<<20)) { return; } // SSE4.2
-
- if ((ecx & (3<<26)) != (3<<26)) { return; } // XSAVE + OSXSAVE
-
- {
- uint32_t eax_xgetbv, edx_xgetbv;
- __asm__ __volatile__("xgetbv" : "=a"(eax_xgetbv), "=d"(edx_xgetbv) : "c"(0));
- if ((eax_xgetbv & (3<<1)) != (3<<1)) { return; } // XMM+YMM state saved?
- }
-
- if ((ecx & (1<<28)) != (1<<28)) { return; } // AVX
- if ((ecx & (1<<29)) != (1<<29)) { return; } // F16C
- if ((ecx & (1<<12)) != (1<<12)) { return; } // FMA (TODO: not currently used)
-
- // Call cpuid(7) to check for our final AVX2 feature bit!
- __asm__ __volatile__("cpuid" : "=a"(eax), "=b"(ebx), "=c"(ecx), "=d"(edx)
- : "0"(7), "2"(0));
- if ((ebx & (1<< 5)) != (1<< 5)) { return; } // AVX2
-
- hsw_ok_ = true;
- }
-
- #if defined(_MSC_VER)
- #include <Windows.h>
- INIT_ONCE check_hsw_ok_once = INIT_ONCE_STATIC_INIT;
-
- static BOOL check_hsw_ok_InitOnce_wrapper(INIT_ONCE* once, void* param, void** ctx) {
- (void)once;
- (void)param;
- (void)ctx;
- check_hsw_ok();
- return TRUE;
- }
-
- static bool hsw_ok() {
- InitOnceExecuteOnce(&check_hsw_ok_once, check_hsw_ok_InitOnce_wrapper, NULL, NULL);
- return hsw_ok_;
- }
- #else
- #include <pthread.h>
- static pthread_once_t check_hsw_ok_once = PTHREAD_ONCE_INIT;
-
- static bool hsw_ok() {
- pthread_once(&check_hsw_ok_once, check_hsw_ok);
- return hsw_ok_;
- }
- #endif
-
-#endif
-
-static bool is_identity_tf(const skcms_TransferFunction* tf) {
- return tf->g == 1 && tf->a == 1
- && tf->b == 0 && tf->c == 0 && tf->d == 0 && tf->e == 0 && tf->f == 0;
-}
-
-typedef struct {
- Op op;
- const void* arg;
-} OpAndArg;
-
-static OpAndArg select_curve_op(const skcms_Curve* curve, int channel) {
- static const struct { Op parametric, table_8, table_16; } ops[] = {
- { Op_tf_r, Op_table_8_r, Op_table_16_r },
- { Op_tf_g, Op_table_8_g, Op_table_16_g },
- { Op_tf_b, Op_table_8_b, Op_table_16_b },
- { Op_tf_a, Op_table_8_a, Op_table_16_a },
- };
-
- if (curve->table_entries == 0) {
- return is_identity_tf(&curve->parametric)
- ? (OpAndArg){ Op_noop, NULL }
- : (OpAndArg){ ops[channel].parametric, &curve->parametric };
- } else if (curve->table_8) {
- return (OpAndArg){ ops[channel].table_8, curve };
- } else if (curve->table_16) {
- return (OpAndArg){ ops[channel].table_16, curve };
- }
-
- assert(false);
- return (OpAndArg){Op_noop,NULL};
-}
-
-static size_t bytes_per_pixel(skcms_PixelFormat fmt) {
- switch (fmt >> 1) { // ignore rgb/bgr
- case skcms_PixelFormat_A_8 >> 1: return 1;
- case skcms_PixelFormat_G_8 >> 1: return 1;
- case skcms_PixelFormat_ABGR_4444 >> 1: return 2;
- case skcms_PixelFormat_RGB_565 >> 1: return 2;
- case skcms_PixelFormat_RGB_888 >> 1: return 3;
- case skcms_PixelFormat_RGBA_8888 >> 1: return 4;
- case skcms_PixelFormat_RGBA_1010102 >> 1: return 4;
- case skcms_PixelFormat_RGB_161616 >> 1: return 6;
- case skcms_PixelFormat_RGBA_16161616 >> 1: return 8;
- case skcms_PixelFormat_RGB_hhh >> 1: return 6;
- case skcms_PixelFormat_RGBA_hhhh >> 1: return 8;
- case skcms_PixelFormat_RGB_fff >> 1: return 12;
- case skcms_PixelFormat_RGBA_ffff >> 1: return 16;
- }
- assert(false);
- return 0;
-}
-
-static bool prep_for_destination(const skcms_ICCProfile* profile,
- skcms_Matrix3x3* fromXYZD50,
- skcms_TransferFunction* invR,
- skcms_TransferFunction* invG,
- skcms_TransferFunction* invB) {
- // We only support destinations with parametric transfer functions
- // and with gamuts that can be transformed from XYZD50.
- return profile->has_trc
- && profile->has_toXYZD50
- && profile->trc[0].table_entries == 0
- && profile->trc[1].table_entries == 0
- && profile->trc[2].table_entries == 0
- && skcms_TransferFunction_invert(&profile->trc[0].parametric, invR)
- && skcms_TransferFunction_invert(&profile->trc[1].parametric, invG)
- && skcms_TransferFunction_invert(&profile->trc[2].parametric, invB)
- && skcms_Matrix3x3_invert(&profile->toXYZD50, fromXYZD50);
-}
-
-bool skcms_Transform(const void* src,
- skcms_PixelFormat srcFmt,
- skcms_AlphaFormat srcAlpha,
- const skcms_ICCProfile* srcProfile,
- void* dst,
- skcms_PixelFormat dstFmt,
- skcms_AlphaFormat dstAlpha,
- const skcms_ICCProfile* dstProfile,
- size_t nz) {
- const size_t dst_bpp = bytes_per_pixel(dstFmt),
- src_bpp = bytes_per_pixel(srcFmt);
- // Let's just refuse if the request is absurdly big.
- if (nz * dst_bpp > INT_MAX || nz * src_bpp > INT_MAX) {
- return false;
- }
- int n = (int)nz;
-
- // Null profiles default to sRGB. Passing null for both is handy when doing format conversion.
- if (!srcProfile) {
- srcProfile = skcms_sRGB_profile();
- }
- if (!dstProfile) {
- dstProfile = skcms_sRGB_profile();
- }
-
- // We can't transform in place unless the PixelFormats are the same size.
- if (dst == src && (dstFmt >> 1) != (srcFmt >> 1)) {
- return false;
- }
- // TODO: this check lazilly disallows U16 <-> F16, but that would actually be fine.
- // TODO: more careful alias rejection (like, dst == src + 1)?
-
- Op program [32];
- const void* arguments[32];
-
- Op* ops = program;
- const void** args = arguments;
-
- skcms_TransferFunction inv_dst_tf_r, inv_dst_tf_g, inv_dst_tf_b;
- skcms_Matrix3x3 from_xyz;
-
- switch (srcFmt >> 1) {
- default: return false;
- case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_load_a8; break;
- case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_load_g8; break;
- case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_load_4444; break;
- case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_load_565; break;
- case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_load_888; break;
- case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_load_8888; break;
- case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_load_1010102; break;
- case skcms_PixelFormat_RGB_161616 >> 1: *ops++ = Op_load_161616; break;
- case skcms_PixelFormat_RGBA_16161616 >> 1: *ops++ = Op_load_16161616; break;
- case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_load_hhh; break;
- case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_load_hhhh; break;
- case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_load_fff; break;
- case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_load_ffff; break;
- }
- if (srcFmt & 1) {
- *ops++ = Op_swap_rb;
- }
- skcms_ICCProfile gray_dst_profile;
- if ((dstFmt >> 1) == (skcms_PixelFormat_G_8 >> 1)) {
- // When transforming to gray, stop at XYZ (by setting toXYZ to identity), then transform
- // luminance (Y) by the destination transfer function.
- gray_dst_profile = *dstProfile;
- skcms_SetXYZD50(&gray_dst_profile, &skcms_XYZD50_profile()->toXYZD50);
- dstProfile = &gray_dst_profile;
- }
-
- if (srcProfile->data_color_space == skcms_Signature_CMYK) {
- // Photoshop creates CMYK images as inverse CMYK.
- // These happen to be the only ones we've _ever_ seen.
- *ops++ = Op_invert;
- // With CMYK, ignore the alpha type, to avoid changing K or conflating CMY with K.
- srcAlpha = skcms_AlphaFormat_Unpremul;
- }
-
- if (srcAlpha == skcms_AlphaFormat_Opaque) {
- *ops++ = Op_force_opaque;
- } else if (srcAlpha == skcms_AlphaFormat_PremulAsEncoded) {
- *ops++ = Op_unpremul;
- }
-
- // TODO: We can skip this work if both srcAlpha and dstAlpha are PremulLinear, and the profiles
- // are the same. Also, if dstAlpha is PremulLinear, and SrcAlpha is Opaque.
- if (dstProfile != srcProfile ||
- srcAlpha == skcms_AlphaFormat_PremulLinear ||
- dstAlpha == skcms_AlphaFormat_PremulLinear) {
-
- if (!prep_for_destination(dstProfile,
- &from_xyz, &inv_dst_tf_r, &inv_dst_tf_b, &inv_dst_tf_g)) {
- return false;
- }
-
- if (srcProfile->has_A2B) {
- if (srcProfile->A2B.input_channels) {
- for (int i = 0; i < (int)srcProfile->A2B.input_channels; i++) {
- OpAndArg oa = select_curve_op(&srcProfile->A2B.input_curves[i], i);
- if (oa.op != Op_noop) {
- *ops++ = oa.op;
- *args++ = oa.arg;
- }
- }
- switch (srcProfile->A2B.input_channels) {
- case 3: *ops++ = srcProfile->A2B.grid_8 ? Op_clut_3D_8 : Op_clut_3D_16; break;
- case 4: *ops++ = srcProfile->A2B.grid_8 ? Op_clut_4D_8 : Op_clut_4D_16; break;
- default: return false;
- }
- *args++ = &srcProfile->A2B;
- }
-
- if (srcProfile->A2B.matrix_channels == 3) {
- for (int i = 0; i < 3; i++) {
- OpAndArg oa = select_curve_op(&srcProfile->A2B.matrix_curves[i], i);
- if (oa.op != Op_noop) {
- *ops++ = oa.op;
- *args++ = oa.arg;
- }
- }
-
- static const skcms_Matrix3x4 I = {{
- {1,0,0,0},
- {0,1,0,0},
- {0,0,1,0},
- }};
- if (0 != memcmp(&I, &srcProfile->A2B.matrix, sizeof(I))) {
- *ops++ = Op_matrix_3x4;
- *args++ = &srcProfile->A2B.matrix;
- }
- }
-
- if (srcProfile->A2B.output_channels == 3) {
- for (int i = 0; i < 3; i++) {
- OpAndArg oa = select_curve_op(&srcProfile->A2B.output_curves[i], i);
- if (oa.op != Op_noop) {
- *ops++ = oa.op;
- *args++ = oa.arg;
- }
- }
- }
-
- if (srcProfile->pcs == skcms_Signature_Lab) {
- *ops++ = Op_lab_to_xyz;
- }
-
- } else if (srcProfile->has_trc && srcProfile->has_toXYZD50) {
- for (int i = 0; i < 3; i++) {
- OpAndArg oa = select_curve_op(&srcProfile->trc[i], i);
- if (oa.op != Op_noop) {
- *ops++ = oa.op;
- *args++ = oa.arg;
- }
- }
- } else {
- return false;
- }
-
- // At this point our source colors are linear, either RGB (XYZ-type profiles)
- // or XYZ (A2B-type profiles). Unpremul is a linear operation (multiply by a
- // constant 1/a), so either way we can do it now if needed.
- if (srcAlpha == skcms_AlphaFormat_PremulLinear) {
- *ops++ = Op_unpremul;
- }
-
- // A2B sources should already be in XYZD50 at this point.
- // Others still need to be transformed using their toXYZD50 matrix.
- // N.B. There are profiles that contain both A2B tags and toXYZD50 matrices.
- // If we use the A2B tags, we need to ignore the XYZD50 matrix entirely.
- assert (srcProfile->has_A2B || srcProfile->has_toXYZD50);
- static const skcms_Matrix3x3 I = {{
- { 1.0f, 0.0f, 0.0f },
- { 0.0f, 1.0f, 0.0f },
- { 0.0f, 0.0f, 1.0f },
- }};
- const skcms_Matrix3x3* to_xyz = srcProfile->has_A2B ? &I : &srcProfile->toXYZD50;
-
- // There's a chance the source and destination gamuts are identical,
- // in which case we can skip the gamut transform.
- if (0 != memcmp(&dstProfile->toXYZD50, to_xyz, sizeof(skcms_Matrix3x3))) {
- // Concat the entire gamut transform into from_xyz,
- // now slightly misnamed but it's a handy spot to stash the result.
- from_xyz = skcms_Matrix3x3_concat(&from_xyz, to_xyz);
- *ops++ = Op_matrix_3x3;
- *args++ = &from_xyz;
- }
-
- if (dstAlpha == skcms_AlphaFormat_PremulLinear) {
- *ops++ = Op_premul;
- }
-
- // Encode back to dst RGB using its parametric transfer functions.
- if (!is_identity_tf(&inv_dst_tf_r)) { *ops++ = Op_tf_r; *args++ = &inv_dst_tf_r; }
- if (!is_identity_tf(&inv_dst_tf_g)) { *ops++ = Op_tf_g; *args++ = &inv_dst_tf_g; }
- if (!is_identity_tf(&inv_dst_tf_b)) { *ops++ = Op_tf_b; *args++ = &inv_dst_tf_b; }
- }
-
- if (dstAlpha == skcms_AlphaFormat_Opaque) {
- *ops++ = Op_force_opaque;
- } else if (dstAlpha == skcms_AlphaFormat_PremulAsEncoded) {
- *ops++ = Op_premul;
- }
- if (dstFmt & 1) {
- *ops++ = Op_swap_rb;
- }
- if (dstFmt < skcms_PixelFormat_RGB_hhh) {
- *ops++ = Op_clamp;
- }
- switch (dstFmt >> 1) {
- default: return false;
- case skcms_PixelFormat_A_8 >> 1: *ops++ = Op_store_a8; break;
- case skcms_PixelFormat_G_8 >> 1: *ops++ = Op_store_g8; break;
- case skcms_PixelFormat_ABGR_4444 >> 1: *ops++ = Op_store_4444; break;
- case skcms_PixelFormat_RGB_565 >> 1: *ops++ = Op_store_565; break;
- case skcms_PixelFormat_RGB_888 >> 1: *ops++ = Op_store_888; break;
- case skcms_PixelFormat_RGBA_8888 >> 1: *ops++ = Op_store_8888; break;
- case skcms_PixelFormat_RGBA_1010102 >> 1: *ops++ = Op_store_1010102; break;
- case skcms_PixelFormat_RGB_161616 >> 1: *ops++ = Op_store_161616; break;
- case skcms_PixelFormat_RGBA_16161616 >> 1: *ops++ = Op_store_16161616; break;
- case skcms_PixelFormat_RGB_hhh >> 1: *ops++ = Op_store_hhh; break;
- case skcms_PixelFormat_RGBA_hhhh >> 1: *ops++ = Op_store_hhhh; break;
- case skcms_PixelFormat_RGB_fff >> 1: *ops++ = Op_store_fff; break;
- case skcms_PixelFormat_RGBA_ffff >> 1: *ops++ = Op_store_ffff; break;
- }
-
- void (*run)(const Op*, const void**, const char*, char*, int, size_t,size_t) = run_program;
-#if defined(TEST_FOR_HSW)
- if (hsw_ok()) {
- run = run_program_hsw;
- }
-#endif
- run(program, arguments, src, dst, n, src_bpp,dst_bpp);
- return true;
-}
-
-static void assert_usable_as_destination(const skcms_ICCProfile* profile) {
-#if defined(NDEBUG)
- (void)profile;
-#else
- skcms_Matrix3x3 fromXYZD50;
- skcms_TransferFunction invR, invG, invB;
- assert(prep_for_destination(profile, &fromXYZD50, &invR, &invG, &invB));
-#endif
-}
-
-bool skcms_MakeUsableAsDestination(skcms_ICCProfile* profile) {
- skcms_Matrix3x3 fromXYZD50;
- if (!profile->has_trc || !profile->has_toXYZD50
- || !skcms_Matrix3x3_invert(&profile->toXYZD50, &fromXYZD50)) {
- return false;
- }
-
- skcms_TransferFunction tf[3];
- for (int i = 0; i < 3; i++) {
- skcms_TransferFunction inv;
- if (profile->trc[i].table_entries == 0
- && skcms_TransferFunction_invert(&profile->trc[i].parametric, &inv)) {
- tf[i] = profile->trc[i].parametric;
- continue;
- }
-
- float max_error;
- // Parametric curves from skcms_ApproximateCurve() are guaranteed to be invertible.
- if (!skcms_ApproximateCurve(&profile->trc[i], &tf[i], &max_error)) {
- return false;
- }
- }
-
- for (int i = 0; i < 3; ++i) {
- profile->trc[i].table_entries = 0;
- profile->trc[i].parametric = tf[i];
- }
-
- assert_usable_as_destination(profile);
- return true;
-}
-
-bool skcms_MakeUsableAsDestinationWithSingleCurve(skcms_ICCProfile* profile) {
- // Operate on a copy of profile, so we can choose the best TF for the original curves
- skcms_ICCProfile result = *profile;
- if (!skcms_MakeUsableAsDestination(&result)) {
- return false;
- }
-
- int best_tf = 0;
- float min_max_error = INFINITY_;
- for (int i = 0; i < 3; i++) {
- skcms_TransferFunction inv;
- skcms_TransferFunction_invert(&result.trc[i].parametric, &inv);
-
- float err = 0;
- for (int j = 0; j < 3; ++j) {
- err = fmaxf_(err, skcms_MaxRoundtripError(&profile->trc[j], &inv));
- }
- if (min_max_error > err) {
- min_max_error = err;
- best_tf = i;
- }
- }
-
- for (int i = 0; i < 3; i++) {
- result.trc[i].parametric = result.trc[best_tf].parametric;
- }
-
- *profile = result;
- assert_usable_as_destination(profile);
- return true;
-}
diff --git a/third_party/skcms/version.sha1 b/third_party/skcms/version.sha1
index f5367dddbc..e402cfbe8e 100755
--- a/third_party/skcms/version.sha1
+++ b/third_party/skcms/version.sha1
@@ -1 +1 @@
-14ea609fa6cae4cb61529e967a6bfae15a0a1c4d \ No newline at end of file
+99b01c076f47cd7a5e7ab59aaae6ff941fa85816 \ No newline at end of file