aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/skcms/src/TransferFunction.c
diff options
context:
space:
mode:
authorGravatar skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com>2018-05-17 19:25:40 +0000
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-05-17 19:56:43 +0000
commit53ea91139ad9f5ec32fba2cfd167277a5cc3f443 (patch)
treef7db453c32a943da059318b88387eb393684ae44 /third_party/skcms/src/TransferFunction.c
parent8f288d9399db95cd0a0994f037f6c08410a7c354 (diff)
Roll skia/third_party/skcms 3e527c6..5bfec77 (1 commits)
https://skia.googlesource.com/skcms.git/+log/3e527c6..5bfec77 2018-05-17 mtklein@chromium.org rm GaussNewton.[ch] The AutoRoll server is located here: https://skcms-skia-roll.skia.org Documentation for the AutoRoller is here: https://skia.googlesource.com/buildbot/+/master/autoroll/README.md If the roll is causing failures, please contact the current sheriff, who should be CC'd on the roll, and stop the roller if necessary. CQ_INCLUDE_TRYBOTS=master.tryserver.blink:linux_trusty_blink_rel TBR=herb@google.com Change-Id: Idf7e24d60750f69db9d09a71e9665073380b8912 Reviewed-on: https://skia-review.googlesource.com/128987 Reviewed-by: skcms-skia-autoroll <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com> Commit-Queue: skcms-skia-autoroll <skcms-skia-autoroll@skia-buildbots.google.com.iam.gserviceaccount.com>
Diffstat (limited to 'third_party/skcms/src/TransferFunction.c')
-rw-r--r--third_party/skcms/src/TransferFunction.c105
1 files changed, 90 insertions, 15 deletions
diff --git a/third_party/skcms/src/TransferFunction.c b/third_party/skcms/src/TransferFunction.c
index 8f8fb36c9d..0e3467c13f 100644
--- a/third_party/skcms/src/TransferFunction.c
+++ b/third_party/skcms/src/TransferFunction.c
@@ -7,7 +7,6 @@
#include "../skcms.h"
#include "Curve.h"
-#include "GaussNewton.h"
#include "LinearAlgebra.h"
#include "Macros.h"
#include "PortableMath.h"
@@ -151,19 +150,15 @@ bool skcms_TransferFunction_invert(const skcms_TransferFunction* src, skcms_Tran
// ∂r/∂b = g(ay + b)^(g-1)
// - g(ad + b)^(g-1)
-typedef struct {
- const skcms_Curve* curve;
- const skcms_TransferFunction* tf;
-} rg_nonlinear_arg;
-
// Return the residual of roundtripping skcms_Curve(x) through f_inv(y) with parameters P,
// and fill out the gradient of the residual into dfdP.
-static float rg_nonlinear(float x, const void* ctx, const float P[3], float dfdP[3]) {
- const rg_nonlinear_arg* arg = (const rg_nonlinear_arg*)ctx;
-
- const float y = skcms_eval_curve(arg->curve, x);
+static float rg_nonlinear(float x,
+ const skcms_Curve* curve,
+ const skcms_TransferFunction* tf,
+ const float P[3],
+ float dfdP[3]) {
+ const float y = skcms_eval_curve(curve, x);
- const skcms_TransferFunction* tf = arg->tf;
const float g = P[0], a = P[1], b = P[2],
c = tf->c, d = tf->d, f = tf->f;
@@ -230,6 +225,87 @@ int skcms_fit_linear(const skcms_Curve* curve, int N, float tol, float* c, float
return lin_points;
}
+static bool gauss_newton_step(const skcms_Curve* curve,
+ const skcms_TransferFunction* tf,
+ float P[3],
+ float x0, float dx, int N) {
+ // We'll sample x from the range [x0,x1] (both inclusive) N times with even spacing.
+ //
+ // We want to do P' = P + (Jf^T Jf)^-1 Jf^T r(P),
+ // where r(P) is the residual vector
+ // and Jf is the Jacobian matrix of f(), ∂r/∂P.
+ //
+ // Let's review the shape of each of these expressions:
+ // r(P) is [N x 1], a column vector with one entry per value of x tested
+ // Jf is [N x 3], a matrix with an entry for each (x,P) pair
+ // Jf^T is [3 x N], the transpose of Jf
+ //
+ // Jf^T Jf is [3 x N] * [N x 3] == [3 x 3], a 3x3 matrix,
+ // and so is its inverse (Jf^T Jf)^-1
+ // Jf^T r(P) is [3 x N] * [N x 1] == [3 x 1], a column vector with the same shape as P
+ //
+ // Our implementation strategy to get to the final ∆P is
+ // 1) evaluate Jf^T Jf, call that lhs
+ // 2) evaluate Jf^T r(P), call that rhs
+ // 3) invert lhs
+ // 4) multiply inverse lhs by rhs
+ //
+ // This is a friendly implementation strategy because we don't have to have any
+ // buffers that scale with N, and equally nice don't have to perform any matrix
+ // operations that are variable size.
+ //
+ // Other implementation strategies could trade this off, e.g. evaluating the
+ // pseudoinverse of Jf ( (Jf^T Jf)^-1 Jf^T ) directly, then multiplying that by
+ // the residuals. That would probably require implementing singular value
+ // decomposition, and would create a [3 x N] matrix to be multiplied by the
+ // [N x 1] residual vector, but on the upside I think that'd eliminate the
+ // possibility of this gauss_newton_step() function ever failing.
+
+ // 0) start off with lhs and rhs safely zeroed.
+ skcms_Matrix3x3 lhs = {{ {0,0,0}, {0,0,0}, {0,0,0} }};
+ skcms_Vector3 rhs = { {0,0,0} };
+
+ // 1,2) evaluate lhs and evaluate rhs
+ // We want to evaluate Jf only once, but both lhs and rhs involve Jf^T,
+ // so we'll have to update lhs and rhs at the same time.
+ for (int i = 0; i < N; i++) {
+ float x = x0 + i*dx;
+
+ float dfdP[3] = {0,0,0};
+ float resid = rg_nonlinear(x,curve,tf,P, dfdP);
+
+ for (int r = 0; r < 3; r++) {
+ for (int c = 0; c < 3; c++) {
+ lhs.vals[r][c] += dfdP[r] * dfdP[c];
+ }
+ rhs.vals[r] += dfdP[r] * resid;
+ }
+ }
+
+ // If any of the 3 P parameters are unused, this matrix will be singular.
+ // Detect those cases and fix them up to indentity instead, so we can invert.
+ for (int k = 0; k < 3; k++) {
+ if (lhs.vals[0][k]==0 && lhs.vals[1][k]==0 && lhs.vals[2][k]==0 &&
+ lhs.vals[k][0]==0 && lhs.vals[k][1]==0 && lhs.vals[k][2]==0) {
+ lhs.vals[k][k] = 1;
+ }
+ }
+
+ // 3) invert lhs
+ skcms_Matrix3x3 lhs_inv;
+ if (!skcms_Matrix3x3_invert(&lhs, &lhs_inv)) {
+ return false;
+ }
+
+ // 4) multiply inverse lhs by rhs
+ skcms_Vector3 dP = skcms_MV_mul(&lhs_inv, &rhs);
+ P[0] += dP.vals[0];
+ P[1] += dP.vals[1];
+ P[2] += dP.vals[2];
+ return isfinitef_(P[0]) && isfinitef_(P[1]) && isfinitef_(P[2]);
+}
+
+
// Fit the points in [L,N) to the non-linear piece of tf, or return false if we can't.
static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_TransferFunction* tf) {
float P[3] = { tf->g, tf->a, tf->b };
@@ -250,10 +326,9 @@ static bool fit_nonlinear(const skcms_Curve* curve, int L, int N, skcms_Transfer
assert (P[1] >= 0 &&
P[1] * tf->d + P[2] >= 0);
- rg_nonlinear_arg arg = { curve, tf};
- if (!skcms_gauss_newton_step(rg_nonlinear, &arg,
- P,
- L*dx, dx, N-L)) {
+ if (!gauss_newton_step(curve, tf,
+ P,
+ L*dx, dx, N-L)) {
return false;
}
}