aboutsummaryrefslogtreecommitdiffhomepage
path: root/tests/PathOpsAngleIdeas.cpp
diff options
context:
space:
mode:
authorGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2014-04-14 17:08:59 +0000
committerGravatar commit-bot@chromium.org <commit-bot@chromium.org@2bbb7eff-a529-9590-31e7-b0007b416f81>2014-04-14 17:08:59 +0000
commit4431e7757cfcb8cfa99535eed0e9f156dabf95c2 (patch)
treef5939d4bb12b64c6953c8bae3ea684791565ca7f /tests/PathOpsAngleIdeas.cpp
parent95f79261addecd8c3b4e64f2f1469f9e1aa0acb2 (diff)
Mike R: please sanity check SkPostConfig.h
Mike K: please sanity check Test.cpp and skia_test.cpp Feel free to look at the rest, but I don't expect any in depth review of path ops innards. Path Ops first iteration used QuickSort to order segments radiating from an intersection to compute the winding rule. This revision uses a circular sort instead. Breaking out the circular sort into its own long-lived structure (SkOpAngle) allows doing less work and provides a home for caching additional sorting data. The circle sort is more stable than the former sort, has a robust ordering and fewer exceptions. It finds unsortable ordering less often. It is less reliant on the initial curve tangent, using convex hulls instead whenever it can. Additional debug validation makes sure that the computed structures are self-consistent. A new visualization tool helps verify that the angle ordering is correct. The 70+M tests pass with this change on Windows, Mac, Linux 32 and Linux 64 in debug and release. R=mtklein@google.com, reed@google.com Author: caryclark@google.com Review URL: https://codereview.chromium.org/131103009 git-svn-id: http://skia.googlecode.com/svn/trunk@14183 2bbb7eff-a529-9590-31e7-b0007b416f81
Diffstat (limited to 'tests/PathOpsAngleIdeas.cpp')
-rwxr-xr-xtests/PathOpsAngleIdeas.cpp858
1 files changed, 858 insertions, 0 deletions
diff --git a/tests/PathOpsAngleIdeas.cpp b/tests/PathOpsAngleIdeas.cpp
new file mode 100755
index 0000000000..2887b28feb
--- /dev/null
+++ b/tests/PathOpsAngleIdeas.cpp
@@ -0,0 +1,858 @@
+/*
+ * Copyright 2013 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "PathOpsTestCommon.h"
+#include "SkIntersections.h"
+#include "SkOpSegment.h"
+#include "SkPathOpsTriangle.h"
+#include "SkRandom.h"
+#include "SkTArray.h"
+#include "SkTSort.h"
+#include "Test.h"
+
+static bool gPathOpsAngleIdeasVerbose = false;
+static bool gPathOpsAngleIdeasEnableBruteCheck = false;
+
+class PathOpsAngleTester {
+public:
+ static int ConvexHullOverlaps(const SkOpAngle& lh, const SkOpAngle& rh) {
+ return lh.convexHullOverlaps(rh);
+ }
+
+ static int EndsIntersect(const SkOpAngle& lh, const SkOpAngle& rh) {
+ return lh.endsIntersect(rh);
+ }
+};
+
+struct TRange {
+ double tMin1;
+ double tMin2;
+ double t1;
+ double t2;
+ double tMin;
+ double a1;
+ double a2;
+ bool ccw;
+};
+
+static double testArc(skiatest::Reporter* reporter, const SkDQuad& quad, const SkDQuad& arcRef,
+ int octant) {
+ SkDQuad arc = arcRef;
+ SkDVector offset = {quad[0].fX, quad[0].fY};
+ arc[0] += offset;
+ arc[1] += offset;
+ arc[2] += offset;
+ SkIntersections i;
+ i.intersect(arc, quad);
+ if (i.used() == 0) {
+ return -1;
+ }
+ int smallest = -1;
+ double t = 2;
+ for (int idx = 0; idx < i.used(); ++idx) {
+ if (i[0][idx] > 1 || i[0][idx] < 0) {
+ i.reset();
+ i.intersect(arc, quad);
+ }
+ if (i[1][idx] > 1 || i[1][idx] < 0) {
+ i.reset();
+ i.intersect(arc, quad);
+ }
+ if (t > i[1][idx]) {
+ smallest = idx;
+ t = i[1][idx];
+ }
+ }
+ REPORTER_ASSERT(reporter, smallest >= 0);
+ REPORTER_ASSERT(reporter, t >= 0 && t <= 1);
+ return i[1][smallest];
+}
+
+static void orderQuads(skiatest::Reporter* reporter, const SkDQuad& quad, double radius,
+ SkTArray<double, false>* tArray) {
+ double r = radius;
+ double s = r * SK_ScalarTanPIOver8;
+ double m = r * SK_ScalarRoot2Over2;
+ // construct circle from quads
+ const SkDQuad circle[8] = {{{{ r, 0}, { r, -s}, { m, -m}}},
+ {{{ m, -m}, { s, -r}, { 0, -r}}},
+ {{{ 0, -r}, {-s, -r}, {-m, -m}}},
+ {{{-m, -m}, {-r, -s}, {-r, 0}}},
+ {{{-r, 0}, {-r, s}, {-m, m}}},
+ {{{-m, m}, {-s, r}, { 0, r}}},
+ {{{ 0, r}, { s, r}, { m, m}}},
+ {{{ m, m}, { r, s}, { r, 0}}}};
+ for (int octant = 0; octant < 8; ++octant) {
+ double t = testArc(reporter, quad, circle[octant], octant);
+ if (t < 0) {
+ continue;
+ }
+ for (int index = 0; index < tArray->count(); ++index) {
+ double matchT = (*tArray)[index];
+ if (approximately_equal(t, matchT)) {
+ goto next;
+ }
+ }
+ tArray->push_back(t);
+next: ;
+ }
+}
+
+static double quadAngle(skiatest::Reporter* reporter, const SkDQuad& quad, double t) {
+ const SkDVector& pt = quad.ptAtT(t) - quad[0];
+ double angle = (atan2(pt.fY, pt.fX) + SK_ScalarPI) * 8 / (SK_ScalarPI * 2);
+ REPORTER_ASSERT(reporter, angle >= 0 && angle <= 8);
+ return angle;
+}
+
+static bool angleDirection(double a1, double a2) {
+ double delta = a1 - a2;
+ return (delta < 4 && delta > 0) || delta < -4;
+}
+
+static void setQuadHullSweep(const SkDQuad& quad, SkDVector sweep[2]) {
+ sweep[0] = quad[1] - quad[0];
+ sweep[1] = quad[2] - quad[0];
+}
+
+static double distEndRatio(double dist, const SkDQuad& quad) {
+ SkDVector v[] = {quad[2] - quad[0], quad[1] - quad[0], quad[2] - quad[1]};
+ double longest = SkTMax(v[0].length(), SkTMax(v[1].length(), v[2].length()));
+ return longest / dist;
+}
+
+static bool checkParallel(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2) {
+ SkDVector sweep[2], tweep[2];
+ setQuadHullSweep(quad1, sweep);
+ setQuadHullSweep(quad2, tweep);
+ // if the ctrl tangents are not nearly parallel, use them
+ // solve for opposite direction displacement scale factor == m
+ // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
+ // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
+ // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
+ // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
+ // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
+ // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
+ // m = v1.cross(v2) / v1.dot(v2)
+ double s0dt0 = sweep[0].dot(tweep[0]);
+ REPORTER_ASSERT(reporter, s0dt0 != 0);
+ double s0xt0 = sweep[0].crossCheck(tweep[0]);
+ double m = s0xt0 / s0dt0;
+ double sDist = sweep[0].length() * m;
+ double tDist = tweep[0].length() * m;
+ bool useS = fabs(sDist) < fabs(tDist);
+ double mFactor = fabs(useS ? distEndRatio(sDist, quad1) : distEndRatio(tDist, quad2));
+ if (mFactor < 5000) { // empirically found limit
+ return s0xt0 < 0;
+ }
+ SkDVector m0 = quad1.ptAtT(0.5) - quad1[0];
+ SkDVector m1 = quad2.ptAtT(0.5) - quad2[0];
+ return m0.crossCheck(m1) < 0;
+}
+
+/* returns
+ -1 if overlaps
+ 0 if no overlap cw
+ 1 if no overlap ccw
+*/
+static int quadHullsOverlap(skiatest::Reporter* reporter, const SkDQuad& quad1,
+ const SkDQuad& quad2) {
+ SkDVector sweep[2], tweep[2];
+ setQuadHullSweep(quad1, sweep);
+ setQuadHullSweep(quad2, tweep);
+ double s0xs1 = sweep[0].crossCheck(sweep[1]);
+ double s0xt0 = sweep[0].crossCheck(tweep[0]);
+ double s1xt0 = sweep[1].crossCheck(tweep[0]);
+ bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
+ double s0xt1 = sweep[0].crossCheck(tweep[1]);
+ double s1xt1 = sweep[1].crossCheck(tweep[1]);
+ tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
+ double t0xt1 = tweep[0].crossCheck(tweep[1]);
+ if (tBetweenS) {
+ return -1;
+ }
+ if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) { // s0 to s1 equals t0 to t1
+ return -1;
+ }
+ bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
+ sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
+ if (sBetweenT) {
+ return -1;
+ }
+ // if all of the sweeps are in the same half plane, then the order of any pair is enough
+ if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
+ return 0;
+ }
+ if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
+ return 1;
+ }
+ // if the outside sweeps are greater than 180 degress:
+ // first assume the inital tangents are the ordering
+ // if the midpoint direction matches the inital order, that is enough
+ SkDVector m0 = quad1.ptAtT(0.5) - quad1[0];
+ SkDVector m1 = quad2.ptAtT(0.5) - quad2[0];
+ double m0xm1 = m0.crossCheck(m1);
+ if (s0xt0 > 0 && m0xm1 > 0) {
+ return 0;
+ }
+ if (s0xt0 < 0 && m0xm1 < 0) {
+ return 1;
+ }
+ REPORTER_ASSERT(reporter, s0xt0 != 0);
+ return checkParallel(reporter, quad1, quad2);
+}
+
+static double radianSweep(double start, double end) {
+ double sweep = end - start;
+ if (sweep > SK_ScalarPI) {
+ sweep -= 2 * SK_ScalarPI;
+ } else if (sweep < -SK_ScalarPI) {
+ sweep += 2 * SK_ScalarPI;
+ }
+ return sweep;
+}
+
+static bool radianBetween(double start, double test, double end) {
+ double startToEnd = radianSweep(start, end);
+ double startToTest = radianSweep(start, test);
+ double testToEnd = radianSweep(test, end);
+ return (startToTest <= 0 && testToEnd <= 0 && startToTest >= startToEnd) ||
+ (startToTest >= 0 && testToEnd >= 0 && startToTest <= startToEnd);
+}
+
+static bool orderTRange(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ double r, TRange* result) {
+ SkTArray<double, false> t1Array, t2Array;
+ orderQuads(reporter, quad1, r, &t1Array);
+ orderQuads(reporter,quad2, r, &t2Array);
+ if (!t1Array.count() || !t2Array.count()) {
+ return false;
+ }
+ SkTQSort<double>(t1Array.begin(), t1Array.end() - 1);
+ SkTQSort<double>(t2Array.begin(), t2Array.end() - 1);
+ double t1 = result->tMin1 = t1Array[0];
+ double t2 = result->tMin2 = t2Array[0];
+ double a1 = quadAngle(reporter,quad1, t1);
+ double a2 = quadAngle(reporter,quad2, t2);
+ if (approximately_equal(a1, a2)) {
+ return false;
+ }
+ bool refCCW = angleDirection(a1, a2);
+ result->t1 = t1;
+ result->t2 = t2;
+ result->tMin = SkTMin(t1, t2);
+ result->a1 = a1;
+ result->a2 = a2;
+ result->ccw = refCCW;
+ return true;
+}
+
+static bool equalPoints(const SkDPoint& pt1, const SkDPoint& pt2, double max) {
+ return approximately_zero_when_compared_to(pt1.fX - pt2.fX, max)
+ && approximately_zero_when_compared_to(pt1.fY - pt2.fY, max);
+}
+
+static double maxDist(const SkDQuad& quad) {
+ SkDRect bounds;
+ bounds.setBounds(quad);
+ SkDVector corner[4] = {
+ { bounds.fLeft - quad[0].fX, bounds.fTop - quad[0].fY },
+ { bounds.fRight - quad[0].fX, bounds.fTop - quad[0].fY },
+ { bounds.fLeft - quad[0].fX, bounds.fBottom - quad[0].fY },
+ { bounds.fRight - quad[0].fX, bounds.fBottom - quad[0].fY }
+ };
+ double max = 0;
+ for (unsigned index = 0; index < SK_ARRAY_COUNT(corner); ++index) {
+ max = SkTMax(max, corner[index].length());
+ }
+ return max;
+}
+
+static double maxQuad(const SkDQuad& quad) {
+ double max = 0;
+ for (int index = 0; index < 2; ++index) {
+ max = SkTMax(max, fabs(quad[index].fX));
+ max = SkTMax(max, fabs(quad[index].fY));
+ }
+ return max;
+}
+
+static bool bruteMinT(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ TRange* lowerRange, TRange* upperRange) {
+ double maxRadius = SkTMin(maxDist(quad1), maxDist(quad2));
+ double maxQuads = SkTMax(maxQuad(quad1), maxQuad(quad2));
+ double r = maxRadius / 2;
+ double rStep = r / 2;
+ SkDPoint best1 = {SK_ScalarInfinity, SK_ScalarInfinity};
+ SkDPoint best2 = {SK_ScalarInfinity, SK_ScalarInfinity};
+ int bestCCW = -1;
+ double bestR = maxRadius;
+ upperRange->tMin = 0;
+ lowerRange->tMin = 1;
+ do {
+ do { // find upper bounds of single result
+ TRange tRange;
+ bool stepUp = orderTRange(reporter, quad1, quad2, r, &tRange);
+ if (stepUp) {
+ SkDPoint pt1 = quad1.ptAtT(tRange.t1);
+ if (equalPoints(pt1, best1, maxQuads)) {
+ break;
+ }
+ best1 = pt1;
+ SkDPoint pt2 = quad2.ptAtT(tRange.t2);
+ if (equalPoints(pt2, best2, maxQuads)) {
+ break;
+ }
+ best2 = pt2;
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("u bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n",
+ bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r,
+ tRange.tMin);
+ }
+ if (bestCCW >= 0 && bestCCW != (int) tRange.ccw) {
+ if (tRange.tMin < upperRange->tMin) {
+ upperRange->tMin = 0;
+ } else {
+ stepUp = false;
+ }
+ }
+ if (upperRange->tMin < tRange.tMin) {
+ bestCCW = tRange.ccw;
+ bestR = r;
+ *upperRange = tRange;
+ }
+ if (lowerRange->tMin > tRange.tMin) {
+ *lowerRange = tRange;
+ }
+ }
+ r += stepUp ? rStep : -rStep;
+ rStep /= 2;
+ } while (rStep > FLT_EPSILON);
+ if (bestCCW < 0) {
+ REPORTER_ASSERT(reporter, bestR < maxRadius);
+ return false;
+ }
+ double lastHighR = bestR;
+ r = bestR / 2;
+ rStep = r / 2;
+ do { // find lower bounds of single result
+ TRange tRange;
+ bool success = orderTRange(reporter, quad1, quad2, r, &tRange);
+ if (success) {
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("l bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n",
+ bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r,
+ tRange.tMin);
+ }
+ if (bestCCW != (int) tRange.ccw || upperRange->tMin < tRange.tMin) {
+ bestCCW = tRange.ccw;
+ *upperRange = tRange;
+ bestR = lastHighR;
+ break; // need to establish a new upper bounds
+ }
+ SkDPoint pt1 = quad1.ptAtT(tRange.t1);
+ SkDPoint pt2 = quad2.ptAtT(tRange.t2);
+ if (equalPoints(pt1, best1, maxQuads)) {
+ goto breakOut;
+ }
+ best1 = pt1;
+ if (equalPoints(pt2, best2, maxQuads)) {
+ goto breakOut;
+ }
+ best2 = pt2;
+ if (equalPoints(pt1, pt2, maxQuads)) {
+ success = false;
+ } else {
+ if (upperRange->tMin < tRange.tMin) {
+ *upperRange = tRange;
+ }
+ if (lowerRange->tMin > tRange.tMin) {
+ *lowerRange = tRange;
+ }
+ }
+ lastHighR = SkTMin(r, lastHighR);
+ }
+ r += success ? -rStep : rStep;
+ rStep /= 2;
+ } while (rStep > FLT_EPSILON);
+ } while (rStep > FLT_EPSILON);
+breakOut:
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("l a2-a1==%1.9g\n", lowerRange->a2 - lowerRange->a1);
+ }
+ return true;
+}
+
+static void bruteForce(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ bool ccw) {
+ if (!gPathOpsAngleIdeasEnableBruteCheck) {
+ return;
+ }
+ TRange lowerRange, upperRange;
+ bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
+ REPORTER_ASSERT(reporter, result);
+ double angle = fabs(lowerRange.a2 - lowerRange.a1);
+ REPORTER_ASSERT(reporter, angle > 3.998 || ccw == upperRange.ccw);
+}
+
+static bool bruteForceCheck(skiatest::Reporter* reporter, const SkDQuad& quad1,
+ const SkDQuad& quad2, bool ccw) {
+ TRange lowerRange, upperRange;
+ bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
+ REPORTER_ASSERT(reporter, result);
+ return ccw == upperRange.ccw;
+}
+
+class PathOpsSegmentTester {
+public:
+ static void ConstructQuad(SkOpSegment* segment, SkPoint shortQuad[3]) {
+ segment->debugConstructQuad(shortQuad);
+ }
+};
+
+static void makeSegment(const SkDQuad& quad, SkPoint shortQuad[3], SkOpSegment* result) {
+ shortQuad[0] = quad[0].asSkPoint();
+ shortQuad[1] = quad[1].asSkPoint();
+ shortQuad[2] = quad[2].asSkPoint();
+ PathOpsSegmentTester::ConstructQuad(result, shortQuad);
+}
+
+static void testQuadAngles(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ int testNo) {
+ SkPoint shortQuads[2][3];
+ SkOpSegment seg[2];
+ makeSegment(quad1, shortQuads[0], &seg[0]);
+ makeSegment(quad2, shortQuads[1], &seg[1]);
+ int realOverlap = PathOpsAngleTester::ConvexHullOverlaps(seg[0].angle(0), seg[1].angle(0));
+ const SkDPoint& origin = quad1[0];
+ REPORTER_ASSERT(reporter, origin == quad2[0]);
+ double a1s = atan2(origin.fY - quad1[1].fY, quad1[1].fX - origin.fX);
+ double a1e = atan2(origin.fY - quad1[2].fY, quad1[2].fX - origin.fX);
+ double a2s = atan2(origin.fY - quad2[1].fY, quad2[1].fX - origin.fX);
+ double a2e = atan2(origin.fY - quad2[2].fY, quad2[2].fX - origin.fX);
+ bool oldSchoolOverlap = radianBetween(a1s, a2s, a1e)
+ || radianBetween(a1s, a2e, a1e) || radianBetween(a2s, a1s, a2e)
+ || radianBetween(a2s, a1e, a2e);
+ int overlap = quadHullsOverlap(reporter, quad1, quad2);
+ bool realMatchesOverlap = realOverlap == overlap || SK_ScalarPI - fabs(a2s - a1s) < 0.002;
+ if (realOverlap != overlap) {
+ SkDebugf("\nSK_ScalarPI - fabs(a2s - a1s) = %1.9g\n", SK_ScalarPI - fabs(a2s - a1s));
+ }
+ if (!realMatchesOverlap) {
+ DumpQ(quad1, quad2, testNo);
+ }
+ REPORTER_ASSERT(reporter, realMatchesOverlap);
+ if (oldSchoolOverlap != (overlap < 0)) {
+ overlap = quadHullsOverlap(reporter, quad1, quad2); // set a breakpoint and debug if assert fires
+ REPORTER_ASSERT(reporter, oldSchoolOverlap == (overlap < 0));
+ }
+ SkDVector v1s = quad1[1] - quad1[0];
+ SkDVector v1e = quad1[2] - quad1[0];
+ SkDVector v2s = quad2[1] - quad2[0];
+ SkDVector v2e = quad2[2] - quad2[0];
+ double vDir[2] = { v1s.cross(v1e), v2s.cross(v2e) };
+ bool ray1In2 = v1s.cross(v2s) * vDir[1] <= 0 && v1s.cross(v2e) * vDir[1] >= 0;
+ bool ray2In1 = v2s.cross(v1s) * vDir[0] <= 0 && v2s.cross(v1e) * vDir[0] >= 0;
+ if (overlap >= 0) {
+ // verify that hulls really don't overlap
+ REPORTER_ASSERT(reporter, !ray1In2);
+ REPORTER_ASSERT(reporter, !ray2In1);
+ bool ctrl1In2 = v1e.cross(v2s) * vDir[1] <= 0 && v1e.cross(v2e) * vDir[1] >= 0;
+ REPORTER_ASSERT(reporter, !ctrl1In2);
+ bool ctrl2In1 = v2e.cross(v1s) * vDir[0] <= 0 && v2e.cross(v1e) * vDir[0] >= 0;
+ REPORTER_ASSERT(reporter, !ctrl2In1);
+ // check answer against reference
+ bruteForce(reporter, quad1, quad2, overlap > 0);
+ }
+ // continue end point rays and see if they intersect the opposite curve
+ SkDLine rays[] = {{{origin, quad2[2]}}, {{origin, quad1[2]}}};
+ const SkDQuad* quads[] = {&quad1, &quad2};
+ SkDVector midSpokes[2];
+ SkIntersections intersect[2];
+ double minX, minY, maxX, maxY;
+ minX = minY = SK_ScalarInfinity;
+ maxX = maxY = -SK_ScalarInfinity;
+ double maxWidth = 0;
+ bool useIntersect = false;
+ double smallestTs[] = {1, 1};
+ for (unsigned index = 0; index < SK_ARRAY_COUNT(quads); ++index) {
+ const SkDQuad& q = *quads[index];
+ midSpokes[index] = q.ptAtT(0.5) - origin;
+ minX = SkTMin(SkTMin(SkTMin(minX, origin.fX), q[1].fX), q[2].fX);
+ minY = SkTMin(SkTMin(SkTMin(minY, origin.fY), q[1].fY), q[2].fY);
+ maxX = SkTMax(SkTMax(SkTMax(maxX, origin.fX), q[1].fX), q[2].fX);
+ maxY = SkTMax(SkTMax(SkTMax(maxY, origin.fY), q[1].fY), q[2].fY);
+ maxWidth = SkTMax(maxWidth, SkTMax(maxX - minX, maxY - minY));
+ intersect[index].intersectRay(q, rays[index]);
+ const SkIntersections& i = intersect[index];
+ REPORTER_ASSERT(reporter, i.used() >= 1);
+ bool foundZero = false;
+ double smallT = 1;
+ for (int idx2 = 0; idx2 < i.used(); ++idx2) {
+ double t = i[0][idx2];
+ if (t == 0) {
+ foundZero = true;
+ continue;
+ }
+ if (smallT > t) {
+ smallT = t;
+ }
+ }
+ REPORTER_ASSERT(reporter, foundZero == true);
+ if (smallT == 1) {
+ continue;
+ }
+ SkDVector ray = q.ptAtT(smallT) - origin;
+ SkDVector end = rays[index][1] - origin;
+ if (ray.fX * end.fX < 0 || ray.fY * end.fY < 0) {
+ continue;
+ }
+ double rayDist = ray.length();
+ double endDist = end.length();
+ double delta = fabs(rayDist - endDist) / maxWidth;
+ if (delta > 1e-4) {
+ useIntersect ^= true;
+ }
+ smallestTs[index] = smallT;
+ }
+ bool firstInside;
+ if (useIntersect) {
+ int sIndex = (int) (smallestTs[1] < 1);
+ REPORTER_ASSERT(reporter, smallestTs[sIndex ^ 1] == 1);
+ double t = smallestTs[sIndex];
+ const SkDQuad& q = *quads[sIndex];
+ SkDVector ray = q.ptAtT(t) - origin;
+ SkDVector end = rays[sIndex][1] - origin;
+ double rayDist = ray.length();
+ double endDist = end.length();
+ SkDVector mid = q.ptAtT(t / 2) - origin;
+ double midXray = mid.crossCheck(ray);
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("rayDist>endDist:%d sIndex==0:%d vDir[sIndex]<0:%d midXray<0:%d\n",
+ rayDist > endDist, sIndex == 0, vDir[sIndex] < 0, midXray < 0);
+ }
+ SkASSERT(SkScalarSignAsInt(SkDoubleToScalar(midXray))
+ == SkScalarSignAsInt(SkDoubleToScalar(vDir[sIndex])));
+ firstInside = (rayDist > endDist) ^ (sIndex == 0) ^ (vDir[sIndex] < 0);
+ } else if (overlap >= 0) {
+ return; // answer has already been determined
+ } else {
+ firstInside = checkParallel(reporter, quad1, quad2);
+ }
+ if (overlap < 0) {
+ SkDEBUGCODE(int realEnds =)
+ PathOpsAngleTester::EndsIntersect(seg[0].angle(0), seg[1].angle(0));
+ SkASSERT(realEnds == (firstInside ? 1 : 0));
+ }
+ bruteForce(reporter, quad1, quad2, firstInside);
+}
+
+DEF_TEST(PathOpsAngleOverlapHullsOne, reporter) {
+// gPathOpsAngleIdeasVerbose = true;
+ const SkDQuad quads[] = {
+{{{939.4808349609375, 914.355224609375}, {-357.7921142578125, 590.842529296875}, {736.8936767578125, -350.717529296875}}},
+{{{939.4808349609375, 914.355224609375}, {-182.85418701171875, 634.4552001953125}, {-509.62615966796875, 576.1182861328125}}}
+ };
+ for (int index = 0; index < (int) SK_ARRAY_COUNT(quads); index += 2) {
+ testQuadAngles(reporter, quads[index], quads[index + 1], 0);
+ }
+}
+
+DEF_TEST(PathOpsAngleOverlapHulls, reporter) {
+ if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default
+ return;
+ }
+ SkRandom ran;
+ for (int index = 0; index < 100000; ++index) {
+ if (index % 1000 == 999) SkDebugf(".");
+ SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
+ SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad1[0] == quad1[2]) {
+ continue;
+ }
+ SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad2[0] == quad2[2]) {
+ continue;
+ }
+ SkIntersections i;
+ i.intersect(quad1, quad2);
+ REPORTER_ASSERT(reporter, i.used() >= 1);
+ if (i.used() > 1) {
+ continue;
+ }
+ testQuadAngles(reporter, quad1, quad2, index);
+ }
+}
+
+DEF_TEST(PathOpsAngleBruteT, reporter) {
+ if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default
+ return;
+ }
+ SkRandom ran;
+ double smaller = SK_Scalar1;
+ SkDQuad small[2];
+ SkDEBUGCODE(int smallIndex);
+ for (int index = 0; index < 100000; ++index) {
+ SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
+ SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad1[0] == quad1[2]) {
+ continue;
+ }
+ SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad2[0] == quad2[2]) {
+ continue;
+ }
+ SkIntersections i;
+ i.intersect(quad1, quad2);
+ REPORTER_ASSERT(reporter, i.used() >= 1);
+ if (i.used() > 1) {
+ continue;
+ }
+ TRange lowerRange, upperRange;
+ bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
+ REPORTER_ASSERT(reporter, result);
+ double min = SkTMin(upperRange.t1, upperRange.t2);
+ if (smaller > min) {
+ small[0] = quad1;
+ small[1] = quad2;
+ SkDEBUGCODE(smallIndex = index);
+ smaller = min;
+ }
+ }
+#ifdef SK_DEBUG
+ DumpQ(small[0], small[1], smallIndex);
+#endif
+}
+
+DEF_TEST(PathOpsAngleBruteTOne, reporter) {
+// gPathOpsAngleIdeasVerbose = true;
+ const SkDQuad quads[] = {
+{{{-770.8492431640625, 948.2369384765625}, {-853.37066650390625, 972.0301513671875}, {-200.62042236328125, -26.7174072265625}}},
+{{{-770.8492431640625, 948.2369384765625}, {513.602783203125, 578.8681640625}, {960.641357421875, -813.69757080078125}}},
+{{{563.8267822265625, -107.4566650390625}, {-44.67724609375, -136.57452392578125}, {492.3856201171875, -268.79644775390625}}},
+{{{563.8267822265625, -107.4566650390625}, {708.049072265625, -100.77789306640625}, {-48.88226318359375, 967.9022216796875}}},
+{{{598.857421875, 846.345458984375}, {-644.095703125, -316.12921142578125}, {-97.64599609375, 20.6158447265625}}},
+{{{598.857421875, 846.345458984375}, {715.7142333984375, 955.3599853515625}, {-919.9478759765625, 691.611328125}}},
+ };
+ TRange lowerRange, upperRange;
+ bruteMinT(reporter, quads[0], quads[1], &lowerRange, &upperRange);
+ bruteMinT(reporter, quads[2], quads[3], &lowerRange, &upperRange);
+ bruteMinT(reporter, quads[4], quads[5], &lowerRange, &upperRange);
+}
+
+/*
+The sorting problem happens when the inital tangents are not a true indicator of the curve direction
+Nearly always, the initial tangents do give the right answer,
+so the trick is to figure out when the initial tangent cannot be trusted.
+If the convex hulls of both curves are in the same half plane, and not overlapping, sorting the
+hulls is enough.
+If the hulls overlap, and have the same general direction, then intersect the shorter end point ray
+with the opposing curve, and see on which side of the shorter curve the opposing intersection lies.
+Otherwise, if the control vector is extremely short, likely the point on curve must be computed
+If moving the control point slightly can change the sign of the cross product, either answer could
+be "right".
+We need to determine how short is extremely short. Move the control point a set percentage of
+the largest length to determine how stable the curve is vis-a-vis the initial tangent.
+*/
+
+static const SkDQuad extremeTests[][2] = {
+ {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-707.9234268635319,-154.30459999551294},
+ {505.58447265625,-504.9130859375}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-711.127526325141,-163.9446090624656},
+ {-32.39227294921875,-906.3277587890625}}},
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.2875337527566,-154.36676458635623},
+ {505.58447265625,-504.9130859375}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.4111557216864,-154.5366642875255},
+ {-32.39227294921875,-906.3277587890625}}},
+ }, {
+ {{{-609.0230951752058,-267.5435593490574},
+ {-594.1120809906336,-136.08492475411555},
+ {505.58447265625,-504.9130859375}}},
+ {{{-609.0230951752058,-267.5435593490574},
+ {-693.7467719138988,-341.3259237831895},
+ {-32.39227294921875,-906.3277587890625}}}
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-707.9994640658723,-154.58588461064852},
+ {505.58447265625,-504.9130859375}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.0239418990758,-154.6403553507124},
+ {-32.39227294921875,-906.3277587890625}}}
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-707.9993222215099,-154.55999389855003},
+ {68.88981098017803,296.9273945411635}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.0509091919608,-154.64675214697067},
+ {-777.4871194247767,-995.1470120113145}}}
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.0060491116379,-154.60889321524968},
+ {229.97088707895057,-430.0569357467175}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.013911296257,-154.6219143988058},
+ {138.13162892614037,-573.3689311737394}}}
+ }, {
+ {{{-543.2570545751013,-237.29243831075053},
+ {-452.4119186056987,-143.47223056267802},
+ {229.97088707895057,-430.0569357467175}}},
+ {{{-543.2570545751013,-237.29243831075053},
+ {-660.5330371214436,-362.0016148388},
+ {138.13162892614037,-573.3689311737394}}},
+ },
+};
+
+static double endCtrlRatio(const SkDQuad quad) {
+ SkDVector longEdge = quad[2] - quad[0];
+ double longLen = longEdge.length();
+ SkDVector shortEdge = quad[1] - quad[0];
+ double shortLen = shortEdge.length();
+ return longLen / shortLen;
+}
+
+static void computeMV(const SkDQuad& quad, const SkDVector& v, double m, SkDVector mV[2]) {
+ SkDPoint mPta = {quad[1].fX - m * v.fY, quad[1].fY + m * v.fX};
+ SkDPoint mPtb = {quad[1].fX + m * v.fY, quad[1].fY - m * v.fX};
+ mV[0] = mPta - quad[0];
+ mV[1] = mPtb - quad[0];
+}
+
+static double mDistance(skiatest::Reporter* reporter, bool agrees, const SkDQuad& q1,
+ const SkDQuad& q2) {
+ if (1 && agrees) {
+ return SK_ScalarMax;
+ }
+ // how close is the angle from inflecting in the opposite direction?
+ SkDVector v1 = q1[1] - q1[0];
+ SkDVector v2 = q2[1] - q2[0];
+ double dir = v1.crossCheck(v2);
+ REPORTER_ASSERT(reporter, dir != 0);
+ // solve for opposite direction displacement scale factor == m
+ // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
+ // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
+ // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
+ // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
+ // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
+ // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
+ // m = v1.cross(v2) / v1.dot(v2)
+ double div = v1.dot(v2);
+ REPORTER_ASSERT(reporter, div != 0);
+ double m = dir / div;
+ SkDVector mV1[2], mV2[2];
+ computeMV(q1, v1, m, mV1);
+ computeMV(q2, v2, m, mV2);
+ double dist1 = v1.length() * m;
+ double dist2 = v2.length() * m;
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("%c r1=%1.9g r2=%1.9g m=%1.9g dist1=%1.9g dist2=%1.9g "
+ " dir%c 1a=%1.9g 1b=%1.9g 2a=%1.9g 2b=%1.9g\n", agrees ? 'T' : 'F',
+ endCtrlRatio(q1), endCtrlRatio(q2), m, dist1, dist2, dir > 0 ? '+' : '-',
+ mV1[0].crossCheck(v2), mV1[1].crossCheck(v2),
+ mV2[0].crossCheck(v1), mV2[1].crossCheck(v1));
+ }
+ if (1) {
+ bool use1 = fabs(dist1) < fabs(dist2);
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("%c dist=%1.9g r=%1.9g\n", agrees ? 'T' : 'F', use1 ? dist1 : dist2,
+ use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2));
+ }
+ return fabs(use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2));
+ }
+ return SK_ScalarMax;
+}
+
+static void midPointAgrees(skiatest::Reporter* reporter, const SkDQuad& q1, const SkDQuad& q2,
+ bool ccw) {
+ SkDPoint mid1 = q1.ptAtT(0.5);
+ SkDVector m1 = mid1 - q1[0];
+ SkDPoint mid2 = q2.ptAtT(0.5);
+ SkDVector m2 = mid2 - q2[0];
+ REPORTER_ASSERT(reporter, ccw ? m1.crossCheck(m2) < 0 : m1.crossCheck(m2) > 0);
+}
+
+DEF_TEST(PathOpsAngleExtreme, reporter) {
+ if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default
+ return;
+ }
+ double maxR = SK_ScalarMax;
+ for (int index = 0; index < (int) SK_ARRAY_COUNT(extremeTests); ++index) {
+ const SkDQuad& quad1 = extremeTests[index][0];
+ const SkDQuad& quad2 = extremeTests[index][1];
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("%s %d\n", __FUNCTION__, index);
+ }
+ REPORTER_ASSERT(reporter, quad1[0] == quad2[0]);
+ SkIntersections i;
+ i.intersect(quad1, quad2);
+ REPORTER_ASSERT(reporter, i.used() == 1);
+ REPORTER_ASSERT(reporter, i.pt(0) == quad1[0]);
+ int overlap = quadHullsOverlap(reporter, quad1, quad2);
+ REPORTER_ASSERT(reporter, overlap >= 0);
+ SkDVector sweep[2], tweep[2];
+ setQuadHullSweep(quad1, sweep);
+ setQuadHullSweep(quad2, tweep);
+ double s0xt0 = sweep[0].crossCheck(tweep[0]);
+ REPORTER_ASSERT(reporter, s0xt0 != 0);
+ bool ccw = s0xt0 < 0;
+ bool agrees = bruteForceCheck(reporter, quad1, quad2, ccw);
+ maxR = SkTMin(maxR, mDistance(reporter, agrees, quad1, quad2));
+ if (agrees) {
+ continue;
+ }
+ midPointAgrees(reporter, quad1, quad2, !ccw);
+ SkDQuad q1 = quad1;
+ SkDQuad q2 = quad2;
+ double loFail = 1;
+ double hiPass = 2;
+ // double vectors until t passes
+ do {
+ q1[1].fX = quad1[0].fX * (1 - hiPass) + quad1[1].fX * hiPass;
+ q1[1].fY = quad1[0].fY * (1 - hiPass) + quad1[1].fY * hiPass;
+ q2[1].fX = quad2[0].fX * (1 - hiPass) + quad2[1].fX * hiPass;
+ q2[1].fY = quad2[0].fY * (1 - hiPass) + quad2[1].fY * hiPass;
+ agrees = bruteForceCheck(reporter, q1, q2, ccw);
+ maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2));
+ if (agrees) {
+ break;
+ }
+ midPointAgrees(reporter, quad1, quad2, !ccw);
+ loFail = hiPass;
+ hiPass *= 2;
+ } while (true);
+ // binary search to find minimum pass
+ double midTest = (loFail + hiPass) / 2;
+ double step = (hiPass - loFail) / 4;
+ while (step > FLT_EPSILON) {
+ q1[1].fX = quad1[0].fX * (1 - midTest) + quad1[1].fX * midTest;
+ q1[1].fY = quad1[0].fY * (1 - midTest) + quad1[1].fY * midTest;
+ q2[1].fX = quad2[0].fX * (1 - midTest) + quad2[1].fX * midTest;
+ q2[1].fY = quad2[0].fY * (1 - midTest) + quad2[1].fY * midTest;
+ agrees = bruteForceCheck(reporter, q1, q2, ccw);
+ maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2));
+ if (!agrees) {
+ midPointAgrees(reporter, quad1, quad2, !ccw);
+ }
+ midTest += agrees ? -step : step;
+ step /= 2;
+ }
+#ifdef SK_DEBUG
+// DumpQ(q1, q2, 999);
+#endif
+ }
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("maxR=%1.9g\n", maxR);
+ }
+}