aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/utils/SkOffsetPolygon.cpp
diff options
context:
space:
mode:
authorGravatar Jim Van Verth <jvanverth@google.com>2018-06-28 16:26:50 -0400
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-06-29 13:29:57 +0000
commit8664a1d7d719153e8e854ff0112519d92916cfe2 (patch)
tree4e0206ed9c734ba40593903ca66930e2df8e39a0 /src/utils/SkOffsetPolygon.cpp
parenta5e703043ff034afea41ea24e9d8f978f05ba678 (diff)
Add ear-clipping code to triangulate simple polygons.
Use this to fill concave shadows. Bug: skia:7971 Change-Id: I63dc1ed845f9fa3fcd86f1ad13b03da23cae0313 Reviewed-on: https://skia-review.googlesource.com/135200 Commit-Queue: Jim Van Verth <jvanverth@google.com> Reviewed-by: Robert Phillips <robertphillips@google.com>
Diffstat (limited to 'src/utils/SkOffsetPolygon.cpp')
-rwxr-xr-xsrc/utils/SkOffsetPolygon.cpp805
1 files changed, 0 insertions, 805 deletions
diff --git a/src/utils/SkOffsetPolygon.cpp b/src/utils/SkOffsetPolygon.cpp
deleted file mode 100755
index c72f7d407b..0000000000
--- a/src/utils/SkOffsetPolygon.cpp
+++ /dev/null
@@ -1,805 +0,0 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "SkOffsetPolygon.h"
-
-#include "SkPointPriv.h"
-#include "SkTArray.h"
-#include "SkTemplates.h"
-#include "SkTDPQueue.h"
-
-struct OffsetSegment {
- SkPoint fP0;
- SkPoint fP1;
-};
-
-// Computes perpDot for point compared to segment.
-// A positive value means the point is to the left of the segment,
-// negative is to the right, 0 is collinear.
-static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) {
- SkVector v0 = s1 - s0;
- SkVector v1 = p - s0;
- SkScalar perpDot = v0.cross(v1);
- if (!SkScalarNearlyZero(perpDot)) {
- return ((perpDot > 0) ? 1 : -1);
- }
-
- return 0;
-}
-
-// returns 1 for ccw, -1 for cw and 0 if degenerate
-static int get_winding(const SkPoint* polygonVerts, int polygonSize) {
- SkPoint p0 = polygonVerts[0];
- SkPoint p1 = polygonVerts[1];
-
- for (int i = 2; i < polygonSize; ++i) {
- SkPoint p2 = polygonVerts[i];
-
- // determine if cw or ccw
- int side = compute_side(p0, p1, p2);
- if (0 != side) {
- return ((side > 0) ? 1 : -1);
- }
-
- // if nearly collinear, treat as straight line and continue
- p1 = p2;
- }
-
- return 0;
-}
-
-// Helper function to compute the individual vector for non-equal offsets
-inline void compute_offset(SkScalar d, const SkPoint& polyPoint, int side,
- const SkPoint& outerTangentIntersect, SkVector* v) {
- SkScalar dsq = d * d;
- SkVector dP = outerTangentIntersect - polyPoint;
- SkScalar dPlenSq = SkPointPriv::LengthSqd(dP);
- if (SkScalarNearlyZero(dPlenSq)) {
- v->set(0, 0);
- } else {
- SkScalar discrim = SkScalarSqrt(dPlenSq - dsq);
- v->fX = (dsq*dP.fX - side * d*dP.fY*discrim) / dPlenSq;
- v->fY = (dsq*dP.fY + side * d*dP.fX*discrim) / dPlenSq;
- }
-}
-
-// Compute difference vector to offset p0-p1 'd0' and 'd1' units in direction specified by 'side'
-bool compute_offset_vectors(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
- int side, SkPoint* vector0, SkPoint* vector1) {
- SkASSERT(side == -1 || side == 1);
- if (SkScalarNearlyEqual(d0, d1)) {
- // if distances are equal, can just outset by the perpendicular
- SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
- perp.setLength(d0*side);
- *vector0 = perp;
- *vector1 = perp;
- } else {
- SkScalar d0abs = SkTAbs(d0);
- SkScalar d1abs = SkTAbs(d1);
- // Otherwise we need to compute the outer tangent.
- // See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm
- if (d0abs < d1abs) {
- side = -side;
- }
- SkScalar dD = d0abs - d1abs;
- // if one circle is inside another, we can't compute an offset
- if (dD*dD >= SkPointPriv::DistanceToSqd(p0, p1)) {
- return false;
- }
- SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0abs - p0.fX*d1abs) / dD,
- (p1.fY*d0abs - p0.fY*d1abs) / dD);
-
- compute_offset(d0, p0, side, outerTangentIntersect, vector0);
- compute_offset(d1, p1, side, outerTangentIntersect, vector1);
- }
-
- return true;
-}
-
-// Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side'
-bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
- int side, SkPoint* offset0, SkPoint* offset1) {
- SkVector v0, v1;
- if (!compute_offset_vectors(p0, p1, d0, d1, side, &v0, &v1)) {
- return false;
- }
- *offset0 = p0 + v0;
- *offset1 = p1 + v1;
-
- return true;
-}
-
-// Compute the intersection 'p' between segments s0 and s1, if any.
-// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
-// Returns false if there is no intersection.
-static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
- SkPoint* p, SkScalar* s, SkScalar* t) {
- // Common cases for polygon chains -- check if endpoints are touching
- if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) {
- *p = s0.fP1;
- *s = SK_Scalar1;
- *t = 0;
- return true;
- }
- if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) {
- *p = s1.fP1;
- *s = 0;
- *t = SK_Scalar1;
- return true;
- }
-
- SkVector v0 = s0.fP1 - s0.fP0;
- SkVector v1 = s1.fP1 - s1.fP0;
- // We should have culled coincident points before this
- SkASSERT(!SkPointPriv::EqualsWithinTolerance(s0.fP0, s0.fP1));
- SkASSERT(!SkPointPriv::EqualsWithinTolerance(s1.fP0, s1.fP1));
-
- SkVector d = s1.fP0 - s0.fP0;
- SkScalar perpDot = v0.cross(v1);
- SkScalar localS, localT;
- if (SkScalarNearlyZero(perpDot)) {
- // segments are parallel, but not collinear
- if (!SkScalarNearlyZero(d.dot(d), SK_ScalarNearlyZero*SK_ScalarNearlyZero)) {
- return false;
- }
-
- // project segment1's endpoints onto segment0
- localS = d.fX / v0.fX;
- localT = 0;
- if (localS < 0 || localS > SK_Scalar1) {
- // the first endpoint doesn't lie on segment0, try the other one
- SkScalar oldLocalS = localS;
- localS = (s1.fP1.fX - s0.fP0.fX) / v0.fX;
- localT = SK_Scalar1;
- if (localS < 0 || localS > SK_Scalar1) {
- // it's possible that segment1's interval surrounds segment0
- // this is false if the params have the same signs, and in that case no collision
- if (localS*oldLocalS > 0) {
- return false;
- }
- // otherwise project segment0's endpoint onto segment1 instead
- localS = 0;
- localT = -d.fX / v1.fX;
- }
- }
- } else {
- localS = d.cross(v1) / perpDot;
- if (localS < 0 || localS > SK_Scalar1) {
- return false;
- }
- localT = d.cross(v0) / perpDot;
- if (localT < 0 || localT > SK_Scalar1) {
- return false;
- }
- }
-
- v0 *= localS;
- *p = s0.fP0 + v0;
- *s = localS;
- *t = localT;
-
- return true;
-}
-
-// computes the line intersection and then the distance to s0's endpoint
-static SkScalar compute_crossing_distance(const OffsetSegment& s0, const OffsetSegment& s1) {
- SkVector v0 = s0.fP1 - s0.fP0;
- SkVector v1 = s1.fP1 - s1.fP0;
-
- SkScalar perpDot = v0.cross(v1);
- if (SkScalarNearlyZero(perpDot)) {
- // segments are parallel
- return SK_ScalarMax;
- }
-
- SkVector d = s1.fP0 - s0.fP0;
- SkScalar localS = d.cross(v1) / perpDot;
- if (localS < 0) {
- localS = -localS;
- } else {
- localS -= SK_Scalar1;
- }
-
- localS *= v0.length();
-
- return localS;
-}
-
-static bool is_convex(const SkTDArray<SkPoint>& poly) {
- if (poly.count() <= 3) {
- return true;
- }
-
- SkVector v0 = poly[0] - poly[poly.count() - 1];
- SkVector v1 = poly[1] - poly[poly.count() - 1];
- SkScalar winding = v0.cross(v1);
-
- for (int i = 0; i < poly.count() - 1; ++i) {
- int j = i + 1;
- int k = (i + 2) % poly.count();
-
- SkVector v0 = poly[j] - poly[i];
- SkVector v1 = poly[k] - poly[i];
- SkScalar perpDot = v0.cross(v1);
- if (winding*perpDot < 0) {
- return false;
- }
- }
-
- return true;
-}
-
-struct EdgeData {
- OffsetSegment fInset;
- SkPoint fIntersection;
- SkScalar fTValue;
- uint16_t fStart;
- uint16_t fEnd;
- uint16_t fIndex;
- bool fValid;
-
- void init() {
- fIntersection = fInset.fP0;
- fTValue = SK_ScalarMin;
- fStart = 0;
- fEnd = 0;
- fIndex = 0;
- fValid = true;
- }
-
- void init(uint16_t start, uint16_t end) {
- fIntersection = fInset.fP0;
- fTValue = SK_ScalarMin;
- fStart = start;
- fEnd = end;
- fIndex = start;
- fValid = true;
- }
-};
-
-// The objective here is to inset all of the edges by the given distance, and then
-// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
-// we should only be making left-hand turns (for cw polygons, we use the winding
-// parameter to reverse this). We detect this by checking whether the second intersection
-// on an edge is closer to its tail than the first one.
-//
-// We might also have the case that there is no intersection between two neighboring inset edges.
-// In this case, one edge will lie to the right of the other and should be discarded along with
-// its previous intersection (if any).
-//
-// Note: the assumption is that inputPolygon is convex and has no coincident points.
-//
-bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
- std::function<SkScalar(const SkPoint&)> insetDistanceFunc,
- SkTDArray<SkPoint>* insetPolygon) {
- if (inputPolygonSize < 3) {
- return false;
- }
-
- int winding = get_winding(inputPolygonVerts, inputPolygonSize);
- if (0 == winding) {
- return false;
- }
-
- // set up
- SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
- for (int i = 0; i < inputPolygonSize; ++i) {
- int j = (i + 1) % inputPolygonSize;
- int k = (i + 2) % inputPolygonSize;
- // check for convexity just to be sure
- if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j],
- inputPolygonVerts[k])*winding < 0) {
- return false;
- }
- if (!SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
- insetDistanceFunc(inputPolygonVerts[i]),
- insetDistanceFunc(inputPolygonVerts[j]),
- winding,
- &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1)) {
- return false;
- }
- edgeData[i].init();
- }
-
- int prevIndex = inputPolygonSize - 1;
- int currIndex = 0;
- int insetVertexCount = inputPolygonSize;
- int iterations = 0;
- while (prevIndex != currIndex) {
- ++iterations;
- // we should check each edge against each other edge at most once
- if (iterations > inputPolygonSize*inputPolygonSize) {
- return false;
- }
-
- if (!edgeData[prevIndex].fValid) {
- prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
- continue;
- }
-
- SkScalar s, t;
- SkPoint intersection;
- if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
- &intersection, &s, &t)) {
- // if new intersection is further back on previous inset from the prior intersection
- if (s < edgeData[prevIndex].fTValue) {
- // no point in considering this one again
- edgeData[prevIndex].fValid = false;
- --insetVertexCount;
- // go back one segment
- prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
- // we've already considered this intersection, we're done
- } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
- SkPointPriv::EqualsWithinTolerance(intersection,
- edgeData[currIndex].fIntersection,
- 1.0e-6f)) {
- break;
- } else {
- // add intersection
- edgeData[currIndex].fIntersection = intersection;
- edgeData[currIndex].fTValue = t;
-
- // go to next segment
- prevIndex = currIndex;
- currIndex = (currIndex + 1) % inputPolygonSize;
- }
- } else {
- // if prev to right side of curr
- int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
- edgeData[currIndex].fInset.fP1,
- edgeData[prevIndex].fInset.fP1);
- if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
- edgeData[currIndex].fInset.fP1,
- edgeData[prevIndex].fInset.fP0)) {
- // no point in considering this one again
- edgeData[prevIndex].fValid = false;
- --insetVertexCount;
- // go back one segment
- prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
- } else {
- // move to next segment
- edgeData[currIndex].fValid = false;
- --insetVertexCount;
- currIndex = (currIndex + 1) % inputPolygonSize;
- }
- }
- }
-
- // store all the valid intersections that aren't nearly coincident
- // TODO: look at the main algorithm and see if we can detect these better
- static constexpr SkScalar kCleanupTolerance = 0.01f;
-
- insetPolygon->reset();
- if (insetVertexCount >= 0) {
- insetPolygon->setReserve(insetVertexCount);
- }
- currIndex = -1;
- for (int i = 0; i < inputPolygonSize; ++i) {
- if (edgeData[i].fValid && (currIndex == -1 ||
- !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
- (*insetPolygon)[currIndex],
- kCleanupTolerance))) {
- *insetPolygon->push() = edgeData[i].fIntersection;
- currIndex++;
- }
- }
- // make sure the first and last points aren't coincident
- if (currIndex >= 1 &&
- SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
- kCleanupTolerance)) {
- insetPolygon->pop();
- }
-
- return (insetPolygon->count() >= 3 && is_convex(*insetPolygon));
-}
-
-// compute the number of points needed for a circular join when offsetting a reflex vertex
-static void compute_radial_steps(const SkVector& v1, const SkVector& v2, SkScalar r,
- SkScalar* rotSin, SkScalar* rotCos, int* n) {
- const SkScalar kRecipPixelsPerArcSegment = 0.25f;
-
- SkScalar rCos = v1.dot(v2);
- SkScalar rSin = v1.cross(v2);
- SkScalar theta = SkScalarATan2(rSin, rCos);
-
- int steps = SkScalarRoundToInt(SkScalarAbs(r*theta*kRecipPixelsPerArcSegment));
-
- SkScalar dTheta = theta / steps;
- *rotSin = SkScalarSinCos(dTheta, rotCos);
- *n = steps;
-}
-
-// tolerant less-than comparison
-static inline bool nearly_lt(SkScalar a, SkScalar b, SkScalar tolerance = SK_ScalarNearlyZero) {
- return a < b - tolerance;
-}
-
-// a point is "left" to another if its x coordinate is less, or if equal, its y coordinate
-static bool left(const SkPoint& p0, const SkPoint& p1) {
- return nearly_lt(p0.fX, p1.fX) ||
- (SkScalarNearlyEqual(p0.fX, p1.fX) && nearly_lt(p0.fY, p1.fY));
-}
-
-struct Vertex {
- static bool Left(const Vertex& qv0, const Vertex& qv1) {
- return left(qv0.fPosition, qv1.fPosition);
- }
- // packed to fit into 16 bytes (one cache line)
- SkPoint fPosition;
- uint16_t fIndex; // index in unsorted polygon
- uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
- uint16_t fNextIndex;
- uint16_t fFlags;
-};
-
-enum VertexFlags {
- kPrevLeft_VertexFlag = 0x1,
- kNextLeft_VertexFlag = 0x2,
-};
-
-struct Edge {
- // returns true if "this" is above "that"
- bool above(const Edge& that, SkScalar tolerance = SK_ScalarNearlyZero) {
- SkASSERT(nearly_lt(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance) ||
- SkScalarNearlyEqual(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance));
- // The idea here is that if the vector between the origins of the two segments (dv)
- // rotates counterclockwise up to the vector representing the "this" segment (u),
- // then we know that "this" is above that. If the result is clockwise we say it's below.
- SkVector dv = that.fSegment.fP0 - this->fSegment.fP0;
- SkVector u = this->fSegment.fP1 - this->fSegment.fP0;
- SkScalar cross = dv.cross(u);
- if (cross > tolerance) {
- return true;
- } else if (cross < -tolerance) {
- return false;
- }
- // If the result is 0 then either the two origins are equal or the origin of "that"
- // lies on dv. So then we try the same for the vector from the tail of "this"
- // to the head of "that". Again, ccw means "this" is above "that".
- dv = that.fSegment.fP1 - this->fSegment.fP0;
- return (dv.cross(u) > tolerance);
- }
-
- bool intersect(const Edge& that) const {
- SkPoint intersection;
- SkScalar s, t;
- // check first to see if these edges are neighbors in the polygon
- if (this->fIndex0 == that.fIndex0 || this->fIndex1 == that.fIndex0 ||
- this->fIndex0 == that.fIndex1 || this->fIndex1 == that.fIndex1) {
- return false;
- }
- return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t);
- }
-
- bool operator==(const Edge& that) const {
- return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1);
- }
-
- bool operator!=(const Edge& that) const {
- return !operator==(that);
- }
-
- OffsetSegment fSegment;
- int32_t fIndex0; // indices for previous and next vertex
- int32_t fIndex1;
-};
-
-class EdgeList {
-public:
- void reserve(int count) { fEdges.reserve(count); }
-
- bool insert(const Edge& newEdge) {
- // linear search for now (expected case is very few active edges)
- int insertIndex = 0;
- while (insertIndex < fEdges.count() && fEdges[insertIndex].above(newEdge)) {
- ++insertIndex;
- }
- // if we intersect with the existing edge above or below us
- // then we know this polygon is not simple, so don't insert, just fail
- if (insertIndex > 0 && newEdge.intersect(fEdges[insertIndex - 1])) {
- return false;
- }
- if (insertIndex < fEdges.count() && newEdge.intersect(fEdges[insertIndex])) {
- return false;
- }
-
- fEdges.push_back();
- for (int i = fEdges.count() - 1; i > insertIndex; --i) {
- fEdges[i] = fEdges[i - 1];
- }
- fEdges[insertIndex] = newEdge;
-
- return true;
- }
-
- bool remove(const Edge& edge) {
- SkASSERT(fEdges.count() > 0);
-
- // linear search for now (expected case is very few active edges)
- int removeIndex = 0;
- while (removeIndex < fEdges.count() && fEdges[removeIndex] != edge) {
- ++removeIndex;
- }
- // we'd better find it or something is wrong
- SkASSERT(removeIndex < fEdges.count());
-
- // if we intersect with the edge above or below us
- // then we know this polygon is not simple, so don't remove, just fail
- if (removeIndex > 0 && fEdges[removeIndex].intersect(fEdges[removeIndex-1])) {
- return false;
- }
- if (removeIndex < fEdges.count()-1) {
- if (fEdges[removeIndex].intersect(fEdges[removeIndex + 1])) {
- return false;
- }
- // copy over the old entry
- memmove(&fEdges[removeIndex], &fEdges[removeIndex + 1],
- sizeof(Edge)*(fEdges.count() - removeIndex - 1));
- }
-
- fEdges.pop_back();
- return true;
- }
-
-private:
- SkSTArray<1, Edge> fEdges;
-};
-
-// Here we implement a sweep line algorithm to determine whether the provided points
-// represent a simple polygon, i.e., the polygon is non-self-intersecting.
-// We first insert the vertices into a priority queue sorting horizontally from left to right.
-// Then as we pop the vertices from the queue we generate events which indicate that an edge
-// should be added or removed from an edge list. If any intersections are detected in the edge
-// list, then we know the polygon is self-intersecting and hence not simple.
-static bool is_simple_polygon(const SkPoint* polygon, int polygonSize) {
- SkTDPQueue <Vertex, Vertex::Left> vertexQueue;
- EdgeList sweepLine;
-
- sweepLine.reserve(polygonSize);
- for (int i = 0; i < polygonSize; ++i) {
- Vertex newVertex;
- newVertex.fPosition = polygon[i];
- newVertex.fIndex = i;
- newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
- newVertex.fNextIndex = (i + 1) % polygonSize;
- newVertex.fFlags = 0;
- if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
- newVertex.fFlags |= kPrevLeft_VertexFlag;
- }
- if (left(polygon[newVertex.fNextIndex], polygon[i])) {
- newVertex.fFlags |= kNextLeft_VertexFlag;
- }
- vertexQueue.insert(newVertex);
- }
-
- // pop each vertex from the queue and generate events depending on
- // where it lies relative to its neighboring edges
- while (vertexQueue.count() > 0) {
- const Vertex& v = vertexQueue.peek();
-
- // check edge to previous vertex
- if (v.fFlags & kPrevLeft_VertexFlag) {
- Edge edge{ { polygon[v.fPrevIndex], v.fPosition }, v.fPrevIndex, v.fIndex };
- if (!sweepLine.remove(edge)) {
- break;
- }
- } else {
- Edge edge{ { v.fPosition, polygon[v.fPrevIndex] }, v.fIndex, v.fPrevIndex };
- if (!sweepLine.insert(edge)) {
- break;
- }
- }
-
- // check edge to next vertex
- if (v.fFlags & kNextLeft_VertexFlag) {
- Edge edge{ { polygon[v.fNextIndex], v.fPosition }, v.fNextIndex, v.fIndex };
- if (!sweepLine.remove(edge)) {
- break;
- }
- } else {
- Edge edge{ { v.fPosition, polygon[v.fNextIndex] }, v.fIndex, v.fNextIndex };
- if (!sweepLine.insert(edge)) {
- break;
- }
- }
-
- vertexQueue.pop();
- }
-
- return (vertexQueue.count() == 0);
-}
-
-// TODO: assuming a constant offset here -- do we want to support variable offset?
-bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
- std::function<SkScalar(const SkPoint&)> offsetDistanceFunc,
- SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
- if (inputPolygonSize < 3) {
- return false;
- }
-
- if (!is_simple_polygon(inputPolygonVerts, inputPolygonSize)) {
- return false;
- }
-
- // compute area and use sign to determine winding
- SkScalar quadArea = 0;
- for (int curr = 0; curr < inputPolygonSize; ++curr) {
- int next = (curr + 1) % inputPolygonSize;
- quadArea += inputPolygonVerts[curr].cross(inputPolygonVerts[next]);
- }
- if (SkScalarNearlyZero(quadArea)) {
- return false;
- }
- // 1 == ccw, -1 == cw
- int winding = (quadArea > 0) ? 1 : -1;
-
- // build normals
- SkAutoSTMalloc<64, SkVector> normal0(inputPolygonSize);
- SkAutoSTMalloc<64, SkVector> normal1(inputPolygonSize);
- SkScalar currOffset = offsetDistanceFunc(inputPolygonVerts[0]);
- for (int curr = 0; curr < inputPolygonSize; ++curr) {
- int next = (curr + 1) % inputPolygonSize;
- SkScalar nextOffset = offsetDistanceFunc(inputPolygonVerts[next]);
- if (!compute_offset_vectors(inputPolygonVerts[curr], inputPolygonVerts[next],
- currOffset, nextOffset, winding,
- &normal0[curr], &normal1[next])) {
- return false;
- }
- currOffset = nextOffset;
- }
-
- // build initial offset edge list
- SkSTArray<64, EdgeData> edgeData(inputPolygonSize);
- int prevIndex = inputPolygonSize - 1;
- int currIndex = 0;
- int nextIndex = 1;
- while (currIndex < inputPolygonSize) {
- int side = compute_side(inputPolygonVerts[prevIndex],
- inputPolygonVerts[currIndex],
- inputPolygonVerts[nextIndex]);
- SkScalar offset = offsetDistanceFunc(inputPolygonVerts[currIndex]);
- // if reflex point, fill in curve
- if (side*winding*offset < 0) {
- SkScalar rotSin, rotCos;
- int numSteps;
- SkVector prevNormal = normal1[currIndex];
- compute_radial_steps(prevNormal, normal0[currIndex], SkScalarAbs(offset),
- &rotSin, &rotCos, &numSteps);
- for (int i = 0; i < numSteps - 1; ++i) {
- SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
- prevNormal.fY*rotCos + prevNormal.fX*rotSin);
- EdgeData& edge = edgeData.push_back();
- edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
- edge.fInset.fP1 = inputPolygonVerts[currIndex] + currNormal;
- edge.init(currIndex, currIndex);
- prevNormal = currNormal;
- }
- EdgeData& edge = edgeData.push_back();
- edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal;
- edge.fInset.fP1 = inputPolygonVerts[currIndex] + normal0[currIndex];
- edge.init(currIndex, currIndex);
- }
-
- // Add the edge
- EdgeData& edge = edgeData.push_back();
- edge.fInset.fP0 = inputPolygonVerts[currIndex] + normal0[currIndex];
- edge.fInset.fP1 = inputPolygonVerts[nextIndex] + normal1[nextIndex];
- edge.init(currIndex, nextIndex);
-
- prevIndex = currIndex;
- currIndex++;
- nextIndex = (nextIndex + 1) % inputPolygonSize;
- }
-
- int edgeDataSize = edgeData.count();
- prevIndex = edgeDataSize - 1;
- currIndex = 0;
- int insetVertexCount = edgeDataSize;
- int iterations = 0;
- while (prevIndex != currIndex) {
- ++iterations;
- // we should check each edge against each other edge at most once
- if (iterations > edgeDataSize*edgeDataSize) {
- return false;
- }
-
- if (!edgeData[prevIndex].fValid) {
- prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
- continue;
- }
- if (!edgeData[currIndex].fValid) {
- currIndex = (currIndex + 1) % edgeDataSize;
- continue;
- }
-
- SkScalar s, t;
- SkPoint intersection;
- if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
- &intersection, &s, &t)) {
- // if new intersection is further back on previous inset from the prior intersection
- if (s < edgeData[prevIndex].fTValue) {
- // no point in considering this one again
- edgeData[prevIndex].fValid = false;
- --insetVertexCount;
- // go back one segment
- prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
- // we've already considered this intersection, we're done
- } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
- SkPointPriv::EqualsWithinTolerance(intersection,
- edgeData[currIndex].fIntersection,
- 1.0e-6f)) {
- break;
- } else {
- // add intersection
- edgeData[currIndex].fIntersection = intersection;
- edgeData[currIndex].fTValue = t;
- edgeData[currIndex].fIndex = edgeData[prevIndex].fEnd;
-
- // go to next segment
- prevIndex = currIndex;
- currIndex = (currIndex + 1) % edgeDataSize;
- }
- } else {
- // If there is no intersection, we want to minimize the distance between
- // the point where the segment lines cross and the segments themselves.
- SkScalar prevPrevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize;
- SkScalar currNextIndex = (currIndex + 1) % edgeDataSize;
- SkScalar dist0 = compute_crossing_distance(edgeData[currIndex].fInset,
- edgeData[prevPrevIndex].fInset);
- SkScalar dist1 = compute_crossing_distance(edgeData[prevIndex].fInset,
- edgeData[currNextIndex].fInset);
- if (dist0 < dist1) {
- edgeData[prevIndex].fValid = false;
- prevIndex = prevPrevIndex;
- } else {
- edgeData[currIndex].fValid = false;
- currIndex = currNextIndex;
- }
- --insetVertexCount;
- }
- }
-
- // store all the valid intersections that aren't nearly coincident
- // TODO: look at the main algorithm and see if we can detect these better
- static constexpr SkScalar kCleanupTolerance = 0.01f;
-
- offsetPolygon->reset();
- offsetPolygon->setReserve(insetVertexCount);
- currIndex = -1;
- for (int i = 0; i < edgeData.count(); ++i) {
- if (edgeData[i].fValid && (currIndex == -1 ||
- !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
- (*offsetPolygon)[currIndex],
- kCleanupTolerance))) {
- *offsetPolygon->push() = edgeData[i].fIntersection;
- if (polygonIndices) {
- *polygonIndices->push() = edgeData[i].fIndex;
- }
- currIndex++;
- }
- }
- // make sure the first and last points aren't coincident
- if (currIndex >= 1 &&
- SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
- kCleanupTolerance)) {
- offsetPolygon->pop();
- if (polygonIndices) {
- polygonIndices->pop();
- }
- }
-
- // compute signed area to check winding (it should be same as the original polygon)
- quadArea = 0;
- for (int curr = 0; curr < offsetPolygon->count(); ++curr) {
- int next = (curr + 1) % offsetPolygon->count();
- quadArea += (*offsetPolygon)[curr].cross((*offsetPolygon)[next]);
- }
-
- return (winding*quadArea > 0 &&
- is_simple_polygon(offsetPolygon->begin(), offsetPolygon->count()));
-}
-