diff options
author | tomhudson@google.com <tomhudson@google.com@2bbb7eff-a529-9590-31e7-b0007b416f81> | 2012-02-14 18:28:54 +0000 |
---|---|---|
committer | tomhudson@google.com <tomhudson@google.com@2bbb7eff-a529-9590-31e7-b0007b416f81> | 2012-02-14 18:28:54 +0000 |
commit | 95ad155263358df98b17376d6399651bbf6c36ab (patch) | |
tree | 5cf1153ee87893531839f2628ef3999ee1f0927c /src/opts | |
parent | b35f18f49f583a4bc2ad0605f809640b4de03351 (diff) |
Add SSSE3 acceleration for S32_{opaque,alpha}_D32_filter_DX; should yield
25% speedup on 64b architectures, something smaller but still valuable on
32b.
Adds new files, breaking client gyps.
http://codereview.appspot.com/5515044/
git-svn-id: http://skia.googlecode.com/svn/trunk@3193 2bbb7eff-a529-9590-31e7-b0007b416f81
Diffstat (limited to 'src/opts')
-rw-r--r-- | src/opts/SkBitmapProcState_opts_SSSE3.cpp | 497 | ||||
-rw-r--r-- | src/opts/SkBitmapProcState_opts_SSSE3.h | 15 | ||||
-rw-r--r-- | src/opts/opts_check_SSE2.cpp | 44 |
3 files changed, 549 insertions, 7 deletions
diff --git a/src/opts/SkBitmapProcState_opts_SSSE3.cpp b/src/opts/SkBitmapProcState_opts_SSSE3.cpp new file mode 100644 index 0000000000..63e59439ac --- /dev/null +++ b/src/opts/SkBitmapProcState_opts_SSSE3.cpp @@ -0,0 +1,497 @@ +/* + * Copyright 2012 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include <tmmintrin.h> // SSSE3 +#include "SkBitmapProcState_opts_SSSE3.h" +#include "SkUtils.h" + +// adding anonymous namespace seemed to force gcc to inline directly the +// instantiation, instead of creating the functions +// S32_generic_D32_filter_DX_SSSE3<true> and +// S32_generic_D32_filter_DX_SSSE3<false> which were then called by the +// external functions. +namespace { +// In this file, variations for alpha and non alpha versions are implemented +// with a template, as it makes the code more compact and a bit easier to +// maintain, while making the compiler generate the same exact code as with +// two functions that only differ by a few lines. + + +// Prepare all necessary constants for a round of processing for two pixel +// pairs. +// @param xy is the location where the xy parameters for four pixels should be +// read from. It is identical in concept with argument two of +// S32_{opaque}_D32_filter_DX methods. +// @param mask_3FFF vector of 32 bit constants containing 3FFF, +// suitable to mask the bottom 14 bits of a XY value. +// @param mask_000F vector of 32 bit constants containing 000F, +// suitable to mask the bottom 4 bits of a XY value. +// @param sixteen_8bit vector of 8 bit components containing the value 16. +// @param mask_dist_select vector of 8 bit components containing the shuffling +// parameters to reorder x[0-3] parameters. +// @param all_x_result vector of 8 bit components that will contain the +// (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return. +// @param sixteen_minus_x vector of 8 bit components, containing +// (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0)) +inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy, + __m128i mask_3FFF, + __m128i mask_000F, + __m128i sixteen_8bit, + __m128i mask_dist_select, + __m128i* all_x_result, + __m128i* sixteen_minus_x, + int* x0, + int* x1) { + const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy)); + + // 4 delta X + // (x03, x02, x01, x00) + const __m128i x0_wide = _mm_srli_epi32(xx, 18); + // (x13, x12, x11, x10) + const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF); + + _mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide); + _mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide); + + __m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F); + + // (4x(x3), 4x(x2), 4x(x1), 4x(x0)) + all_x = _mm_shuffle_epi8(all_x, mask_dist_select); + + *all_x_result = all_x; + // (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0)) + *sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x); +} + +// Helper function used when processing one pixel pair. +// @param pixel0..3 are the four input pixels +// @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This +// will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) +// or (4x(x3, 16-x3), 4x(x2, 16-x2)) +// @return a vector of 16 bit components containing: +// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) +inline __m128i ProcessPixelPairHelper(uint32_t pixel0, + uint32_t pixel1, + uint32_t pixel2, + uint32_t pixel3, + __m128i scale_x) { + __m128i a0, a1, a2, a3; + // Load 2 pairs of pixels + a0 = _mm_cvtsi32_si128(pixel0); + a1 = _mm_cvtsi32_si128(pixel1); + + // Interleave pixels. + // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) + a0 = _mm_unpacklo_epi8(a0, a1); + + a2 = _mm_cvtsi32_si128(pixel2); + a3 = _mm_cvtsi32_si128(pixel3); + // (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2) + a2 = _mm_unpacklo_epi8(a2, a3); + + // two pairs of pixel pairs, interleaved. + // (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2, + // Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) + a0 = _mm_unpacklo_epi64(a0, a2); + + // multiply and sum to 16 bit components. + // (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) + // At that point, we use up a bit less than 12 bits for each 16 bit + // component: + // All components are less than 255. So, + // C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16. + return _mm_maddubs_epi16(a0, scale_x); +} + +// Scale back the results after multiplications to the [0:255] range, and scale +// by alpha when has_alpha is true. +// Depending on whether one set or two sets of multiplications had been applied, +// the results have to be shifted by four places (dividing by 16), or shifted +// by eight places (dividing by 256), since each multiplication is by a quantity +// in the range [0:16]. +template<bool has_alpha, int scale> +inline __m128i ScaleFourPixels(__m128i pixels, + __m128i alpha) { + // Divide each 16 bit component by 16 (or 256 depending on scale). + pixels = _mm_srli_epi16(pixels, scale); + + if (has_alpha) { + // Multiply by alpha. + pixels = _mm_mullo_epi16(pixels, alpha); + + // Divide each 16 bit component by 256. + pixels = _mm_srli_epi16(pixels, 8); + } + return pixels; +} + +// Wrapper to calculate two output pixels from four input pixels. The +// arguments are the same as ProcessPixelPairHelper. Technically, there are +// eight input pixels, but since sub_y == 0, the factors applied to half of the +// pixels is zero (sub_y), and are therefore omitted here to save on some +// processing. +// @param alpha when has_alpha is true, scale all resulting components by this +// value. +// @return a vector of 16 bit components containing: +// ((Aa2 * (16 - x1) + Aa3 * x1) * alpha, ..., +// (Ra0 * (16 - x0) + Ra1 * x0) * alpha) (when has_alpha is true) +// otherwise +// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0) +// In both cases, the results are renormalized (divided by 16) to match the +// expected formats when storing back the results into memory. +template<bool has_alpha> +inline __m128i ProcessPixelPairZeroSubY(uint32_t pixel0, + uint32_t pixel1, + uint32_t pixel2, + uint32_t pixel3, + __m128i scale_x, + __m128i alpha) { + __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, + scale_x); + return ScaleFourPixels<has_alpha, 4>(sum, alpha); +} + +// Same as ProcessPixelPairZeroSubY, expect processing one output pixel at a +// time instead of two. As in the above function, only two pixels are needed +// to generate a single pixel since sub_y == 0. +// @return same as ProcessPixelPairZeroSubY, except that only the bottom 4 +// 16 bit components are set. +template<bool has_alpha> +inline __m128i ProcessOnePixelZeroSubY(uint32_t pixel0, + uint32_t pixel1, + __m128i scale_x, + __m128i alpha) { + __m128i a0 = _mm_cvtsi32_si128(pixel0); + __m128i a1 = _mm_cvtsi32_si128(pixel1); + + // Interleave + a0 = _mm_unpacklo_epi8(a0, a1); + + // (a0 * (16-x) + a1 * x) + __m128i sum = _mm_maddubs_epi16(a0, scale_x); + + return ScaleFourPixels<has_alpha, 4>(sum, alpha); +} + +// Methods when sub_y != 0 + + +// Same as ProcessPixelPairHelper, except that the values are scaled by y. +// @param y vector of 16 bit components containing 'y' values. There are two +// cases in practice, where y will contain the sub_y constant, or will +// contain the 16 - sub_y constant. +// @return vector of 16 bit components containing: +// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) +inline __m128i ProcessPixelPair(uint32_t pixel0, + uint32_t pixel1, + uint32_t pixel2, + uint32_t pixel3, + __m128i scale_x, + __m128i y) { + __m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, + scale_x); + + // first row times 16-y or y depending on whether 'y' represents one or + // the other. + // Values will be up to 255 * 16 * 16 = 65280. + // (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , + // y * (Ra0 * (16 - x0) + Ra1 * x0)) + sum = _mm_mullo_epi16(sum, y); + + return sum; +} + +// Process two pixel pairs out of eight input pixels. +// In other methods, the distinct pixels are passed one by one, but in this +// case, the rows, and index offsets to the pixels into the row are passed +// to generate the 8 pixels. +// @param row0..1 top and bottom row where to find input pixels. +// @param x0..1 offsets into the row for all eight input pixels. +// @param all_y vector of 16 bit components containing the constant sub_y +// @param neg_y vector of 16 bit components containing the constant 16 - sub_y +// @param alpha vector of 16 bit components containing the alpha value to scale +// the results by, when has_alpha is true. +// @return +// (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + +// y * (Aa2' * (16-x1) + Aa3' * x1)), +// ... +// alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) + +// y * (Ra0' * (16-x0) + Ra1' * x0)) +// With the factor alpha removed when has_alpha is false. +// The values are scaled back to 16 bit components, but with only the bottom +// 8 bits being set. +template<bool has_alpha> +inline __m128i ProcessTwoPixelPairs(const uint32_t* row0, + const uint32_t* row1, + const int* x0, + const int* x1, + __m128i scale_x, + __m128i all_y, + __m128i neg_y, + __m128i alpha) { + __m128i sum0 = ProcessPixelPair( + row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], + scale_x, neg_y); + __m128i sum1 = ProcessPixelPair( + row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]], + scale_x, all_y); + + // 2 samples fully summed. + // ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + + // y * (Aa2' * (16-x1) + Aa3' * x1), + // ... + // (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) + + // y * (Ra0' * (16-x0) + Ra1' * x0)) + // Each component, again can be at most 256 * 255 = 65280, so no overflow. + sum0 = _mm_add_epi16(sum0, sum1); + + return ScaleFourPixels<has_alpha, 8>(sum0, alpha); +} + + +// Same as ProcessPixelPair, except that performing the math one output pixel +// at a time. This means that only the bottom four 16 bit components are set. +inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1, + __m128i scale_x, __m128i y) { + __m128i a0 = _mm_cvtsi32_si128(pixel0); + __m128i a1 = _mm_cvtsi32_si128(pixel1); + + // Interleave + // (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0) + a0 = _mm_unpacklo_epi8(a0, a1); + + // (a0 * (16-x) + a1 * x) + a0 = _mm_maddubs_epi16(a0, scale_x); + + // scale row by y + return _mm_mullo_epi16(a0, y); +} + +// Notes about the various tricks that are used in this implementation: +// - specialization for sub_y == 0. +// Statistically, 1/16th of the samples will have sub_y == 0. When this +// happens, the math goes from: +// (16 - x)*(16 - y)*a00 + x*(16 - y)*a01 + (16 - x)*y*a10 + x*y*a11 +// to: +// (16 - x)*a00 + 16*x*a01 +// much simpler. The simplification makes for an easy boost in performance. +// - calculating 4 output pixels at a time. +// This allows loading the coefficients x0 and x1 and shuffling them to the +// optimum location only once per loop, instead of twice per loop. +// This also allows us to store the four pixels with a single store. +// - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction +// version): +// _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded +// in 32 bit values to 8 bit values repeated four times. +// _mm_maddubs_epi16 : this allows us to perform multiplications and additions +// in one swoop of 8bit values storing the results in 16 bit values. This +// instruction is actually crucial for the speed of the implementation since +// as one can see in the SSE2 implementation, all inputs have to be used as +// 16 bits because the results are 16 bits. This basically allows us to process +// twice as many pixel components per iteration. +// +// As a result, this method behaves faster than the traditional SSE2. The actual +// boost varies greatly on the underlying architecture. +template<bool has_alpha> +void S32_generic_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + SkASSERT(count > 0 && colors != NULL); + SkASSERT(s.fDoFilter); + SkASSERT(s.fBitmap->config() == SkBitmap::kARGB_8888_Config); + if (has_alpha) { + SkASSERT(s.fAlphaScale < 256); + } else { + SkASSERT(s.fAlphaScale == 256); + } + + const uint8_t* src_addr = + static_cast<const uint8_t*>(s.fBitmap->getPixels()); + const unsigned rb = s.fBitmap->rowBytes(); + const uint32_t XY = *xy++; + const unsigned y0 = XY >> 14; + const uint32_t* row0 = + reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb); + const uint32_t* row1 = + reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb); + const unsigned sub_y = y0 & 0xF; + + // vector constants + const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, + 8, 8, 8, 8, + 4, 4, 4, 4, + 0, 0, 0, 0); + const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF); + const __m128i mask_000F = _mm_set1_epi32(0x000F); + const __m128i sixteen_8bit = _mm_set1_epi8(16); + // (0, 0, 0, 0, 0, 0, 0, 0) + const __m128i zero = _mm_setzero_si128(); + + __m128i alpha; + if (has_alpha) + // 8x(alpha) + alpha = _mm_set1_epi16(s.fAlphaScale); + + if (sub_y == 0) { + // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) + while (count > 3) { + count -= 4; + + int x0[4]; + int x1[4]; + __m128i all_x, sixteen_minus_x; + PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, + sixteen_8bit, mask_dist_select, + &all_x, &sixteen_minus_x, x0, x1); + xy += 4; + + // First pair of pixel pairs. + // (4x(x1, 16-x1), 4x(x0, 16-x0)) + __m128i scale_x; + scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); + + __m128i sum0 = ProcessPixelPairZeroSubY<has_alpha>( + row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]], + scale_x, alpha); + + // second pair of pixel pairs + // (4x (x3, 16-x3), 4x (16-x2, x2)) + scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); + + __m128i sum1 = ProcessPixelPairZeroSubY<has_alpha>( + row0[x0[2]], row0[x1[2]], row0[x0[3]], row0[x1[3]], + scale_x, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, sum1); + + // Extract low int and store. + _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); + + colors += 4; + } + + // handle remainder + while (count-- > 0) { + uint32_t xx = *xy++; // x0:14 | 4 | x1:14 + unsigned x0 = xx >> 18; + unsigned x1 = xx & 0x3FFF; + + // 16x(x) + const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); + + // (16x(16-x)) + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); + + scale_x = _mm_unpacklo_epi8(scale_x, all_x); + + __m128i sum = ProcessOnePixelZeroSubY<has_alpha>( + row0[x0], row0[x1], + scale_x, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum = _mm_packus_epi16(sum, zero); + + // Extract low int and store. + *colors++ = _mm_cvtsi128_si32(sum); + } + } else { // more general case, y != 0 + // 8x(16) + const __m128i sixteen_16bit = _mm_set1_epi16(16); + + // 8x (y) + const __m128i all_y = _mm_set1_epi16(sub_y); + + // 8x (16-y) + const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); + + // Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) + while (count > 3) { + count -= 4; + + int x0[4]; + int x1[4]; + __m128i all_x, sixteen_minus_x; + PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, + sixteen_8bit, mask_dist_select, + &all_x, &sixteen_minus_x, x0, x1); + xy += 4; + + // First pair of pixel pairs + // (4x(x1, 16-x1), 4x(x0, 16-x0)) + __m128i scale_x; + scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x); + + __m128i sum0 = ProcessTwoPixelPairs<has_alpha>( + row0, row1, x0, x1, + scale_x, all_y, neg_y, alpha); + + // second pair of pixel pairs + // (4x (x3, 16-x3), 4x (16-x2, x2)) + scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x); + + __m128i sum1 = ProcessTwoPixelPairs<has_alpha>( + row0, row1, x0 + 2, x1 + 2, + scale_x, all_y, neg_y, alpha); + + // Do the final packing of the two results + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, sum1); + + // Extract low int and store. + _mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0); + + colors += 4; + } + + // Left over. + while (count-- > 0) { + const uint32_t xx = *xy++; // x0:14 | 4 | x1:14 + const unsigned x0 = xx >> 18; + const unsigned x1 = xx & 0x3FFF; + + // 16x(x) + const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); + + // 16x (16-x) + __m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x); + + // (8x (x, 16-x)) + scale_x = _mm_unpacklo_epi8(scale_x, all_x); + + // first row. + __m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y); + // second row. + __m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y); + + // Add both rows for full sample + sum0 = _mm_add_epi16(sum0, sum1); + + sum0 = ScaleFourPixels<has_alpha, 8>(sum0, alpha); + + // Pack lower 4 16 bit values of sum into lower 4 bytes. + sum0 = _mm_packus_epi16(sum0, zero); + + // Extract low int and store. + *colors++ = _mm_cvtsi128_si32(sum0); + } + } +} +} // namepace + +void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + S32_generic_D32_filter_DX_SSSE3<false>(s, xy, count, colors); +} + +void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors) { + S32_generic_D32_filter_DX_SSSE3<true>(s, xy, count, colors); +} diff --git a/src/opts/SkBitmapProcState_opts_SSSE3.h b/src/opts/SkBitmapProcState_opts_SSSE3.h new file mode 100644 index 0000000000..d21e7e4582 --- /dev/null +++ b/src/opts/SkBitmapProcState_opts_SSSE3.h @@ -0,0 +1,15 @@ +/* + * Copyright 2012 The Android Open Source Project + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkBitmapProcState.h" + +void S32_opaque_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors); +void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, + const uint32_t* xy, + int count, uint32_t* colors); diff --git a/src/opts/opts_check_SSE2.cpp b/src/opts/opts_check_SSE2.cpp index 157d8cc448..3003d78da9 100644 --- a/src/opts/opts_check_SSE2.cpp +++ b/src/opts/opts_check_SSE2.cpp @@ -6,6 +6,7 @@ */ #include "SkBitmapProcState_opts_SSE2.h" +#include "SkBitmapProcState_opts_SSSE3.h" #include "SkBlitMask.h" #include "SkBlitRow_opts_SSE2.h" #include "SkUtils_opts_SSE2.h" @@ -16,12 +17,7 @@ instruction on Pentium3 on the code below). Only files named *_SSE2.cpp in this directory should be compiled with -msse2. */ -#if defined(__x86_64__) || defined(_WIN64) -/* All x86_64 machines have SSE2, so don't even bother checking. */ -static inline bool hasSSE2() { - return true; -} -#else + #ifdef _MSC_VER static inline void getcpuid(int info_type, int info[4]) { __asm { @@ -35,6 +31,15 @@ static inline void getcpuid(int info_type, int info[4]) { } } #else +#if defined(__x86_64__) +static inline void getcpuid(int info_type, int info[4]) { + asm volatile ( + "cpuid \n\t" + : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) + : "a"(info_type) + ); +} +#else static inline void getcpuid(int info_type, int info[4]) { // We save and restore ebx, so this code can be compatible with -fPIC asm volatile ( @@ -47,6 +52,14 @@ static inline void getcpuid(int info_type, int info[4]) { ); } #endif +#endif + +#if defined(__x86_64__) || defined(_WIN64) +/* All x86_64 machines have SSE2, so don't even bother checking. */ +static inline bool hasSSE2() { + return true; +} +#else static inline bool hasSSE2() { int cpu_info[4] = { 0 }; @@ -55,13 +68,30 @@ static inline bool hasSSE2() { } #endif +static inline bool hasSSSE3() { + int cpu_info[4] = { 0 }; + getcpuid(1, cpu_info); + return (cpu_info[2] & 0x200) != 0; +} + static bool cachedHasSSE2() { static bool gHasSSE2 = hasSSE2(); return gHasSSE2; } +static bool cachedHasSSSE3() { + static bool gHasSSSE3 = hasSSSE3(); + return gHasSSSE3; +} + void SkBitmapProcState::platformProcs() { - if (cachedHasSSE2()) { + if (cachedHasSSSE3()) { + if (fSampleProc32 == S32_opaque_D32_filter_DX) { + fSampleProc32 = S32_opaque_D32_filter_DX_SSSE3; + } else if (fSampleProc32 == S32_alpha_D32_filter_DX) { + fSampleProc32 = S32_alpha_D32_filter_DX_SSSE3; + } + } else if (cachedHasSSE2()) { if (fSampleProc32 == S32_opaque_D32_filter_DX) { fSampleProc32 = S32_opaque_D32_filter_DX_SSE2; } else if (fSampleProc32 == S32_alpha_D32_filter_DX) { |