aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts
diff options
context:
space:
mode:
authorGravatar Mike Klein <mtklein@chromium.org>2018-03-07 15:09:17 +0000
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-03-07 15:09:21 +0000
commit3a4bd34478826c0457a36a8755791faf36a44e5e (patch)
tree48abeba3dff608e8c73d462e031c124dac905306 /src/opts
parent22e536e3a1a09405d1c0e6f071717a726d86e8d4 (diff)
Revert "make SkJumper stages normal Skia code"
This reverts commit 22e536e3a1a09405d1c0e6f071717a726d86e8d4. Reason for revert: wrong include path :/ Original change's description: > make SkJumper stages normal Skia code > > Enough clients are using Clang now that we can say, use Clang to build > if you want these software pipeline stages to go fast. > > This lets us drop the offline build aspect of SkJumper stages, instead > building as part of Skia using the SkOpts framework. > > I think everything should work, except I've (temporarily) removed > AVX-512 support. I will put this back in a follow up. > > I have had to drop Windows down to __vectorcall and our narrower > stage calling convention that keeps the d-registers on the stack. > I tried forcing sysv_abi, but that crashed Clang. :/ > > Added a TODO to up the same narrower stage calling convention > for lowp stages... we just *don't* today, for no good reason. > > Change-Id: Iaaa792ffe4deab3508d2dc5d0008c163c24b3383 > Reviewed-on: https://skia-review.googlesource.com/110641 > Commit-Queue: Mike Klein <mtklein@chromium.org> > Reviewed-by: Herb Derby <herb@google.com> > Reviewed-by: Florin Malita <fmalita@chromium.org> TBR=mtklein@chromium.org,herb@google.com,fmalita@chromium.org Change-Id: I2bdc709c80cdfa6b13ff24e024b3721bef887f46 No-Presubmit: true No-Tree-Checks: true No-Try: true Reviewed-on: https://skia-review.googlesource.com/112741 Reviewed-by: Mike Klein <mtklein@chromium.org> Commit-Queue: Mike Klein <mtklein@chromium.org>
Diffstat (limited to 'src/opts')
-rw-r--r--src/opts/SkChecksum_opts.h10
-rw-r--r--src/opts/SkOpts_avx.cpp18
-rw-r--r--src/opts/SkOpts_hsw.cpp28
-rw-r--r--src/opts/SkOpts_sse41.cpp13
-rw-r--r--src/opts/SkRasterPipeline_opts.h3283
5 files changed, 10 insertions, 3342 deletions
diff --git a/src/opts/SkChecksum_opts.h b/src/opts/SkChecksum_opts.h
index 3f2ef39c57..90e7af0d96 100644
--- a/src/opts/SkChecksum_opts.h
+++ b/src/opts/SkChecksum_opts.h
@@ -19,11 +19,11 @@
namespace SK_OPTS_NS {
-template <typename T, typename P>
-static inline T unaligned_load(const P* p) {
- T v;
- memcpy(&v, p, sizeof(v));
- return v;
+template <typename T>
+static inline T unaligned_load(const uint8_t* src) {
+ T val;
+ memcpy(&val, src, sizeof(val));
+ return val;
}
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42 && (defined(__x86_64__) || defined(_M_X64))
diff --git a/src/opts/SkOpts_avx.cpp b/src/opts/SkOpts_avx.cpp
index 6abe3996f2..7e34330e1c 100644
--- a/src/opts/SkOpts_avx.cpp
+++ b/src/opts/SkOpts_avx.cpp
@@ -5,10 +5,14 @@
* found in the LICENSE file.
*/
+#include "SkSafe_math.h" // Keep this first.
#include "SkOpts.h"
+#if defined(_INC_MATH) && !defined(INC_MATH_IS_SAFE_NOW)
+ #error We have included ucrt\math.h without protecting it against ODR violation.
+#endif
+
#define SK_OPTS_NS avx
-#include "SkRasterPipeline_opts.h"
#include "SkUtils_opts.h"
namespace SkOpts {
@@ -16,17 +20,5 @@ namespace SkOpts {
memset16 = SK_OPTS_NS::memset16;
memset32 = SK_OPTS_NS::memset32;
memset64 = SK_OPTS_NS::memset64;
-
- #define M(st) stages_highp[SkRasterPipeline::st] = (StageFn)SK_OPTS_NS::st;
- SK_RASTER_PIPELINE_STAGES(M)
- just_return_highp = (StageFn)SK_OPTS_NS::just_return;
- start_pipeline_highp = SK_OPTS_NS::start_pipeline;
- #undef M
-
- #define M(st) stages_lowp[SkRasterPipeline::st] = (StageFn)SK_OPTS_NS::lowp::st;
- SK_RASTER_PIPELINE_STAGES(M)
- just_return_lowp = (StageFn)SK_OPTS_NS::lowp::just_return;
- start_pipeline_lowp = SK_OPTS_NS::lowp::start_pipeline;
- #undef M
}
}
diff --git a/src/opts/SkOpts_hsw.cpp b/src/opts/SkOpts_hsw.cpp
deleted file mode 100644
index a97b7bff55..0000000000
--- a/src/opts/SkOpts_hsw.cpp
+++ /dev/null
@@ -1,28 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "SkOpts.h"
-
-#define SK_OPTS_NS hsw
-#include "SkRasterPipeline_opts.h"
-#include "SkUtils_opts.h"
-
-namespace SkOpts {
- void Init_hsw() {
- #define M(st) stages_highp[SkRasterPipeline::st] = (StageFn)SK_OPTS_NS::st;
- SK_RASTER_PIPELINE_STAGES(M)
- just_return_highp = (StageFn)SK_OPTS_NS::just_return;
- start_pipeline_highp = SK_OPTS_NS::start_pipeline;
- #undef M
-
- #define M(st) stages_lowp[SkRasterPipeline::st] = (StageFn)SK_OPTS_NS::lowp::st;
- SK_RASTER_PIPELINE_STAGES(M)
- just_return_lowp = (StageFn)SK_OPTS_NS::lowp::just_return;
- start_pipeline_lowp = SK_OPTS_NS::lowp::start_pipeline;
- #undef M
- }
-}
diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp
index 42aa48e757..b382799a34 100644
--- a/src/opts/SkOpts_sse41.cpp
+++ b/src/opts/SkOpts_sse41.cpp
@@ -8,23 +8,10 @@
#include "SkOpts.h"
#define SK_OPTS_NS sse41
-#include "SkRasterPipeline_opts.h"
#include "SkBlitRow_opts.h"
namespace SkOpts {
void Init_sse41() {
blit_row_s32a_opaque = sse41::blit_row_s32a_opaque;
-
- #define M(st) stages_highp[SkRasterPipeline::st] = (StageFn)SK_OPTS_NS::st;
- SK_RASTER_PIPELINE_STAGES(M)
- just_return_highp = (StageFn)SK_OPTS_NS::just_return;
- start_pipeline_highp = SK_OPTS_NS::start_pipeline;
- #undef M
-
- #define M(st) stages_lowp[SkRasterPipeline::st] = (StageFn)SK_OPTS_NS::lowp::st;
- SK_RASTER_PIPELINE_STAGES(M)
- just_return_lowp = (StageFn)SK_OPTS_NS::lowp::just_return;
- start_pipeline_lowp = SK_OPTS_NS::lowp::start_pipeline;
- #undef M
}
}
diff --git a/src/opts/SkRasterPipeline_opts.h b/src/opts/SkRasterPipeline_opts.h
deleted file mode 100644
index f397033b01..0000000000
--- a/src/opts/SkRasterPipeline_opts.h
+++ /dev/null
@@ -1,3283 +0,0 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef SkRasterPipeline_opts_DEFINED
-#define SkRasterPipeline_opts_DEFINED
-
-#include "../../jumper/SkJumper.h"
-#include "../../jumper/SkJumper_misc.h"
-
-#if !defined(__clang__)
- #define JUMPER_IS_SCALAR
-#elif defined(__ARM_NEON)
- #define JUMPER_IS_NEON
-#elif defined(__AVX512F__)
- #define JUMPER_IS_AVX512
-#elif defined(__AVX2__) && defined(__F16C__) && defined(__FMA__)
- #define JUMPER_IS_HSW
-#elif defined(__AVX__)
- #define JUMPER_IS_AVX
-#elif defined(__SSE4_1__)
- #define JUMPER_IS_SSE41
-#elif defined(__SSE2__)
- #define JUMPER_IS_SSE2
-#else
- #define JUMPER_IS_SCALAR
-#endif
-
-// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
-#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(__arm__)
- // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
- #if defined(__apple_build_version__) && __clang_major__ < 9
- #define JUMPER_IS_SCALAR
- #elif __clang_major__ < 5
- #define JUMPER_IS_SCALAR
- #endif
-#endif
-
-#if defined(JUMPER_IS_SCALAR)
- #include <math.h>
-#elif defined(JUMPER_IS_NEON)
- #include <arm_neon.h>
-#else
- #include <immintrin.h>
-#endif
-
-namespace SK_OPTS_NS {
-
-#if defined(JUMPER_IS_SCALAR)
- // This path should lead to portable scalar code.
- using F = float ;
- using I32 = int32_t;
- using U64 = uint64_t;
- using U32 = uint32_t;
- using U16 = uint16_t;
- using U8 = uint8_t ;
-
- SI F mad(F f, F m, F a) { return f*m+a; }
- SI F min(F a, F b) { return fminf(a,b); }
- SI F max(F a, F b) { return fmaxf(a,b); }
- SI F abs_ (F v) { return fabsf(v); }
- SI F floor_(F v) { return floorf(v); }
- SI F rcp (F v) { return 1.0f / v; }
- SI F rsqrt (F v) { return 1.0f / sqrtf(v); }
- SI F sqrt_(F v) { return sqrtf(v); }
- SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
- SI U16 pack(U32 v) { return (U16)v; }
- SI U8 pack(U16 v) { return (U8)v; }
-
- SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
-
- template <typename T>
- SI T gather(const T* p, U32 ix) { return p[ix]; }
-
- SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
- *r = ptr[0];
- *g = ptr[1];
- *b = ptr[2];
- }
- SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
- *r = ptr[0];
- *g = ptr[1];
- *b = ptr[2];
- *a = ptr[3];
- }
- SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
- ptr[0] = r;
- ptr[1] = g;
- ptr[2] = b;
- ptr[3] = a;
- }
-
- SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
- *r = ptr[0];
- *g = ptr[1];
- *b = ptr[2];
- *a = ptr[3];
- }
- SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
- ptr[0] = r;
- ptr[1] = g;
- ptr[2] = b;
- ptr[3] = a;
- }
-
-#elif defined(JUMPER_IS_NEON)
- // Since we know we're using Clang, we can use its vector extensions.
- template <typename T> using V = T __attribute__((ext_vector_type(4)));
- using F = V<float >;
- using I32 = V< int32_t>;
- using U64 = V<uint64_t>;
- using U32 = V<uint32_t>;
- using U16 = V<uint16_t>;
- using U8 = V<uint8_t >;
-
- // We polyfill a few routines that Clang doesn't build into ext_vector_types.
- SI F min(F a, F b) { return vminq_f32(a,b); }
- SI F max(F a, F b) { return vmaxq_f32(a,b); }
- SI F abs_ (F v) { return vabsq_f32(v); }
- SI F rcp (F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; }
- SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
- SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
- SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
-
- SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
-
- #if defined(__aarch64__)
- SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
- SI F floor_(F v) { return vrndmq_f32(v); }
- SI F sqrt_(F v) { return vsqrtq_f32(v); }
- SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
- #else
- SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
- SI F floor_(F v) {
- F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
- return roundtrip - if_then_else(roundtrip > v, 1, 0);
- }
-
- SI F sqrt_(F v) {
- auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
- e *= vrsqrtsq_f32(v,e*e);
- e *= vrsqrtsq_f32(v,e*e);
- return v*e; // sqrt(v) == v*rsqrt(v).
- }
-
- SI U32 round(F v, F scale) {
- return vcvtq_u32_f32(mad(v,scale,0.5f));
- }
- #endif
-
-
- template <typename T>
- SI V<T> gather(const T* p, U32 ix) {
- return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
- }
-
- SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
- uint16x4x3_t rgb;
- if (__builtin_expect(tail,0)) {
- if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
- if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
- if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
- } else {
- rgb = vld3_u16(ptr);
- }
- *r = rgb.val[0];
- *g = rgb.val[1];
- *b = rgb.val[2];
- }
- SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
- uint16x4x4_t rgba;
- if (__builtin_expect(tail,0)) {
- if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
- if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
- if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
- } else {
- rgba = vld4_u16(ptr);
- }
- *r = rgba.val[0];
- *g = rgba.val[1];
- *b = rgba.val[2];
- *a = rgba.val[3];
- }
- SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
- if (__builtin_expect(tail,0)) {
- if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
- if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
- if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
- } else {
- vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
- }
- }
- SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
- float32x4x4_t rgba;
- if (__builtin_expect(tail,0)) {
- if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
- if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
- if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
- } else {
- rgba = vld4q_f32(ptr);
- }
- *r = rgba.val[0];
- *g = rgba.val[1];
- *b = rgba.val[2];
- *a = rgba.val[3];
- }
- SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
- if (__builtin_expect(tail,0)) {
- if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
- if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
- if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
- } else {
- vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
- }
- }
-
-#elif defined(JUMPER_IS_AVX) || defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
- // These are __m256 and __m256i, but friendlier and strongly-typed.
- template <typename T> using V = T __attribute__((ext_vector_type(8)));
- using F = V<float >;
- using I32 = V< int32_t>;
- using U64 = V<uint64_t>;
- using U32 = V<uint32_t>;
- using U16 = V<uint16_t>;
- using U8 = V<uint8_t >;
-
- SI F mad(F f, F m, F a) {
- #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
- return _mm256_fmadd_ps(f,m,a);
- #else
- return f*m+a;
- #endif
- }
-
- SI F min(F a, F b) { return _mm256_min_ps(a,b); }
- SI F max(F a, F b) { return _mm256_max_ps(a,b); }
- SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
- SI F floor_(F v) { return _mm256_floor_ps(v); }
- SI F rcp (F v) { return _mm256_rcp_ps (v); }
- SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); }
- SI F sqrt_(F v) { return _mm256_sqrt_ps (v); }
- SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
-
- SI U16 pack(U32 v) {
- return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
- _mm256_extractf128_si256(v, 1));
- }
- SI U8 pack(U16 v) {
- auto r = _mm_packus_epi16(v,v);
- return unaligned_load<U8>(&r);
- }
-
- SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
-
- template <typename T>
- SI V<T> gather(const T* p, U32 ix) {
- return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
- p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
- }
- #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
- SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
- SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
- SI U64 gather(const uint64_t* p, U32 ix) {
- __m256i parts[] = {
- _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
- _mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
- };
- return bit_cast<U64>(parts);
- }
- #endif
-
- SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
- __m128i _0,_1,_2,_3,_4,_5,_6,_7;
- if (__builtin_expect(tail,0)) {
- auto load_rgb = [](const uint16_t* src) {
- auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
- return _mm_insert_epi16(v, src[2], 2);
- };
- _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
- if ( true ) { _0 = load_rgb(ptr + 0); }
- if (tail > 1) { _1 = load_rgb(ptr + 3); }
- if (tail > 2) { _2 = load_rgb(ptr + 6); }
- if (tail > 3) { _3 = load_rgb(ptr + 9); }
- if (tail > 4) { _4 = load_rgb(ptr + 12); }
- if (tail > 5) { _5 = load_rgb(ptr + 15); }
- if (tail > 6) { _6 = load_rgb(ptr + 18); }
- } else {
- // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
- auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ;
- auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ;
- auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ;
- auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
- _0 = _01; _1 = _mm_srli_si128(_01, 6);
- _2 = _23; _3 = _mm_srli_si128(_23, 6);
- _4 = _45; _5 = _mm_srli_si128(_45, 6);
- _6 = _67; _7 = _mm_srli_si128(_67, 6);
- }
-
- auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
- _13 = _mm_unpacklo_epi16(_1, _3),
- _46 = _mm_unpacklo_epi16(_4, _6),
- _57 = _mm_unpacklo_epi16(_5, _7);
-
- auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
- bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx
- rg4567 = _mm_unpacklo_epi16(_46, _57),
- bx4567 = _mm_unpackhi_epi16(_46, _57);
-
- *r = _mm_unpacklo_epi64(rg0123, rg4567);
- *g = _mm_unpackhi_epi64(rg0123, rg4567);
- *b = _mm_unpacklo_epi64(bx0123, bx4567);
- }
- SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
- __m128i _01, _23, _45, _67;
- if (__builtin_expect(tail,0)) {
- auto src = (const double*)ptr;
- _01 = _23 = _45 = _67 = _mm_setzero_si128();
- if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
- if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
- if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
- if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
- if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
- if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
- if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
- } else {
- _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
- _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
- _45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
- _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
- }
-
- auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
- _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
- _46 = _mm_unpacklo_epi16(_45, _67),
- _57 = _mm_unpackhi_epi16(_45, _67);
-
- auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
- ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
- rg4567 = _mm_unpacklo_epi16(_46, _57),
- ba4567 = _mm_unpackhi_epi16(_46, _57);
-
- *r = _mm_unpacklo_epi64(rg0123, rg4567);
- *g = _mm_unpackhi_epi64(rg0123, rg4567);
- *b = _mm_unpacklo_epi64(ba0123, ba4567);
- *a = _mm_unpackhi_epi64(ba0123, ba4567);
- }
- SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
- auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
- rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
- ba0123 = _mm_unpacklo_epi16(b, a),
- ba4567 = _mm_unpackhi_epi16(b, a);
-
- auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
- _23 = _mm_unpackhi_epi32(rg0123, ba0123),
- _45 = _mm_unpacklo_epi32(rg4567, ba4567),
- _67 = _mm_unpackhi_epi32(rg4567, ba4567);
-
- if (__builtin_expect(tail,0)) {
- auto dst = (double*)ptr;
- if (tail > 0) { _mm_storel_pd(dst+0, _01); }
- if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
- if (tail > 2) { _mm_storel_pd(dst+2, _23); }
- if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
- if (tail > 4) { _mm_storel_pd(dst+4, _45); }
- if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
- if (tail > 6) { _mm_storel_pd(dst+6, _67); }
- } else {
- _mm_storeu_si128((__m128i*)ptr + 0, _01);
- _mm_storeu_si128((__m128i*)ptr + 1, _23);
- _mm_storeu_si128((__m128i*)ptr + 2, _45);
- _mm_storeu_si128((__m128i*)ptr + 3, _67);
- }
- }
-
- SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
- F _04, _15, _26, _37;
- _04 = _15 = _26 = _37 = 0;
- switch (tail) {
- case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
- case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
- case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
- case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
- case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0);
- case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0);
- case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0);
- case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
- }
-
- F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
- ba0145 = _mm256_unpackhi_ps(_04,_15),
- rg2367 = _mm256_unpacklo_ps(_26,_37),
- ba2367 = _mm256_unpackhi_ps(_26,_37);
-
- *r = _mm256_unpacklo_pd(rg0145, rg2367);
- *g = _mm256_unpackhi_pd(rg0145, rg2367);
- *b = _mm256_unpacklo_pd(ba0145, ba2367);
- *a = _mm256_unpackhi_pd(ba0145, ba2367);
- }
- SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
- F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
- rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
- ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
- ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
-
- F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
- _15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
- _26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
- _37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
-
- if (__builtin_expect(tail, 0)) {
- if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
- if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
- if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
- if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
- if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
- if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
- if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
- } else {
- F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
- _23 = _mm256_permute2f128_ps(_26, _37, 32),
- _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
- _67 = _mm256_permute2f128_ps(_26, _37, 49);
- _mm256_storeu_ps(ptr+ 0, _01);
- _mm256_storeu_ps(ptr+ 8, _23);
- _mm256_storeu_ps(ptr+16, _45);
- _mm256_storeu_ps(ptr+24, _67);
- }
- }
-
-#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
- template <typename T> using V = T __attribute__((ext_vector_type(4)));
- using F = V<float >;
- using I32 = V< int32_t>;
- using U64 = V<uint64_t>;
- using U32 = V<uint32_t>;
- using U16 = V<uint16_t>;
- using U8 = V<uint8_t >;
-
- SI F mad(F f, F m, F a) { return f*m+a; }
- SI F min(F a, F b) { return _mm_min_ps(a,b); }
- SI F max(F a, F b) { return _mm_max_ps(a,b); }
- SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
- SI F rcp (F v) { return _mm_rcp_ps (v); }
- SI F rsqrt (F v) { return _mm_rsqrt_ps(v); }
- SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
- SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
-
- SI U16 pack(U32 v) {
- #if defined(JUMPER_IS_SSE41)
- auto p = _mm_packus_epi32(v,v);
- #else
- // Sign extend so that _mm_packs_epi32() does the pack we want.
- auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
- p = _mm_packs_epi32(p,p);
- #endif
- return unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
- }
- SI U8 pack(U16 v) {
- auto r = widen_cast<__m128i>(v);
- r = _mm_packus_epi16(r,r);
- return unaligned_load<U8>(&r);
- }
-
- SI F if_then_else(I32 c, F t, F e) {
- return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
- }
-
- SI F floor_(F v) {
- #if defined(JUMPER_IS_SSE41)
- return _mm_floor_ps(v);
- #else
- F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
- return roundtrip - if_then_else(roundtrip > v, 1, 0);
- #endif
- }
-
- template <typename T>
- SI V<T> gather(const T* p, U32 ix) {
- return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
- }
-
- SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
- __m128i _0, _1, _2, _3;
- if (__builtin_expect(tail,0)) {
- _1 = _2 = _3 = _mm_setzero_si128();
- auto load_rgb = [](const uint16_t* src) {
- auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
- return _mm_insert_epi16(v, src[2], 2);
- };
- if ( true ) { _0 = load_rgb(ptr + 0); }
- if (tail > 1) { _1 = load_rgb(ptr + 3); }
- if (tail > 2) { _2 = load_rgb(ptr + 6); }
- } else {
- // Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
- auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ,
- _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
-
- // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
- _0 = _01;
- _1 = _mm_srli_si128(_01, 6);
- _2 = _23;
- _3 = _mm_srli_si128(_23, 6);
- }
-
- // De-interlace to R,G,B.
- auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
- _13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx
-
- auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
- G = _mm_srli_si128(R, 8),
- B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx
-
- *r = unaligned_load<U16>(&R);
- *g = unaligned_load<U16>(&G);
- *b = unaligned_load<U16>(&B);
- }
-
- SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
- __m128i _01, _23;
- if (__builtin_expect(tail,0)) {
- _01 = _23 = _mm_setzero_si128();
- auto src = (const double*)ptr;
- if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
- if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
- if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
- } else {
- _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
- _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
- }
-
- auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
- _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
-
- auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
- ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
-
- *r = unaligned_load<U16>((uint16_t*)&rg + 0);
- *g = unaligned_load<U16>((uint16_t*)&rg + 4);
- *b = unaligned_load<U16>((uint16_t*)&ba + 0);
- *a = unaligned_load<U16>((uint16_t*)&ba + 4);
- }
-
- SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
- auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
- ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
-
- if (__builtin_expect(tail, 0)) {
- auto dst = (double*)ptr;
- if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
- if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
- if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
- } else {
- _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
- _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
- }
- }
-
- SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
- F _0, _1, _2, _3;
- if (__builtin_expect(tail, 0)) {
- _1 = _2 = _3 = _mm_setzero_si128();
- if ( true ) { _0 = _mm_loadu_ps(ptr + 0); }
- if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
- if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
- } else {
- _0 = _mm_loadu_ps(ptr + 0);
- _1 = _mm_loadu_ps(ptr + 4);
- _2 = _mm_loadu_ps(ptr + 8);
- _3 = _mm_loadu_ps(ptr +12);
- }
- _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
- *r = _0;
- *g = _1;
- *b = _2;
- *a = _3;
- }
-
- SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
- _MM_TRANSPOSE4_PS(r,g,b,a);
- if (__builtin_expect(tail, 0)) {
- if ( true ) { _mm_storeu_ps(ptr + 0, r); }
- if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
- if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
- } else {
- _mm_storeu_ps(ptr + 0, r);
- _mm_storeu_ps(ptr + 4, g);
- _mm_storeu_ps(ptr + 8, b);
- _mm_storeu_ps(ptr +12, a);
- }
- }
-#endif
-
-// We need to be a careful with casts.
-// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
-// These named casts and bit_cast() are always what they seem to be.
-#if defined(JUMPER_IS_SCALAR)
- SI F cast (U32 v) { return (F)v; }
- SI U32 trunc_(F v) { return (U32)v; }
- SI U32 expand(U16 v) { return (U32)v; }
- SI U32 expand(U8 v) { return (U32)v; }
-#else
- SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
- SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
- SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
- SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
-#endif
-
-template <typename V>
-SI V if_then_else(I32 c, V t, V e) {
- return bit_cast<V>(if_then_else(c, bit_cast<F>(t), bit_cast<F>(e)));
-}
-
-SI U16 bswap(U16 x) {
-#if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
- // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
- // when generating code for SSE2 and SSE4.1. We'll do it manually...
- auto v = widen_cast<__m128i>(x);
- v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
- return unaligned_load<U16>(&v);
-#else
- return (x<<8) | (x>>8);
-#endif
-}
-
-SI F fract(F v) { return v - floor_(v); }
-
-// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
-SI F approx_log2(F x) {
- // e - 127 is a fair approximation of log2(x) in its own right...
- F e = cast(bit_cast<U32>(x)) * (1.0f / (1<<23));
-
- // ... but using the mantissa to refine its error is _much_ better.
- F m = bit_cast<F>((bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
- return e
- - 124.225514990f
- - 1.498030302f * m
- - 1.725879990f / (0.3520887068f + m);
-}
-SI F approx_pow2(F x) {
- F f = fract(x);
- return bit_cast<F>(round(1.0f * (1<<23),
- x + 121.274057500f
- - 1.490129070f * f
- + 27.728023300f / (4.84252568f - f)));
-}
-
-SI F approx_powf(F x, F y) {
- return if_then_else(x == 0, 0
- , approx_pow2(approx_log2(x) * y));
-}
-
-SI F from_half(U16 h) {
-#if defined(__aarch64__) && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
- return vcvt_f32_f16(h);
-
-#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
- return _mm256_cvtph_ps(h);
-
-#else
- // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
- U32 sem = expand(h),
- s = sem & 0x8000,
- em = sem ^ s;
-
- // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
- auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
- return if_then_else(denorm, F(0)
- , bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
-#endif
-}
-
-SI U16 to_half(F f) {
-#if defined(__aarch64__) && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
- return vcvt_f16_f32(f);
-
-#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
- return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
-
-#else
- // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
- U32 sem = bit_cast<U32>(f),
- s = sem & 0x80000000,
- em = sem ^ s;
-
- // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
- auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
- return pack(if_then_else(denorm, U32(0)
- , (s>>16) + (em>>13) - ((127-15)<<10)));
-#endif
-}
-
-// Our fundamental vector depth is our pixel stride.
-static const size_t N = sizeof(F) / sizeof(float);
-
-// We're finally going to get to what a Stage function looks like!
-// tail == 0 ~~> work on a full N pixels
-// tail != 0 ~~> work on only the first tail pixels
-// tail is always < N.
-
-// Any custom ABI to use for all non-externally-facing stage functions.
-#if defined(__ARM_NEON) && defined(__arm__)
- // This lets us pass vectors more efficiently on 32-bit ARM.
- #define ABI __attribute__((pcs("aapcs-vfp")))
-#elif defined(__clang__) && defined(_MSC_VER)
- // TODO: can we use sysv_abi here instead? It'd allow passing far more registers.
- #define ABI __attribute__((vectorcall))
-#else
- #define ABI
-#endif
-
-// On 32-bit x86 we've only got 8 xmm registers, so we keep the 4 hottest (r,g,b,a)
-// in registers and the d-registers on the stack (giving us 4 temporary registers).
-// General-purpose registers are also tight, so we put most of those on the stack too.
-//
-// On ARMv7, we do the same so that we can make the r,g,b,a vectors wider.
-//
-// Finally, this narrower stage calling convention also fits Windows' __vectorcall very well.
-#if defined(__i386__) || defined(_M_IX86) || defined(__arm__) || defined(_MSC_VER)
- #define JUMPER_NARROW_STAGES 1
-#else
- #define JUMPER_NARROW_STAGES 0
-#endif
-
-#if JUMPER_NARROW_STAGES
- struct Params {
- size_t dx, dy, tail;
- F dr,dg,db,da;
- };
- using Stage = void(ABI*)(Params*, void** program, F r, F g, F b, F a);
-#else
- // We keep program the second argument, so that it's passed in rsi for load_and_inc().
- using Stage = void(ABI*)(size_t tail, void** program, size_t dx, size_t dy, F,F,F,F, F,F,F,F);
-#endif
-
-
-static void start_pipeline(size_t dx, size_t dy, size_t xlimit, size_t ylimit, void** program) {
- auto start = (Stage)load_and_inc(program);
- const size_t x0 = dx;
- for (; dy < ylimit; dy++) {
- #if JUMPER_NARROW_STAGES
- Params params = { x0,dy,0, 0,0,0,0 };
- while (params.dx + N <= xlimit) {
- start(&params,program, 0,0,0,0);
- params.dx += N;
- }
- if (size_t tail = xlimit - params.dx) {
- params.tail = tail;
- start(&params,program, 0,0,0,0);
- }
- #else
- dx = x0;
- while (dx + N <= xlimit) {
- start(0,program,dx,dy, 0,0,0,0, 0,0,0,0);
- dx += N;
- }
- if (size_t tail = xlimit - dx) {
- start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
- }
- #endif
- }
-}
-
-#if JUMPER_NARROW_STAGES
- #define STAGE(name, ...) \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
- F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
- static ABI void name(Params* params, void** program, \
- F r, F g, F b, F a) { \
- name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a, \
- params->dr, params->dg, params->db, params->da); \
- auto next = (Stage)load_and_inc(program); \
- next(params,program, r,g,b,a); \
- } \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
- F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
-#else
- #define STAGE(name, ...) \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
- F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
- static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
- F r, F g, F b, F a, F dr, F dg, F db, F da) { \
- name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \
- auto next = (Stage)load_and_inc(program); \
- next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
- } \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
- F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
-#endif
-
-
-// just_return() is a simple no-op stage that only exists to end the chain,
-// returning back up to start_pipeline(), and from there to the caller.
-#if JUMPER_NARROW_STAGES
- static ABI void just_return(Params*, void**, F,F,F,F) {}
-#else
- static ABI void just_return(size_t, void**, size_t,size_t, F,F,F,F, F,F,F,F) {}
-#endif
-
-
-// We could start defining normal Stages now. But first, some helper functions.
-
-// These load() and store() methods are tail-aware,
-// but focus mainly on keeping the at-stride tail==0 case fast.
-
-template <typename V, typename T>
-SI V load(const T* src, size_t tail) {
-#if !defined(JUMPER_IS_SCALAR)
- __builtin_assume(tail < N);
- if (__builtin_expect(tail, 0)) {
- V v{}; // Any inactive lanes are zeroed.
- switch (tail) {
- case 7: v[6] = src[6];
- case 6: v[5] = src[5];
- case 5: v[4] = src[4];
- case 4: memcpy(&v, src, 4*sizeof(T)); break;
- case 3: v[2] = src[2];
- case 2: memcpy(&v, src, 2*sizeof(T)); break;
- case 1: memcpy(&v, src, 1*sizeof(T)); break;
- }
- return v;
- }
-#endif
- return unaligned_load<V>(src);
-}
-
-template <typename V, typename T>
-SI void store(T* dst, V v, size_t tail) {
-#if !defined(JUMPER_IS_SCALAR)
- __builtin_assume(tail < N);
- if (__builtin_expect(tail, 0)) {
- switch (tail) {
- case 7: dst[6] = v[6];
- case 6: dst[5] = v[5];
- case 5: dst[4] = v[4];
- case 4: memcpy(dst, &v, 4*sizeof(T)); break;
- case 3: dst[2] = v[2];
- case 2: memcpy(dst, &v, 2*sizeof(T)); break;
- case 1: memcpy(dst, &v, 1*sizeof(T)); break;
- }
- return;
- }
-#endif
- unaligned_store(dst, v);
-}
-
-SI F from_byte(U8 b) {
- return cast(expand(b)) * (1/255.0f);
-}
-SI void from_565(U16 _565, F* r, F* g, F* b) {
- U32 wide = expand(_565);
- *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
- *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
- *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
-}
-SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
- U32 wide = expand(_4444);
- *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
- *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
- *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
- *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
-}
-SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
- *r = cast((_8888 ) & 0xff) * (1/255.0f);
- *g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
- *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
- *a = cast((_8888 >> 24) ) * (1/255.0f);
-}
-SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
- *r = cast((rgba ) & 0x3ff) * (1/1023.0f);
- *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
- *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
- *a = cast((rgba >> 30) ) * (1/ 3.0f);
-}
-
-// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
-template <typename T>
-SI T* ptr_at_xy(const SkJumper_MemoryCtx* ctx, size_t dx, size_t dy) {
- return (T*)ctx->pixels + dy*ctx->stride + dx;
-}
-
-// clamp v to [0,limit).
-SI F clamp(F v, F limit) {
- F inclusive = bit_cast<F>( bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
- return min(max(0, v), inclusive);
-}
-
-// Used by gather_ stages to calculate the base pointer and a vector of indices to load.
-template <typename T>
-SI U32 ix_and_ptr(T** ptr, const SkJumper_GatherCtx* ctx, F x, F y) {
- x = clamp(x, ctx->width);
- y = clamp(y, ctx->height);
-
- *ptr = (const T*)ctx->pixels;
- return trunc_(y)*ctx->stride + trunc_(x);
-}
-
-// We often have a nominally [0,1] float value we need to scale and convert to an integer,
-// whether for a table lookup or to pack back down into bytes for storage.
-//
-// In practice, especially when dealing with interesting color spaces, that notionally
-// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
-//
-// You can adjust the expected input to [0,bias] by tweaking that parameter.
-SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
- // TODO: platform-specific implementations to to_unorm(), removing round() entirely?
- // Any time we use round() we probably want to use to_unorm().
- return round(min(max(0, v), bias), scale);
-}
-
-SI I32 cond_to_mask(I32 cond) { return if_then_else(cond, I32(~0), I32(0)); }
-
-// Now finally, normal Stages!
-
-STAGE(seed_shader, const float* iota) {
- // It's important for speed to explicitly cast(dx) and cast(dy),
- // which has the effect of splatting them to vectors before converting to floats.
- // On Intel this breaks a data dependency on previous loop iterations' registers.
- r = cast(dx) + unaligned_load<F>(iota);
- g = cast(dy) + 0.5f;
- b = 1.0f;
- a = 0;
- dr = dg = db = da = 0;
-}
-
-STAGE(dither, const float* rate) {
- // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
- uint32_t iota[] = {0,1,2,3,4,5,6,7};
- U32 X = dx + unaligned_load<U32>(iota),
- Y = dy;
-
- // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
- // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
-
- // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
- Y ^= X;
-
- // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
- // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
- U32 M = (Y & 1) << 5 | (X & 1) << 4
- | (Y & 2) << 2 | (X & 2) << 1
- | (Y & 4) >> 1 | (X & 4) >> 2;
-
- // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
- // We want to make sure our dither is less than 0.5 in either direction to keep exact values
- // like 0 and 1 unchanged after rounding.
- F dither = cast(M) * (2/128.0f) - (63/128.0f);
-
- r += *rate*dither;
- g += *rate*dither;
- b += *rate*dither;
-
- r = max(0, min(r, a));
- g = max(0, min(g, a));
- b = max(0, min(b, a));
-}
-
-// load 4 floats from memory, and splat them into r,g,b,a
-STAGE(uniform_color, const SkJumper_UniformColorCtx* c) {
- r = c->r;
- g = c->g;
- b = c->b;
- a = c->a;
-}
-
-// splats opaque-black into r,g,b,a
-STAGE(black_color, Ctx::None) {
- r = g = b = 0.0f;
- a = 1.0f;
-}
-
-STAGE(white_color, Ctx::None) {
- r = g = b = a = 1.0f;
-}
-
-// load registers r,g,b,a from context (mirrors store_rgba)
-STAGE(load_rgba, const float* ptr) {
- r = unaligned_load<F>(ptr + 0*N);
- g = unaligned_load<F>(ptr + 1*N);
- b = unaligned_load<F>(ptr + 2*N);
- a = unaligned_load<F>(ptr + 3*N);
-}
-
-// store registers r,g,b,a into context (mirrors load_rgba)
-STAGE(store_rgba, float* ptr) {
- unaligned_store(ptr + 0*N, r);
- unaligned_store(ptr + 1*N, g);
- unaligned_store(ptr + 2*N, b);
- unaligned_store(ptr + 3*N, a);
-}
-
-// Most blend modes apply the same logic to each channel.
-#define BLEND_MODE(name) \
- SI F name##_channel(F s, F d, F sa, F da); \
- STAGE(name, Ctx::None) { \
- r = name##_channel(r,dr,a,da); \
- g = name##_channel(g,dg,a,da); \
- b = name##_channel(b,db,a,da); \
- a = name##_channel(a,da,a,da); \
- } \
- SI F name##_channel(F s, F d, F sa, F da)
-
-SI F inv(F x) { return 1.0f - x; }
-SI F two(F x) { return x + x; }
-
-
-BLEND_MODE(clear) { return 0; }
-BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
-BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
-BLEND_MODE(srcin) { return s * da; }
-BLEND_MODE(dstin) { return d * sa; }
-BLEND_MODE(srcout) { return s * inv(da); }
-BLEND_MODE(dstout) { return d * inv(sa); }
-BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
-BLEND_MODE(dstover) { return mad(s, inv(da), d); }
-
-BLEND_MODE(modulate) { return s*d; }
-BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
-BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
-BLEND_MODE(screen) { return s + d - s*d; }
-BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
-#undef BLEND_MODE
-
-// Most other blend modes apply the same logic to colors, and srcover to alpha.
-#define BLEND_MODE(name) \
- SI F name##_channel(F s, F d, F sa, F da); \
- STAGE(name, Ctx::None) { \
- r = name##_channel(r,dr,a,da); \
- g = name##_channel(g,dg,a,da); \
- b = name##_channel(b,db,a,da); \
- a = mad(da, inv(a), a); \
- } \
- SI F name##_channel(F s, F d, F sa, F da)
-
-BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
-BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
-BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
-BLEND_MODE(exclusion) { return s + d - two(s*d); }
-
-BLEND_MODE(colorburn) {
- return if_then_else(d == da, d + s*inv(da),
- if_then_else(s == 0, /* s + */ d*inv(sa),
- sa*(da - min(da, (da-d)*sa*rcp(s))) + s*inv(da) + d*inv(sa)));
-}
-BLEND_MODE(colordodge) {
- return if_then_else(d == 0, /* d + */ s*inv(da),
- if_then_else(s == sa, s + d*inv(sa),
- sa*min(da, (d*sa)*rcp(sa - s)) + s*inv(da) + d*inv(sa)));
-}
-BLEND_MODE(hardlight) {
- return s*inv(da) + d*inv(sa)
- + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
-}
-BLEND_MODE(overlay) {
- return s*inv(da) + d*inv(sa)
- + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
-}
-
-BLEND_MODE(softlight) {
- F m = if_then_else(da > 0, d / da, 0),
- s2 = two(s),
- m4 = two(two(m));
-
- // The logic forks three ways:
- // 1. dark src?
- // 2. light src, dark dst?
- // 3. light src, light dst?
- F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
- darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
- liteDst = rcp(rsqrt(m)) - m, // Used in case 3.
- liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
- return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
-}
-#undef BLEND_MODE
-
-// We're basing our implemenation of non-separable blend modes on
-// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
-// and
-// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
-// They're equivalent, but ES' math has been better simplified.
-//
-// Anything extra we add beyond that is to make the math work with premul inputs.
-
-SI F max(F r, F g, F b) { return max(r, max(g, b)); }
-SI F min(F r, F g, F b) { return min(r, min(g, b)); }
-
-SI F sat(F r, F g, F b) { return max(r,g,b) - min(r,g,b); }
-SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
-
-SI void set_sat(F* r, F* g, F* b, F s) {
- F mn = min(*r,*g,*b),
- mx = max(*r,*g,*b),
- sat = mx - mn;
-
- // Map min channel to 0, max channel to s, and scale the middle proportionally.
- auto scale = [=](F c) {
- return if_then_else(sat == 0, 0, (c - mn) * s / sat);
- };
- *r = scale(*r);
- *g = scale(*g);
- *b = scale(*b);
-}
-SI void set_lum(F* r, F* g, F* b, F l) {
- F diff = l - lum(*r, *g, *b);
- *r += diff;
- *g += diff;
- *b += diff;
-}
-SI void clip_color(F* r, F* g, F* b, F a) {
- F mn = min(*r, *g, *b),
- mx = max(*r, *g, *b),
- l = lum(*r, *g, *b);
-
- auto clip = [=](F c) {
- c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) );
- c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c);
- c = max(c, 0); // Sometimes without this we may dip just a little negative.
- return c;
- };
- *r = clip(*r);
- *g = clip(*g);
- *b = clip(*b);
-}
-
-STAGE(hue, Ctx::None) {
- F R = r*a,
- G = g*a,
- B = b*a;
-
- set_sat(&R, &G, &B, sat(dr,dg,db)*a);
- set_lum(&R, &G, &B, lum(dr,dg,db)*a);
- clip_color(&R,&G,&B, a*da);
-
- r = r*inv(da) + dr*inv(a) + R;
- g = g*inv(da) + dg*inv(a) + G;
- b = b*inv(da) + db*inv(a) + B;
- a = a + da - a*da;
-}
-STAGE(saturation, Ctx::None) {
- F R = dr*a,
- G = dg*a,
- B = db*a;
-
- set_sat(&R, &G, &B, sat( r, g, b)*da);
- set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
- clip_color(&R,&G,&B, a*da);
-
- r = r*inv(da) + dr*inv(a) + R;
- g = g*inv(da) + dg*inv(a) + G;
- b = b*inv(da) + db*inv(a) + B;
- a = a + da - a*da;
-}
-STAGE(color, Ctx::None) {
- F R = r*da,
- G = g*da,
- B = b*da;
-
- set_lum(&R, &G, &B, lum(dr,dg,db)*a);
- clip_color(&R,&G,&B, a*da);
-
- r = r*inv(da) + dr*inv(a) + R;
- g = g*inv(da) + dg*inv(a) + G;
- b = b*inv(da) + db*inv(a) + B;
- a = a + da - a*da;
-}
-STAGE(luminosity, Ctx::None) {
- F R = dr*a,
- G = dg*a,
- B = db*a;
-
- set_lum(&R, &G, &B, lum(r,g,b)*da);
- clip_color(&R,&G,&B, a*da);
-
- r = r*inv(da) + dr*inv(a) + R;
- g = g*inv(da) + dg*inv(a) + G;
- b = b*inv(da) + db*inv(a) + B;
- a = a + da - a*da;
-}
-
-STAGE(srcover_rgba_8888, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
-
- U32 dst = load<U32>(ptr, tail);
- dr = cast((dst ) & 0xff);
- dg = cast((dst >> 8) & 0xff);
- db = cast((dst >> 16) & 0xff);
- da = cast((dst >> 24) );
- // {dr,dg,db,da} are in [0,255]
- // { r, g, b, a} are in [0, 1] (but may be out of gamut)
-
- r = mad(dr, inv(a), r*255.0f);
- g = mad(dg, inv(a), g*255.0f);
- b = mad(db, inv(a), b*255.0f);
- a = mad(da, inv(a), a*255.0f);
- // { r, g, b, a} are now in [0,255] (but may be out of gamut)
-
- // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
- dst = to_unorm(r, 1, 255)
- | to_unorm(g, 1, 255) << 8
- | to_unorm(b, 1, 255) << 16
- | to_unorm(a, 1, 255) << 24;
- store(ptr, dst, tail);
-}
-
-STAGE(srcover_bgra_8888, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
-
- U32 dst = load<U32>(ptr, tail);
- db = cast((dst ) & 0xff);
- dg = cast((dst >> 8) & 0xff);
- dr = cast((dst >> 16) & 0xff);
- da = cast((dst >> 24) );
- // {dr,dg,db,da} are in [0,255]
- // { r, g, b, a} are in [0, 1] (but may be out of gamut)
-
- r = mad(dr, inv(a), r*255.0f);
- g = mad(dg, inv(a), g*255.0f);
- b = mad(db, inv(a), b*255.0f);
- a = mad(da, inv(a), a*255.0f);
- // { r, g, b, a} are now in [0,255] (but may be out of gamut)
-
- // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
- dst = to_unorm(b, 1, 255)
- | to_unorm(g, 1, 255) << 8
- | to_unorm(r, 1, 255) << 16
- | to_unorm(a, 1, 255) << 24;
- store(ptr, dst, tail);
-}
-
-STAGE(clamp_0, Ctx::None) {
- r = max(r, 0);
- g = max(g, 0);
- b = max(b, 0);
- a = max(a, 0);
-}
-
-STAGE(clamp_1, Ctx::None) {
- r = min(r, 1.0f);
- g = min(g, 1.0f);
- b = min(b, 1.0f);
- a = min(a, 1.0f);
-}
-
-STAGE(clamp_a, Ctx::None) {
- a = min(a, 1.0f);
- r = min(r, a);
- g = min(g, a);
- b = min(b, a);
-}
-
-STAGE(clamp_a_dst, Ctx::None) {
- da = min(da, 1.0f);
- dr = min(dr, da);
- dg = min(dg, da);
- db = min(db, da);
-}
-
-STAGE(set_rgb, const float* rgb) {
- r = rgb[0];
- g = rgb[1];
- b = rgb[2];
-}
-STAGE(swap_rb, Ctx::None) {
- auto tmp = r;
- r = b;
- b = tmp;
-}
-STAGE(invert, Ctx::None) {
- r = inv(r);
- g = inv(g);
- b = inv(b);
- a = inv(a);
-}
-
-STAGE(move_src_dst, Ctx::None) {
- dr = r;
- dg = g;
- db = b;
- da = a;
-}
-STAGE(move_dst_src, Ctx::None) {
- r = dr;
- g = dg;
- b = db;
- a = da;
-}
-
-STAGE(premul, Ctx::None) {
- r = r * a;
- g = g * a;
- b = b * a;
-}
-STAGE(premul_dst, Ctx::None) {
- dr = dr * da;
- dg = dg * da;
- db = db * da;
-}
-STAGE(unpremul, Ctx::None) {
- float inf = bit_cast<float>(0x7f800000);
- auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
- r *= scale;
- g *= scale;
- b *= scale;
-}
-
-STAGE(force_opaque , Ctx::None) { a = 1; }
-STAGE(force_opaque_dst, Ctx::None) { da = 1; }
-
-SI F from_srgb_(F s) {
- auto lo = s * (1/12.92f);
- auto hi = mad(s*s, mad(s, 0.3000f, 0.6975f), 0.0025f);
- return if_then_else(s < 0.055f, lo, hi);
-}
-
-STAGE(from_srgb, Ctx::None) {
- r = from_srgb_(r);
- g = from_srgb_(g);
- b = from_srgb_(b);
-}
-STAGE(from_srgb_dst, Ctx::None) {
- dr = from_srgb_(dr);
- dg = from_srgb_(dg);
- db = from_srgb_(db);
-}
-STAGE(to_srgb, Ctx::None) {
- auto fn = [&](F l) {
- // We tweak c and d for each instruction set to make sure fn(1) is exactly 1.
- #if defined(JUMPER_IS_AVX512)
- const float c = 1.130026340485f,
- d = 0.141387879848f;
- #elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || \
- defined(JUMPER_IS_AVX ) || defined(JUMPER_IS_HSW )
- const float c = 1.130048394203f,
- d = 0.141357362270f;
- #elif defined(JUMPER_IS_NEON)
- const float c = 1.129999995232f,
- d = 0.141381442547f;
- #else
- const float c = 1.129999995232f,
- d = 0.141377761960f;
- #endif
- F t = rsqrt(l);
- auto lo = l * 12.92f;
- auto hi = mad(t, mad(t, -0.0024542345f, 0.013832027f), c)
- * rcp(d + t);
- return if_then_else(l < 0.00465985f, lo, hi);
- };
- r = fn(r);
- g = fn(g);
- b = fn(b);
-}
-
-STAGE(rgb_to_hsl, Ctx::None) {
- F mx = max(r,g,b),
- mn = min(r,g,b),
- d = mx - mn,
- d_rcp = 1.0f / d;
-
- F h = (1/6.0f) *
- if_then_else(mx == mn, 0,
- if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
- if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
- (r-g)*d_rcp + 4.0f)));
-
- F l = (mx + mn) * 0.5f;
- F s = if_then_else(mx == mn, 0,
- d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
-
- r = h;
- g = s;
- b = l;
-}
-STAGE(hsl_to_rgb, Ctx::None) {
- F h = r,
- s = g,
- l = b;
-
- F q = l + if_then_else(l >= 0.5f, s - l*s, l*s),
- p = 2.0f*l - q;
-
- auto hue_to_rgb = [&](F t) {
- t = fract(t);
-
- F r = p;
- r = if_then_else(t >= 4/6.0f, r, p + (q-p)*(4.0f - 6.0f*t));
- r = if_then_else(t >= 3/6.0f, r, q);
- r = if_then_else(t >= 1/6.0f, r, p + (q-p)*( 6.0f*t));
- return r;
- };
-
- r = if_then_else(s == 0, l, hue_to_rgb(h + (1/3.0f)));
- g = if_then_else(s == 0, l, hue_to_rgb(h ));
- b = if_then_else(s == 0, l, hue_to_rgb(h - (1/3.0f)));
-}
-
-// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
-SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
- return if_then_else(a < da, min(cr,cg,cb)
- , max(cr,cg,cb));
-}
-
-STAGE(scale_1_float, const float* c) {
- r = r * *c;
- g = g * *c;
- b = b * *c;
- a = a * *c;
-}
-STAGE(scale_u8, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
-
- auto scales = load<U8>(ptr, tail);
- auto c = from_byte(scales);
-
- r = r * c;
- g = g * c;
- b = b * c;
- a = a * c;
-}
-STAGE(scale_565, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
-
- F cr,cg,cb;
- from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
-
- F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
-
- r = r * cr;
- g = g * cg;
- b = b * cb;
- a = a * ca;
-}
-
-SI F lerp(F from, F to, F t) {
- return mad(to-from, t, from);
-}
-
-STAGE(lerp_1_float, const float* c) {
- r = lerp(dr, r, *c);
- g = lerp(dg, g, *c);
- b = lerp(db, b, *c);
- a = lerp(da, a, *c);
-}
-STAGE(lerp_u8, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
-
- auto scales = load<U8>(ptr, tail);
- auto c = from_byte(scales);
-
- r = lerp(dr, r, c);
- g = lerp(dg, g, c);
- b = lerp(db, b, c);
- a = lerp(da, a, c);
-}
-STAGE(lerp_565, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
-
- F cr,cg,cb;
- from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
-
- F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
-
- r = lerp(dr, r, cr);
- g = lerp(dg, g, cg);
- b = lerp(db, b, cb);
- a = lerp(da, a, ca);
-}
-
-STAGE(load_tables, const SkJumper_LoadTablesCtx* c) {
- auto px = load<U32>((const uint32_t*)c->src + dx, tail);
- r = gather(c->r, (px ) & 0xff);
- g = gather(c->g, (px >> 8) & 0xff);
- b = gather(c->b, (px >> 16) & 0xff);
- a = cast( (px >> 24)) * (1/255.0f);
-}
-STAGE(load_tables_u16_be, const SkJumper_LoadTablesCtx* c) {
- auto ptr = (const uint16_t*)c->src + 4*dx;
-
- U16 R,G,B,A;
- load4(ptr, tail, &R,&G,&B,&A);
-
- // c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
- r = gather(c->r, expand(R) & 0xff);
- g = gather(c->g, expand(G) & 0xff);
- b = gather(c->b, expand(B) & 0xff);
- a = (1/65535.0f) * cast(expand(bswap(A)));
-}
-STAGE(load_tables_rgb_u16_be, const SkJumper_LoadTablesCtx* c) {
- auto ptr = (const uint16_t*)c->src + 3*dx;
-
- U16 R,G,B;
- load3(ptr, tail, &R,&G,&B);
-
- // c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
- r = gather(c->r, expand(R) & 0xff);
- g = gather(c->g, expand(G) & 0xff);
- b = gather(c->b, expand(B) & 0xff);
- a = 1.0f;
-}
-
-STAGE(byte_tables, const void* ctx) { // TODO: rename Tables SkJumper_ByteTablesCtx
- struct Tables { const uint8_t *r, *g, *b, *a; };
- auto tables = (const Tables*)ctx;
-
- r = from_byte(gather(tables->r, to_unorm(r, 255)));
- g = from_byte(gather(tables->g, to_unorm(g, 255)));
- b = from_byte(gather(tables->b, to_unorm(b, 255)));
- a = from_byte(gather(tables->a, to_unorm(a, 255)));
-}
-
-STAGE(byte_tables_rgb, const SkJumper_ByteTablesRGBCtx* ctx) {
- int scale = ctx->n - 1;
- r = from_byte(gather(ctx->r, to_unorm(r, scale)));
- g = from_byte(gather(ctx->g, to_unorm(g, scale)));
- b = from_byte(gather(ctx->b, to_unorm(b, scale)));
-}
-
-SI F table(F v, const SkJumper_TableCtx* ctx) {
- return gather(ctx->table, to_unorm(v, ctx->size - 1));
-}
-STAGE(table_r, const SkJumper_TableCtx* ctx) { r = table(r, ctx); }
-STAGE(table_g, const SkJumper_TableCtx* ctx) { g = table(g, ctx); }
-STAGE(table_b, const SkJumper_TableCtx* ctx) { b = table(b, ctx); }
-STAGE(table_a, const SkJumper_TableCtx* ctx) { a = table(a, ctx); }
-
-SI F parametric(F v, const SkJumper_ParametricTransferFunction* ctx) {
- F r = if_then_else(v <= ctx->D, mad(ctx->C, v, ctx->F)
- , approx_powf(mad(ctx->A, v, ctx->B), ctx->G) + ctx->E);
- return min(max(r, 0), 1.0f); // Clamp to [0,1], with argument order mattering to handle NaN.
-}
-STAGE(parametric_r, const SkJumper_ParametricTransferFunction* ctx) { r = parametric(r, ctx); }
-STAGE(parametric_g, const SkJumper_ParametricTransferFunction* ctx) { g = parametric(g, ctx); }
-STAGE(parametric_b, const SkJumper_ParametricTransferFunction* ctx) { b = parametric(b, ctx); }
-STAGE(parametric_a, const SkJumper_ParametricTransferFunction* ctx) { a = parametric(a, ctx); }
-
-STAGE(gamma, const float* G) {
- r = approx_powf(r, *G);
- g = approx_powf(g, *G);
- b = approx_powf(b, *G);
-}
-STAGE(gamma_dst, const float* G) {
- dr = approx_powf(dr, *G);
- dg = approx_powf(dg, *G);
- db = approx_powf(db, *G);
-}
-
-STAGE(lab_to_xyz, Ctx::None) {
- F L = r * 100.0f,
- A = g * 255.0f - 128.0f,
- B = b * 255.0f - 128.0f;
-
- F Y = (L + 16.0f) * (1/116.0f),
- X = Y + A*(1/500.0f),
- Z = Y - B*(1/200.0f);
-
- X = if_then_else(X*X*X > 0.008856f, X*X*X, (X - (16/116.0f)) * (1/7.787f));
- Y = if_then_else(Y*Y*Y > 0.008856f, Y*Y*Y, (Y - (16/116.0f)) * (1/7.787f));
- Z = if_then_else(Z*Z*Z > 0.008856f, Z*Z*Z, (Z - (16/116.0f)) * (1/7.787f));
-
- // Adjust to D50 illuminant.
- r = X * 0.96422f;
- g = Y ;
- b = Z * 0.82521f;
-}
-
-STAGE(load_a8, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
-
- r = g = b = 0.0f;
- a = from_byte(load<U8>(ptr, tail));
-}
-STAGE(load_a8_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
-
- dr = dg = db = 0.0f;
- da = from_byte(load<U8>(ptr, tail));
-}
-STAGE(gather_a8, const SkJumper_GatherCtx* ctx) {
- const uint8_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- r = g = b = 0.0f;
- a = from_byte(gather(ptr, ix));
-}
-STAGE(store_a8, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
-
- U8 packed = pack(pack(to_unorm(a, 255)));
- store(ptr, packed, tail);
-}
-
-STAGE(load_g8, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
-
- r = g = b = from_byte(load<U8>(ptr, tail));
- a = 1.0f;
-}
-STAGE(load_g8_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
-
- dr = dg = db = from_byte(load<U8>(ptr, tail));
- da = 1.0f;
-}
-STAGE(gather_g8, const SkJumper_GatherCtx* ctx) {
- const uint8_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- r = g = b = from_byte(gather(ptr, ix));
- a = 1.0f;
-}
-
-STAGE(load_565, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
-
- from_565(load<U16>(ptr, tail), &r,&g,&b);
- a = 1.0f;
-}
-STAGE(load_565_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
-
- from_565(load<U16>(ptr, tail), &dr,&dg,&db);
- da = 1.0f;
-}
-STAGE(gather_565, const SkJumper_GatherCtx* ctx) {
- const uint16_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- from_565(gather(ptr, ix), &r,&g,&b);
- a = 1.0f;
-}
-STAGE(store_565, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
-
- U16 px = pack( to_unorm(r, 31) << 11
- | to_unorm(g, 63) << 5
- | to_unorm(b, 31) );
- store(ptr, px, tail);
-}
-
-STAGE(load_4444, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
- from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
-}
-STAGE(load_4444_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
- from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
-}
-STAGE(gather_4444, const SkJumper_GatherCtx* ctx) {
- const uint16_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- from_4444(gather(ptr, ix), &r,&g,&b,&a);
-}
-STAGE(store_4444, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
- U16 px = pack( to_unorm(r, 15) << 12
- | to_unorm(g, 15) << 8
- | to_unorm(b, 15) << 4
- | to_unorm(a, 15) );
- store(ptr, px, tail);
-}
-
-STAGE(load_8888, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
- from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
-}
-STAGE(load_8888_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
- from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
-}
-STAGE(gather_8888, const SkJumper_GatherCtx* ctx) {
- const uint32_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- from_8888(gather(ptr, ix), &r,&g,&b,&a);
-}
-STAGE(store_8888, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
-
- U32 px = to_unorm(r, 255)
- | to_unorm(g, 255) << 8
- | to_unorm(b, 255) << 16
- | to_unorm(a, 255) << 24;
- store(ptr, px, tail);
-}
-
-STAGE(load_bgra, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
- from_8888(load<U32>(ptr, tail), &b,&g,&r,&a);
-}
-STAGE(load_bgra_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
- from_8888(load<U32>(ptr, tail), &db,&dg,&dr,&da);
-}
-STAGE(gather_bgra, const SkJumper_GatherCtx* ctx) {
- const uint32_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- from_8888(gather(ptr, ix), &b,&g,&r,&a);
-}
-STAGE(store_bgra, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
-
- U32 px = to_unorm(b, 255)
- | to_unorm(g, 255) << 8
- | to_unorm(r, 255) << 16
- | to_unorm(a, 255) << 24;
- store(ptr, px, tail);
-}
-
-STAGE(load_1010102, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
- from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a);
-}
-STAGE(load_1010102_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
- from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da);
-}
-STAGE(gather_1010102, const SkJumper_GatherCtx* ctx) {
- const uint32_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- from_1010102(gather(ptr, ix), &r,&g,&b,&a);
-}
-STAGE(store_1010102, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
-
- U32 px = to_unorm(r, 1023)
- | to_unorm(g, 1023) << 10
- | to_unorm(b, 1023) << 20
- | to_unorm(a, 3) << 30;
- store(ptr, px, tail);
-}
-
-STAGE(load_f16, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
-
- U16 R,G,B,A;
- load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
- r = from_half(R);
- g = from_half(G);
- b = from_half(B);
- a = from_half(A);
-}
-STAGE(load_f16_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
-
- U16 R,G,B,A;
- load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
- dr = from_half(R);
- dg = from_half(G);
- db = from_half(B);
- da = from_half(A);
-}
-STAGE(gather_f16, const SkJumper_GatherCtx* ctx) {
- const uint64_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, r,g);
- auto px = gather(ptr, ix);
-
- U16 R,G,B,A;
- load4((const uint16_t*)&px,0, &R,&G,&B,&A);
- r = from_half(R);
- g = from_half(G);
- b = from_half(B);
- a = from_half(A);
-}
-STAGE(store_f16, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
- store4((uint16_t*)ptr,tail, to_half(r)
- , to_half(g)
- , to_half(b)
- , to_half(a));
-}
-
-STAGE(load_u16_be, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, 4*dx,dy);
-
- U16 R,G,B,A;
- load4(ptr,tail, &R,&G,&B,&A);
-
- r = (1/65535.0f) * cast(expand(bswap(R)));
- g = (1/65535.0f) * cast(expand(bswap(G)));
- b = (1/65535.0f) * cast(expand(bswap(B)));
- a = (1/65535.0f) * cast(expand(bswap(A)));
-}
-STAGE(load_rgb_u16_be, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const uint16_t>(ctx, 3*dx,dy);
-
- U16 R,G,B;
- load3(ptr,tail, &R,&G,&B);
-
- r = (1/65535.0f) * cast(expand(bswap(R)));
- g = (1/65535.0f) * cast(expand(bswap(G)));
- b = (1/65535.0f) * cast(expand(bswap(B)));
- a = 1.0f;
-}
-STAGE(store_u16_be, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
-
- U16 R = bswap(pack(to_unorm(r, 65535))),
- G = bswap(pack(to_unorm(g, 65535))),
- B = bswap(pack(to_unorm(b, 65535))),
- A = bswap(pack(to_unorm(a, 65535)));
-
- store4(ptr,tail, R,G,B,A);
-}
-
-STAGE(load_f32, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const float>(ctx, 4*dx,dy);
- load4(ptr,tail, &r,&g,&b,&a);
-}
-STAGE(load_f32_dst, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<const float>(ctx, 4*dx,dy);
- load4(ptr,tail, &dr,&dg,&db,&da);
-}
-STAGE(store_f32, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<float>(ctx, 4*dx,dy);
- store4(ptr,tail, r,g,b,a);
-}
-
-SI F exclusive_repeat(F v, const SkJumper_TileCtx* ctx) {
- return v - floor_(v*ctx->invScale)*ctx->scale;
-}
-SI F exclusive_mirror(F v, const SkJumper_TileCtx* ctx) {
- auto limit = ctx->scale;
- auto invLimit = ctx->invScale;
- return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
-}
-// Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
-// The gather stages will hard clamp the output of these stages to [0,limit)...
-// we just need to do the basic repeat or mirroring.
-STAGE(repeat_x, const SkJumper_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
-STAGE(repeat_y, const SkJumper_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
-STAGE(mirror_x, const SkJumper_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
-STAGE(mirror_y, const SkJumper_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
-
-// Clamp x to [0,1], both sides inclusive (think, gradients).
-// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
-SI F clamp_01(F v) { return min(max(0, v), 1); }
-
-STAGE( clamp_x_1, Ctx::None) { r = clamp_01(r); }
-STAGE(repeat_x_1, Ctx::None) { r = clamp_01(r - floor_(r)); }
-STAGE(mirror_x_1, Ctx::None) { r = clamp_01(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
-
-// Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
-// mask == 0x00000000 if the coordinate(s) are out of bounds
-// mask == 0xFFFFFFFF if the coordinate(s) are in bounds
-// After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
-// if either of the coordinates were out of bounds.
-
-STAGE(decal_x, SkJumper_DecalTileCtx* ctx) {
- auto w = ctx->limit_x;
- unaligned_store(ctx->mask, cond_to_mask((0 <= r) & (r < w)));
-}
-STAGE(decal_y, SkJumper_DecalTileCtx* ctx) {
- auto h = ctx->limit_y;
- unaligned_store(ctx->mask, cond_to_mask((0 <= g) & (g < h)));
-}
-STAGE(decal_x_and_y, SkJumper_DecalTileCtx* ctx) {
- auto w = ctx->limit_x;
- auto h = ctx->limit_y;
- unaligned_store(ctx->mask,
- cond_to_mask((0 <= r) & (r < w) & (0 <= g) & (g < h)));
-}
-STAGE(check_decal_mask, SkJumper_DecalTileCtx* ctx) {
- auto mask = unaligned_load<U32>(ctx->mask);
- r = bit_cast<F>( bit_cast<U32>(r) & mask );
- g = bit_cast<F>( bit_cast<U32>(g) & mask );
- b = bit_cast<F>( bit_cast<U32>(b) & mask );
- a = bit_cast<F>( bit_cast<U32>(a) & mask );
-}
-
-STAGE(luminance_to_alpha, Ctx::None) {
- a = r*0.2126f + g*0.7152f + b*0.0722f;
- r = g = b = 0;
-}
-
-STAGE(matrix_translate, const float* m) {
- r += m[0];
- g += m[1];
-}
-STAGE(matrix_scale_translate, const float* m) {
- r = mad(r,m[0], m[2]);
- g = mad(g,m[1], m[3]);
-}
-STAGE(matrix_2x3, const float* m) {
- auto R = mad(r,m[0], mad(g,m[2], m[4])),
- G = mad(r,m[1], mad(g,m[3], m[5]));
- r = R;
- g = G;
-}
-STAGE(matrix_3x4, const float* m) {
- auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
- G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
- B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
- r = R;
- g = G;
- b = B;
-}
-STAGE(matrix_4x5, const float* m) {
- auto R = mad(r,m[0], mad(g,m[4], mad(b,m[ 8], mad(a,m[12], m[16])))),
- G = mad(r,m[1], mad(g,m[5], mad(b,m[ 9], mad(a,m[13], m[17])))),
- B = mad(r,m[2], mad(g,m[6], mad(b,m[10], mad(a,m[14], m[18])))),
- A = mad(r,m[3], mad(g,m[7], mad(b,m[11], mad(a,m[15], m[19]))));
- r = R;
- g = G;
- b = B;
- a = A;
-}
-STAGE(matrix_4x3, const float* m) {
- auto X = r,
- Y = g;
-
- r = mad(X, m[0], mad(Y, m[4], m[ 8]));
- g = mad(X, m[1], mad(Y, m[5], m[ 9]));
- b = mad(X, m[2], mad(Y, m[6], m[10]));
- a = mad(X, m[3], mad(Y, m[7], m[11]));
-}
-STAGE(matrix_perspective, const float* m) {
- // N.B. Unlike the other matrix_ stages, this matrix is row-major.
- auto R = mad(r,m[0], mad(g,m[1], m[2])),
- G = mad(r,m[3], mad(g,m[4], m[5])),
- Z = mad(r,m[6], mad(g,m[7], m[8]));
- r = R * rcp(Z);
- g = G * rcp(Z);
-}
-
-SI void gradient_lookup(const SkJumper_GradientCtx* c, U32 idx, F t,
- F* r, F* g, F* b, F* a) {
- F fr, br, fg, bg, fb, bb, fa, ba;
-#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
- if (c->stopCount <=8) {
- fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
- br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
- fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
- bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
- fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
- bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
- fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
- ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
- } else
-#endif
- {
- fr = gather(c->fs[0], idx);
- br = gather(c->bs[0], idx);
- fg = gather(c->fs[1], idx);
- bg = gather(c->bs[1], idx);
- fb = gather(c->fs[2], idx);
- bb = gather(c->bs[2], idx);
- fa = gather(c->fs[3], idx);
- ba = gather(c->bs[3], idx);
- }
-
- *r = mad(t, fr, br);
- *g = mad(t, fg, bg);
- *b = mad(t, fb, bb);
- *a = mad(t, fa, ba);
-}
-
-STAGE(evenly_spaced_gradient, const SkJumper_GradientCtx* c) {
- auto t = r;
- auto idx = trunc_(t * (c->stopCount-1));
- gradient_lookup(c, idx, t, &r, &g, &b, &a);
-}
-
-STAGE(gradient, const SkJumper_GradientCtx* c) {
- auto t = r;
- U32 idx = 0;
-
- // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
- for (size_t i = 1; i < c->stopCount; i++) {
- idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
- }
-
- gradient_lookup(c, idx, t, &r, &g, &b, &a);
-}
-
-STAGE(evenly_spaced_2_stop_gradient, const void* ctx) {
- // TODO: Rename Ctx SkJumper_EvenlySpaced2StopGradientCtx.
- struct Ctx { float f[4], b[4]; };
- auto c = (const Ctx*)ctx;
-
- auto t = r;
- r = mad(t, c->f[0], c->b[0]);
- g = mad(t, c->f[1], c->b[1]);
- b = mad(t, c->f[2], c->b[2]);
- a = mad(t, c->f[3], c->b[3]);
-}
-
-STAGE(xy_to_unit_angle, Ctx::None) {
- F X = r,
- Y = g;
- F xabs = abs_(X),
- yabs = abs_(Y);
-
- F slope = min(xabs, yabs)/max(xabs, yabs);
- F s = slope * slope;
-
- // Use a 7th degree polynomial to approximate atan.
- // This was generated using sollya.gforge.inria.fr.
- // A float optimized polynomial was generated using the following command.
- // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
- F phi = slope
- * (0.15912117063999176025390625f + s
- * (-5.185396969318389892578125e-2f + s
- * (2.476101927459239959716796875e-2f + s
- * (-7.0547382347285747528076171875e-3f))));
-
- phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
- phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
- phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
- phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
- r = phi;
-}
-
-STAGE(xy_to_radius, Ctx::None) {
- F X2 = r * r,
- Y2 = g * g;
- r = sqrt_(X2 + Y2);
-}
-
-// Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
-
-STAGE(negate_x, Ctx::None) { r = -r; }
-
-STAGE(xy_to_2pt_conical_strip, const SkJumper_2PtConicalCtx* ctx) {
- F x = r, y = g, &t = r;
- t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
-}
-
-STAGE(xy_to_2pt_conical_focal_on_circle, Ctx::None) {
- F x = r, y = g, &t = r;
- t = x + y*y / x; // (x^2 + y^2) / x
-}
-
-STAGE(xy_to_2pt_conical_well_behaved, const SkJumper_2PtConicalCtx* ctx) {
- F x = r, y = g, &t = r;
- t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
-}
-
-STAGE(xy_to_2pt_conical_greater, const SkJumper_2PtConicalCtx* ctx) {
- F x = r, y = g, &t = r;
- t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
-}
-
-STAGE(xy_to_2pt_conical_smaller, const SkJumper_2PtConicalCtx* ctx) {
- F x = r, y = g, &t = r;
- t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
-}
-
-STAGE(alter_2pt_conical_compensate_focal, const SkJumper_2PtConicalCtx* ctx) {
- F& t = r;
- t = t + ctx->fP1; // ctx->fP1 = f
-}
-
-STAGE(alter_2pt_conical_unswap, Ctx::None) {
- F& t = r;
- t = 1 - t;
-}
-
-STAGE(mask_2pt_conical_nan, SkJumper_2PtConicalCtx* c) {
- F& t = r;
- auto is_degenerate = (t != t); // NaN
- t = if_then_else(is_degenerate, F(0), t);
- unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
-}
-
-STAGE(mask_2pt_conical_degenerates, SkJumper_2PtConicalCtx* c) {
- F& t = r;
- auto is_degenerate = (t <= 0) | (t != t);
- t = if_then_else(is_degenerate, F(0), t);
- unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
-}
-
-STAGE(apply_vector_mask, const uint32_t* ctx) {
- const U32 mask = unaligned_load<U32>(ctx);
- r = bit_cast<F>(bit_cast<U32>(r) & mask);
- g = bit_cast<F>(bit_cast<U32>(g) & mask);
- b = bit_cast<F>(bit_cast<U32>(b) & mask);
- a = bit_cast<F>(bit_cast<U32>(a) & mask);
-}
-
-STAGE(save_xy, SkJumper_SamplerCtx* c) {
- // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
- // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
- // surrounding (x,y) at (0.5,0.5) off-center.
- F fx = fract(r + 0.5f),
- fy = fract(g + 0.5f);
-
- // Samplers will need to load x and fx, or y and fy.
- unaligned_store(c->x, r);
- unaligned_store(c->y, g);
- unaligned_store(c->fx, fx);
- unaligned_store(c->fy, fy);
-}
-
-STAGE(accumulate, const SkJumper_SamplerCtx* c) {
- // Bilinear and bicubic filters are both separable, so we produce independent contributions
- // from x and y, multiplying them together here to get each pixel's total scale factor.
- auto scale = unaligned_load<F>(c->scalex)
- * unaligned_load<F>(c->scaley);
- dr = mad(scale, r, dr);
- dg = mad(scale, g, dg);
- db = mad(scale, b, db);
- da = mad(scale, a, da);
-}
-
-// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
-// are combined in direct proportion to their area overlapping that logical query pixel.
-// At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
-// The y-axis is symmetric.
-
-template <int kScale>
-SI void bilinear_x(SkJumper_SamplerCtx* ctx, F* x) {
- *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
- F fx = unaligned_load<F>(ctx->fx);
-
- F scalex;
- if (kScale == -1) { scalex = 1.0f - fx; }
- if (kScale == +1) { scalex = fx; }
- unaligned_store(ctx->scalex, scalex);
-}
-template <int kScale>
-SI void bilinear_y(SkJumper_SamplerCtx* ctx, F* y) {
- *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
- F fy = unaligned_load<F>(ctx->fy);
-
- F scaley;
- if (kScale == -1) { scaley = 1.0f - fy; }
- if (kScale == +1) { scaley = fy; }
- unaligned_store(ctx->scaley, scaley);
-}
-
-STAGE(bilinear_nx, SkJumper_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
-STAGE(bilinear_px, SkJumper_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
-STAGE(bilinear_ny, SkJumper_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
-STAGE(bilinear_py, SkJumper_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
-
-
-// In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
-// pixel center are combined with a non-uniform cubic filter, with higher values near the center.
-//
-// We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
-// See GrCubicEffect for details of this particular filter.
-
-SI F bicubic_near(F t) {
- // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
- return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f));
-}
-SI F bicubic_far(F t) {
- // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
- return (t*t)*mad((7/18.0f), t, (-6/18.0f));
-}
-
-template <int kScale>
-SI void bicubic_x(SkJumper_SamplerCtx* ctx, F* x) {
- *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
- F fx = unaligned_load<F>(ctx->fx);
-
- F scalex;
- if (kScale == -3) { scalex = bicubic_far (1.0f - fx); }
- if (kScale == -1) { scalex = bicubic_near(1.0f - fx); }
- if (kScale == +1) { scalex = bicubic_near( fx); }
- if (kScale == +3) { scalex = bicubic_far ( fx); }
- unaligned_store(ctx->scalex, scalex);
-}
-template <int kScale>
-SI void bicubic_y(SkJumper_SamplerCtx* ctx, F* y) {
- *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
- F fy = unaligned_load<F>(ctx->fy);
-
- F scaley;
- if (kScale == -3) { scaley = bicubic_far (1.0f - fy); }
- if (kScale == -1) { scaley = bicubic_near(1.0f - fy); }
- if (kScale == +1) { scaley = bicubic_near( fy); }
- if (kScale == +3) { scaley = bicubic_far ( fy); }
- unaligned_store(ctx->scaley, scaley);
-}
-
-STAGE(bicubic_n3x, SkJumper_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
-STAGE(bicubic_n1x, SkJumper_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
-STAGE(bicubic_p1x, SkJumper_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
-STAGE(bicubic_p3x, SkJumper_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
-
-STAGE(bicubic_n3y, SkJumper_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
-STAGE(bicubic_n1y, SkJumper_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
-STAGE(bicubic_p1y, SkJumper_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
-STAGE(bicubic_p3y, SkJumper_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
-
-STAGE(callback, SkJumper_CallbackCtx* c) {
- store4(c->rgba,0, r,g,b,a);
- c->fn(c, tail ? tail : N);
- load4(c->read_from,0, &r,&g,&b,&a);
-}
-
-// Our general strategy is to recursively interpolate each dimension,
-// accumulating the index to sample at, and our current pixel stride to help accumulate the index.
-template <int dim>
-SI void color_lookup_table(const SkJumper_ColorLookupTableCtx* ctx,
- F& r, F& g, F& b, F a, U32 index, U32 stride) {
- // We'd logically like to sample this dimension at x.
- int limit = ctx->limits[dim-1];
- F src;
- switch(dim) {
- case 1: src = r; break;
- case 2: src = g; break;
- case 3: src = b; break;
- case 4: src = a; break;
- }
- F x = src * (limit - 1);
-
- // We can't index an array by a float (darn) so we have to snap to nearby integers lo and hi.
- U32 lo = trunc_(x ),
- hi = trunc_(x + 0.9999f);
-
- // Recursively sample at lo and hi.
- F lr = r, lg = g, lb = b,
- hr = r, hg = g, hb = b;
- color_lookup_table<dim-1>(ctx, lr,lg,lb,a, stride*lo + index, stride*limit);
- color_lookup_table<dim-1>(ctx, hr,hg,hb,a, stride*hi + index, stride*limit);
-
- // Linearly interpolate those colors based on their distance to x.
- F t = x - cast(lo);
- r = lerp(lr, hr, t);
- g = lerp(lg, hg, t);
- b = lerp(lb, hb, t);
-}
-
-// Bottom out our recursion at 0 dimensions, i.e. just return the colors at index.
-template<>
-inline void color_lookup_table<0>(const SkJumper_ColorLookupTableCtx* ctx,
- F& r, F& g, F& b, F a, U32 index, U32 stride) {
- r = gather(ctx->table, 3*index+0);
- g = gather(ctx->table, 3*index+1);
- b = gather(ctx->table, 3*index+2);
-}
-
-STAGE(clut_3D, const SkJumper_ColorLookupTableCtx* ctx) {
- color_lookup_table<3>(ctx, r,g,b,a, 0,1);
- // This 3D color lookup table leaves alpha alone.
-}
-STAGE(clut_4D, const SkJumper_ColorLookupTableCtx* ctx) {
- color_lookup_table<4>(ctx, r,g,b,a, 0,1);
- // "a" was really CMYK's K, so we just set alpha opaque.
- a = 1.0f;
-}
-
-STAGE(gauss_a_to_rgba, Ctx::None) {
- // x = 1 - x;
- // exp(-x * x * 4) - 0.018f;
- // ... now approximate with quartic
- //
- const float c4 = -2.26661229133605957031f;
- const float c3 = 2.89795351028442382812f;
- const float c2 = 0.21345567703247070312f;
- const float c1 = 0.15489584207534790039f;
- const float c0 = 0.00030726194381713867f;
- a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
- r = a;
- g = a;
- b = a;
-}
-
-// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
-STAGE(bilerp_clamp_8888, SkJumper_GatherCtx* ctx) {
- // (cx,cy) are the center of our sample.
- F cx = r,
- cy = g;
-
- // All sample points are at the same fractional offset (fx,fy).
- // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
- F fx = fract(cx + 0.5f),
- fy = fract(cy + 0.5f);
-
- // We'll accumulate the color of all four samples into {r,g,b,a} directly.
- r = g = b = a = 0;
-
- for (float dy = -0.5f; dy <= +0.5f; dy += 1.0f)
- for (float dx = -0.5f; dx <= +0.5f; dx += 1.0f) {
- // (x,y) are the coordinates of this sample point.
- F x = cx + dx,
- y = cy + dy;
-
- // ix_and_ptr() will clamp to the image's bounds for us.
- const uint32_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, x,y);
-
- F sr,sg,sb,sa;
- from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
-
- // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
- // are combined in direct proportion to their area overlapping that logical query pixel.
- // At positive offsets, the x-axis contribution to that rectangle is fx,
- // or (1-fx) at negative x. Same deal for y.
- F sx = (dx > 0) ? fx : 1.0f - fx,
- sy = (dy > 0) ? fy : 1.0f - fy,
- area = sx * sy;
-
- r += sr * area;
- g += sg * area;
- b += sb * area;
- a += sa * area;
- }
-}
-
-namespace lowp {
-#if defined(__clang__)
-
-#if defined(__AVX2__)
- using U8 = uint8_t __attribute__((ext_vector_type(16)));
- using U16 = uint16_t __attribute__((ext_vector_type(16)));
- using I16 = int16_t __attribute__((ext_vector_type(16)));
- using I32 = int32_t __attribute__((ext_vector_type(16)));
- using U32 = uint32_t __attribute__((ext_vector_type(16)));
- using F = float __attribute__((ext_vector_type(16)));
-#else
- using U8 = uint8_t __attribute__((ext_vector_type(8)));
- using U16 = uint16_t __attribute__((ext_vector_type(8)));
- using I16 = int16_t __attribute__((ext_vector_type(8)));
- using I32 = int32_t __attribute__((ext_vector_type(8)));
- using U32 = uint32_t __attribute__((ext_vector_type(8)));
- using F = float __attribute__((ext_vector_type(8)));
-#endif
-
-static const size_t N = sizeof(U16) / sizeof(uint16_t);
-
-// TODO: follow the guidance of JUMPER_NARROW_STAGES for lowp stages too.
-
-// We pass program as the second argument so that load_and_inc() will find it in %rsi on x86-64.
-using Stage = void (ABI*)(size_t tail, void** program, size_t dx, size_t dy,
- U16 r, U16 g, U16 b, U16 a,
- U16 dr, U16 dg, U16 db, U16 da);
-
-static void start_pipeline(const size_t x0, const size_t y0,
- const size_t xlimit, const size_t ylimit, void** program) {
- auto start = (Stage)load_and_inc(program);
- for (size_t dy = y0; dy < ylimit; dy++) {
- size_t dx = x0;
- for (; dx + N <= xlimit; dx += N) {
- start( 0,program,dx,dy, 0,0,0,0, 0,0,0,0);
- }
- if (size_t tail = xlimit - dx) {
- start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
- }
- }
-}
-
-static ABI void just_return(size_t,void**,size_t,size_t, U16,U16,U16,U16, U16,U16,U16,U16) {}
-
-// All stages use the same function call ABI to chain into each other, but there are three types:
-// GG: geometry in, geometry out -- think, a matrix
-// GP: geometry in, pixels out. -- think, a memory gather
-// PP: pixels in, pixels out. -- think, a blend mode
-//
-// (Some stages ignore their inputs or produce no logical output. That's perfectly fine.)
-//
-// These three STAGE_ macros let you define each type of stage,
-// and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
-
-#define STAGE_GG(name, ...) \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
- static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
- U16 r, U16 g, U16 b, U16 a, \
- U16 dr, U16 dg, U16 db, U16 da) { \
- auto x = join<F>(r,g), \
- y = join<F>(b,a); \
- name##_k(Ctx{program}, dx,dy,tail, x,y); \
- split(x, &r,&g); \
- split(y, &b,&a); \
- auto next = (Stage)load_and_inc(program); \
- next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
- } \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
-
-#define STAGE_GP(name, ...) \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
- U16& r, U16& g, U16& b, U16& a, \
- U16& dr, U16& dg, U16& db, U16& da); \
- static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
- U16 r, U16 g, U16 b, U16 a, \
- U16 dr, U16 dg, U16 db, U16 da) { \
- auto x = join<F>(r,g), \
- y = join<F>(b,a); \
- name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \
- auto next = (Stage)load_and_inc(program); \
- next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
- } \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
- U16& r, U16& g, U16& b, U16& a, \
- U16& dr, U16& dg, U16& db, U16& da)
-
-#define STAGE_PP(name, ...) \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
- U16& r, U16& g, U16& b, U16& a, \
- U16& dr, U16& dg, U16& db, U16& da); \
- static ABI void name(size_t tail, void** program, size_t dx, size_t dy, \
- U16 r, U16 g, U16 b, U16 a, \
- U16 dr, U16 dg, U16 db, U16 da) { \
- name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \
- auto next = (Stage)load_and_inc(program); \
- next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
- } \
- SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
- U16& r, U16& g, U16& b, U16& a, \
- U16& dr, U16& dg, U16& db, U16& da)
-
-// ~~~~~~ Commonly used helper functions ~~~~~~ //
-
-SI U16 div255(U16 v) {
-#if 0
- return (v+127)/255; // The ideal rounding divide by 255.
-#else
- return (v+255)/256; // A good approximation of (v+127)/255.
-#endif
-}
-
-SI U16 inv(U16 v) { return 255-v; }
-
-SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }
-SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); }
-
-SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
-SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
-SI U16 max(U16 x, U16 y, U16 z) { return max(x, max(y, z)); }
-SI U16 min(U16 x, U16 y, U16 z) { return min(x, min(y, z)); }
-
-SI U16 from_float(float f) { return f * 255.0f + 0.5f; }
-
-SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
-
-template <typename D, typename S>
-SI D cast(S src) {
- return __builtin_convertvector(src, D);
-}
-
-template <typename D, typename S>
-SI void split(S v, D* lo, D* hi) {
- static_assert(2*sizeof(D) == sizeof(S), "");
- memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
- memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
-}
-template <typename D, typename S>
-SI D join(S lo, S hi) {
- static_assert(sizeof(D) == 2*sizeof(S), "");
- D v;
- memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
- memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
- return v;
-}
-template <typename V, typename H>
-SI V map(V v, H (*fn)(H)) {
- H lo,hi;
- split(v, &lo,&hi);
- lo = fn(lo);
- hi = fn(hi);
- return join<V>(lo,hi);
-}
-
-SI F if_then_else(I32 c, F t, F e) {
- return bit_cast<F>( (bit_cast<I32>(t) & c) | (bit_cast<I32>(e) & ~c) );
-}
-SI F max(F x, F y) { return if_then_else(x < y, y, x); }
-SI F min(F x, F y) { return if_then_else(x < y, x, y); }
-
-SI F mad(F f, F m, F a) { return f*m+a; }
-SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
-
-SI F rcp(F x) {
-#if defined(__AVX2__)
- return map(x, _mm256_rcp_ps);
-#elif defined(__SSE__)
- return map(x, _mm_rcp_ps);
-#elif defined(__ARM_NEON)
- return map(x, +[](float32x4_t v) {
- auto est = vrecpeq_f32(v);
- return vrecpsq_f32(v,est)*est;
- });
-#else
- return 1.0f / x;
-#endif
-}
-SI F sqrt_(F x) {
-#if defined(__AVX2__)
- return map(x, _mm256_sqrt_ps);
-#elif defined(__SSE__)
- return map(x, _mm_sqrt_ps);
-#elif defined(__aarch64__)
- return map(x, vsqrtq_f32);
-#elif defined(__ARM_NEON)
- return map(x, +[](float32x4_t v) {
- auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v).
- est *= vrsqrtsq_f32(v,est*est);
- est *= vrsqrtsq_f32(v,est*est);
- return v*est; // sqrt(v) == v*rsqrt(v).
- });
-#else
- return F{
- sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
- sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
- };
-#endif
-}
-
-SI F floor_(F x) {
-#if defined(__aarch64__)
- return map(x, vrndmq_f32);
-#elif defined(__AVX2__)
- return map(x, +[](__m256 v){ return _mm256_floor_ps(v); }); // _mm256_floor_ps is a macro...
-#elif defined(__SSE4_1__)
- return map(x, +[](__m128 v){ return _mm_floor_ps(v); }); // _mm_floor_ps() is a macro too.
-#else
- F roundtrip = cast<F>(cast<I32>(x));
- return roundtrip - if_then_else(roundtrip > x, F(1), F(0));
-#endif
-}
-SI F abs_(F x) { return bit_cast<F>( bit_cast<I32>(x) & 0x7fffffff ); }
-
-// ~~~~~~ Basic / misc. stages ~~~~~~ //
-
-STAGE_GG(seed_shader, const float* iota) {
- x = cast<F>(I32(dx)) + unaligned_load<F>(iota);
- y = cast<F>(I32(dy)) + 0.5f;
-}
-
-STAGE_GG(matrix_translate, const float* m) {
- x += m[0];
- y += m[1];
-}
-STAGE_GG(matrix_scale_translate, const float* m) {
- x = mad(x,m[0], m[2]);
- y = mad(y,m[1], m[3]);
-}
-STAGE_GG(matrix_2x3, const float* m) {
- auto X = mad(x,m[0], mad(y,m[2], m[4])),
- Y = mad(x,m[1], mad(y,m[3], m[5]));
- x = X;
- y = Y;
-}
-STAGE_GG(matrix_perspective, const float* m) {
- // N.B. Unlike the other matrix_ stages, this matrix is row-major.
- auto X = mad(x,m[0], mad(y,m[1], m[2])),
- Y = mad(x,m[3], mad(y,m[4], m[5])),
- Z = mad(x,m[6], mad(y,m[7], m[8]));
- x = X * rcp(Z);
- y = Y * rcp(Z);
-}
-
-STAGE_PP(uniform_color, const SkJumper_UniformColorCtx* c) {
- r = c->rgba[0];
- g = c->rgba[1];
- b = c->rgba[2];
- a = c->rgba[3];
-}
-STAGE_PP(black_color, Ctx::None) { r = g = b = 0; a = 255; }
-STAGE_PP(white_color, Ctx::None) { r = g = b = 255; a = 255; }
-
-STAGE_PP(set_rgb, const float rgb[3]) {
- r = from_float(rgb[0]);
- g = from_float(rgb[1]);
- b = from_float(rgb[2]);
-}
-
-STAGE_PP(clamp_a, Ctx::None) {
- r = min(r, a);
- g = min(g, a);
- b = min(b, a);
-}
-STAGE_PP(clamp_a_dst, Ctx::None) {
- dr = min(dr, da);
- dg = min(dg, da);
- db = min(db, da);
-}
-
-STAGE_PP(premul, Ctx::None) {
- r = div255(r * a);
- g = div255(g * a);
- b = div255(b * a);
-}
-STAGE_PP(premul_dst, Ctx::None) {
- dr = div255(dr * da);
- dg = div255(dg * da);
- db = div255(db * da);
-}
-
-STAGE_PP(force_opaque , Ctx::None) { a = 255; }
-STAGE_PP(force_opaque_dst, Ctx::None) { da = 255; }
-
-STAGE_PP(swap_rb, Ctx::None) {
- auto tmp = r;
- r = b;
- b = tmp;
-}
-
-STAGE_PP(move_src_dst, Ctx::None) {
- dr = r;
- dg = g;
- db = b;
- da = a;
-}
-
-STAGE_PP(move_dst_src, Ctx::None) {
- r = dr;
- g = dg;
- b = db;
- a = da;
-}
-
-STAGE_PP(invert, Ctx::None) {
- r = inv(r);
- g = inv(g);
- b = inv(b);
- a = inv(a);
-}
-
-// ~~~~~~ Blend modes ~~~~~~ //
-
-// The same logic applied to all 4 channels.
-#define BLEND_MODE(name) \
- SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
- STAGE_PP(name, Ctx::None) { \
- r = name##_channel(r,dr,a,da); \
- g = name##_channel(g,dg,a,da); \
- b = name##_channel(b,db,a,da); \
- a = name##_channel(a,da,a,da); \
- } \
- SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
-
- BLEND_MODE(clear) { return 0; }
- BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
- BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
- BLEND_MODE(srcin) { return div255( s*da ); }
- BLEND_MODE(dstin) { return div255( d*sa ); }
- BLEND_MODE(srcout) { return div255( s*inv(da) ); }
- BLEND_MODE(dstout) { return div255( d*inv(sa) ); }
- BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); }
- BLEND_MODE(dstover) { return d + div255( s*inv(da) ); }
- BLEND_MODE(modulate) { return div255( s*d ); }
- BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
- BLEND_MODE(plus_) { return min(s+d, 255); }
- BLEND_MODE(screen) { return s + d - div255( s*d ); }
- BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
-#undef BLEND_MODE
-
-// The same logic applied to color, and srcover for alpha.
-#define BLEND_MODE(name) \
- SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
- STAGE_PP(name, Ctx::None) { \
- r = name##_channel(r,dr,a,da); \
- g = name##_channel(g,dg,a,da); \
- b = name##_channel(b,db,a,da); \
- a = a + div255( da*inv(a) ); \
- } \
- SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
-
- BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); }
- BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); }
- BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
- BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); }
-
- BLEND_MODE(hardlight) {
- return div255( s*inv(da) + d*inv(sa) +
- if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
- }
- BLEND_MODE(overlay) {
- return div255( s*inv(da) + d*inv(sa) +
- if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
- }
-#undef BLEND_MODE
-
-// ~~~~~~ Helpers for interacting with memory ~~~~~~ //
-
-template <typename T>
-SI T* ptr_at_xy(const SkJumper_MemoryCtx* ctx, size_t dx, size_t dy) {
- return (T*)ctx->pixels + dy*ctx->stride + dx;
-}
-
-template <typename T>
-SI U32 ix_and_ptr(T** ptr, const SkJumper_GatherCtx* ctx, F x, F y) {
- auto clamp = [](F v, F limit) {
- limit = bit_cast<F>( bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
- return min(max(0, v), limit);
- };
- x = clamp(x, ctx->width);
- y = clamp(y, ctx->height);
-
- *ptr = (const T*)ctx->pixels;
- return trunc_(y)*ctx->stride + trunc_(x);
-}
-
-template <typename V, typename T>
-SI V load(const T* ptr, size_t tail) {
- V v = 0;
- switch (tail & (N-1)) {
- case 0: memcpy(&v, ptr, sizeof(v)); break;
- #if defined(__AVX2__)
- case 15: v[14] = ptr[14];
- case 14: v[13] = ptr[13];
- case 13: v[12] = ptr[12];
- case 12: memcpy(&v, ptr, 12*sizeof(T)); break;
- case 11: v[10] = ptr[10];
- case 10: v[ 9] = ptr[ 9];
- case 9: v[ 8] = ptr[ 8];
- case 8: memcpy(&v, ptr, 8*sizeof(T)); break;
- #endif
- case 7: v[ 6] = ptr[ 6];
- case 6: v[ 5] = ptr[ 5];
- case 5: v[ 4] = ptr[ 4];
- case 4: memcpy(&v, ptr, 4*sizeof(T)); break;
- case 3: v[ 2] = ptr[ 2];
- case 2: memcpy(&v, ptr, 2*sizeof(T)); break;
- case 1: v[ 0] = ptr[ 0];
- }
- return v;
-}
-template <typename V, typename T>
-SI void store(T* ptr, size_t tail, V v) {
- switch (tail & (N-1)) {
- case 0: memcpy(ptr, &v, sizeof(v)); break;
- #if defined(__AVX2__)
- case 15: ptr[14] = v[14];
- case 14: ptr[13] = v[13];
- case 13: ptr[12] = v[12];
- case 12: memcpy(ptr, &v, 12*sizeof(T)); break;
- case 11: ptr[10] = v[10];
- case 10: ptr[ 9] = v[ 9];
- case 9: ptr[ 8] = v[ 8];
- case 8: memcpy(ptr, &v, 8*sizeof(T)); break;
- #endif
- case 7: ptr[ 6] = v[ 6];
- case 6: ptr[ 5] = v[ 5];
- case 5: ptr[ 4] = v[ 4];
- case 4: memcpy(ptr, &v, 4*sizeof(T)); break;
- case 3: ptr[ 2] = v[ 2];
- case 2: memcpy(ptr, &v, 2*sizeof(T)); break;
- case 1: ptr[ 0] = v[ 0];
- }
-}
-
-#if defined(__AVX2__)
- template <typename V, typename T>
- SI V gather(const T* ptr, U32 ix) {
- return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
- ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
- ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
- ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
- }
-
- template<>
- F gather(const float* p, U32 ix) {
- __m256i lo, hi;
- split(ix, &lo, &hi);
-
- return join<F>(_mm256_i32gather_ps(p, lo, 4),
- _mm256_i32gather_ps(p, hi, 4));
- }
-
- template<>
- U32 gather(const uint32_t* p, U32 ix) {
- __m256i lo, hi;
- split(ix, &lo, &hi);
-
- return join<U32>(_mm256_i32gather_epi32(p, lo, 4),
- _mm256_i32gather_epi32(p, hi, 4));
- }
-#else
- template <typename V, typename T>
- SI V gather(const T* ptr, U32 ix) {
- return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
- ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
- }
-#endif
-
-
-// ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
-
-SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
-#if 1 && defined(__AVX2__)
- // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
- __m256i _01,_23;
- split(rgba, &_01, &_23);
- __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
- _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
- rgba = join<U32>(_02, _13);
-
- auto cast_U16 = [](U32 v) -> U16 {
- __m256i _02,_13;
- split(v, &_02,&_13);
- return _mm256_packus_epi32(_02,_13);
- };
-#else
- auto cast_U16 = [](U32 v) -> U16 {
- return cast<U16>(v);
- };
-#endif
- *r = cast_U16(rgba & 65535) & 255;
- *g = cast_U16(rgba & 65535) >> 8;
- *b = cast_U16(rgba >> 16) & 255;
- *a = cast_U16(rgba >> 16) >> 8;
-}
-
-SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
-#if 1 && defined(__ARM_NEON)
- uint8x8x4_t rgba;
- switch (tail & (N-1)) {
- case 0: rgba = vld4_u8 ((const uint8_t*)(ptr+0) ); break;
- case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6);
- case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5);
- case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4);
- case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3);
- case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2);
- case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1);
- case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0);
- }
- *r = cast<U16>(rgba.val[0]);
- *g = cast<U16>(rgba.val[1]);
- *b = cast<U16>(rgba.val[2]);
- *a = cast<U16>(rgba.val[3]);
-#else
- from_8888(load<U32>(ptr, tail), r,g,b,a);
-#endif
-}
-SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
-#if 1 && defined(__ARM_NEON)
- uint8x8x4_t rgba = {{
- cast<U8>(r),
- cast<U8>(g),
- cast<U8>(b),
- cast<U8>(a),
- }};
- switch (tail & (N-1)) {
- case 0: vst4_u8 ((uint8_t*)(ptr+0), rgba ); break;
- case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6);
- case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5);
- case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4);
- case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3);
- case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2);
- case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1);
- case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0);
- }
-#else
- store(ptr, tail, cast<U32>(r | (g<<8)) << 0
- | cast<U32>(b | (a<<8)) << 16);
-#endif
-}
-
-STAGE_PP(load_8888, const SkJumper_MemoryCtx* ctx) {
- load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
-}
-STAGE_PP(load_8888_dst, const SkJumper_MemoryCtx* ctx) {
- load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
-}
-STAGE_PP(store_8888, const SkJumper_MemoryCtx* ctx) {
- store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a);
-}
-
-STAGE_PP(load_bgra, const SkJumper_MemoryCtx* ctx) {
- load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &b,&g,&r,&a);
-}
-STAGE_PP(load_bgra_dst, const SkJumper_MemoryCtx* ctx) {
- load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &db,&dg,&dr,&da);
-}
-STAGE_PP(store_bgra, const SkJumper_MemoryCtx* ctx) {
- store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, b,g,r,a);
-}
-
-STAGE_GP(gather_8888, const SkJumper_GatherCtx* ctx) {
- const uint32_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, x,y);
- from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
-}
-STAGE_GP(gather_bgra, const SkJumper_GatherCtx* ctx) {
- const uint32_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, x,y);
- from_8888(gather<U32>(ptr, ix), &b, &g, &r, &a);
-}
-
-// ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
-
-SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
- // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
- U16 R = (rgb >> 11) & 31,
- G = (rgb >> 5) & 63,
- B = (rgb >> 0) & 31;
-
- // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
- *r = (R << 3) | (R >> 2);
- *g = (G << 2) | (G >> 4);
- *b = (B << 3) | (B >> 2);
-}
-SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
- from_565(load<U16>(ptr, tail), r,g,b);
-}
-SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) {
- // Select the top 5,6,5 bits.
- U16 R = r >> 3,
- G = g >> 2,
- B = b >> 3;
- // Pack them back into 15|rrrrr gggggg bbbbb|0.
- store(ptr, tail, R << 11
- | G << 5
- | B << 0);
-}
-
-STAGE_PP(load_565, const SkJumper_MemoryCtx* ctx) {
- load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b);
- a = 255;
-}
-STAGE_PP(load_565_dst, const SkJumper_MemoryCtx* ctx) {
- load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db);
- da = 255;
-}
-STAGE_PP(store_565, const SkJumper_MemoryCtx* ctx) {
- store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b);
-}
-STAGE_GP(gather_565, const SkJumper_GatherCtx* ctx) {
- const uint16_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, x,y);
- from_565(gather<U16>(ptr, ix), &r, &g, &b);
- a = 255;
-}
-
-SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
- // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
- U16 R = (rgba >> 12) & 15,
- G = (rgba >> 8) & 15,
- B = (rgba >> 4) & 15,
- A = (rgba >> 0) & 15;
-
- // Scale [0,15] to [0,255].
- *r = (R << 4) | R;
- *g = (G << 4) | G;
- *b = (B << 4) | B;
- *a = (A << 4) | A;
-}
-SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
- from_4444(load<U16>(ptr, tail), r,g,b,a);
-}
-SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
- // Select the top 4 bits of each.
- U16 R = r >> 4,
- G = g >> 4,
- B = b >> 4,
- A = a >> 4;
- // Pack them back into 15|rrrr gggg bbbb aaaa|0.
- store(ptr, tail, R << 12
- | G << 8
- | B << 4
- | A << 0);
-}
-
-STAGE_PP(load_4444, const SkJumper_MemoryCtx* ctx) {
- load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
-}
-STAGE_PP(load_4444_dst, const SkJumper_MemoryCtx* ctx) {
- load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
-}
-STAGE_PP(store_4444, const SkJumper_MemoryCtx* ctx) {
- store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b,a);
-}
-STAGE_GP(gather_4444, const SkJumper_GatherCtx* ctx) {
- const uint16_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, x,y);
- from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
-}
-
-// ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
-
-SI U16 load_8(const uint8_t* ptr, size_t tail) {
- return cast<U16>(load<U8>(ptr, tail));
-}
-SI void store_8(uint8_t* ptr, size_t tail, U16 v) {
- store(ptr, tail, cast<U8>(v));
-}
-
-STAGE_PP(load_a8, const SkJumper_MemoryCtx* ctx) {
- r = g = b = 0;
- a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
-}
-STAGE_PP(load_a8_dst, const SkJumper_MemoryCtx* ctx) {
- dr = dg = db = 0;
- da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
-}
-STAGE_PP(store_a8, const SkJumper_MemoryCtx* ctx) {
- store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a);
-}
-STAGE_GP(gather_a8, const SkJumper_GatherCtx* ctx) {
- const uint8_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, x,y);
- r = g = b = 0;
- a = cast<U16>(gather<U8>(ptr, ix));
-}
-
-STAGE_PP(load_g8, const SkJumper_MemoryCtx* ctx) {
- r = g = b = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
- a = 255;
-}
-STAGE_PP(load_g8_dst, const SkJumper_MemoryCtx* ctx) {
- dr = dg = db = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
- da = 255;
-}
-STAGE_PP(luminance_to_alpha, Ctx::None) {
- a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
- r = g = b = 0;
-}
-STAGE_GP(gather_g8, const SkJumper_GatherCtx* ctx) {
- const uint8_t* ptr;
- U32 ix = ix_and_ptr(&ptr, ctx, x,y);
- r = g = b = cast<U16>(gather<U8>(ptr, ix));
- a = 255;
-}
-
-// ~~~~~~ Coverage scales / lerps ~~~~~~ //
-
-STAGE_PP(scale_1_float, const float* f) {
- U16 c = from_float(*f);
- r = div255( r * c );
- g = div255( g * c );
- b = div255( b * c );
- a = div255( a * c );
-}
-STAGE_PP(lerp_1_float, const float* f) {
- U16 c = from_float(*f);
- r = lerp(dr, r, c);
- g = lerp(dg, g, c);
- b = lerp(db, b, c);
- a = lerp(da, a, c);
-}
-
-STAGE_PP(scale_u8, const SkJumper_MemoryCtx* ctx) {
- U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
- r = div255( r * c );
- g = div255( g * c );
- b = div255( b * c );
- a = div255( a * c );
-}
-STAGE_PP(lerp_u8, const SkJumper_MemoryCtx* ctx) {
- U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
- r = lerp(dr, r, c);
- g = lerp(dg, g, c);
- b = lerp(db, b, c);
- a = lerp(da, a, c);
-}
-
-// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
-SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
- return if_then_else(a < da, min(cr,cg,cb)
- , max(cr,cg,cb));
-}
-STAGE_PP(scale_565, const SkJumper_MemoryCtx* ctx) {
- U16 cr,cg,cb;
- load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
- U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
-
- r = div255( r * cr );
- g = div255( g * cg );
- b = div255( b * cb );
- a = div255( a * ca );
-}
-STAGE_PP(lerp_565, const SkJumper_MemoryCtx* ctx) {
- U16 cr,cg,cb;
- load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
- U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
-
- r = lerp(dr, r, cr);
- g = lerp(dg, g, cg);
- b = lerp(db, b, cb);
- a = lerp(da, a, ca);
-}
-
-// ~~~~~~ Gradient stages ~~~~~~ //
-
-// Clamp x to [0,1], both sides inclusive (think, gradients).
-// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
-SI F clamp_01(F v) { return min(max(0, v), 1); }
-
-STAGE_GG(clamp_x_1 , Ctx::None) { x = clamp_01(x); }
-STAGE_GG(repeat_x_1, Ctx::None) { x = clamp_01(x - floor_(x)); }
-STAGE_GG(mirror_x_1, Ctx::None) {
- auto two = [](F x){ return x+x; };
- x = clamp_01(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
-}
-
-SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
-
-STAGE_GG(decal_x, SkJumper_DecalTileCtx* ctx) {
- auto w = ctx->limit_x;
- unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
-}
-STAGE_GG(decal_y, SkJumper_DecalTileCtx* ctx) {
- auto h = ctx->limit_y;
- unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
-}
-STAGE_GG(decal_x_and_y, SkJumper_DecalTileCtx* ctx) {
- auto w = ctx->limit_x;
- auto h = ctx->limit_y;
- unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
-}
-STAGE_PP(check_decal_mask, SkJumper_DecalTileCtx* ctx) {
- auto mask = unaligned_load<U16>(ctx->mask);
- r = r & mask;
- g = g & mask;
- b = b & mask;
- a = a & mask;
-}
-
-
-SI U16 round_F_to_U16(F x) { return cast<U16>(x * 255.0f + 0.5f); }
-
-SI void gradient_lookup(const SkJumper_GradientCtx* c, U32 idx, F t,
- U16* r, U16* g, U16* b, U16* a) {
-
- F fr, fg, fb, fa, br, bg, bb, ba;
-#if defined(__AVX2__)
- if (c->stopCount <=8) {
- __m256i lo, hi;
- split(idx, &lo, &hi);
-
- fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
- br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
- fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
- bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
- fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
- bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
- fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
- ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
- _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
- } else
-#endif
- {
- fr = gather<F>(c->fs[0], idx);
- fg = gather<F>(c->fs[1], idx);
- fb = gather<F>(c->fs[2], idx);
- fa = gather<F>(c->fs[3], idx);
- br = gather<F>(c->bs[0], idx);
- bg = gather<F>(c->bs[1], idx);
- bb = gather<F>(c->bs[2], idx);
- ba = gather<F>(c->bs[3], idx);
- }
- *r = round_F_to_U16(mad(t, fr, br));
- *g = round_F_to_U16(mad(t, fg, bg));
- *b = round_F_to_U16(mad(t, fb, bb));
- *a = round_F_to_U16(mad(t, fa, ba));
-}
-
-STAGE_GP(gradient, const SkJumper_GradientCtx* c) {
- auto t = x;
- U32 idx = 0;
-
- // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
- for (size_t i = 1; i < c->stopCount; i++) {
- idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
- }
-
- gradient_lookup(c, idx, t, &r, &g, &b, &a);
-}
-
-STAGE_GP(evenly_spaced_gradient, const SkJumper_GradientCtx* c) {
- auto t = x;
- auto idx = trunc_(t * (c->stopCount-1));
- gradient_lookup(c, idx, t, &r, &g, &b, &a);
-}
-
-STAGE_GP(evenly_spaced_2_stop_gradient, const void* ctx) {
- // TODO: Rename Ctx SkJumper_EvenlySpaced2StopGradientCtx.
- struct Ctx { float f[4], b[4]; };
- auto c = (const Ctx*)ctx;
-
- auto t = x;
- r = round_F_to_U16(mad(t, c->f[0], c->b[0]));
- g = round_F_to_U16(mad(t, c->f[1], c->b[1]));
- b = round_F_to_U16(mad(t, c->f[2], c->b[2]));
- a = round_F_to_U16(mad(t, c->f[3], c->b[3]));
-}
-
-STAGE_GG(xy_to_unit_angle, Ctx::None) {
- F xabs = abs_(x),
- yabs = abs_(y);
-
- F slope = min(xabs, yabs)/max(xabs, yabs);
- F s = slope * slope;
-
- // Use a 7th degree polynomial to approximate atan.
- // This was generated using sollya.gforge.inria.fr.
- // A float optimized polynomial was generated using the following command.
- // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
- F phi = slope
- * (0.15912117063999176025390625f + s
- * (-5.185396969318389892578125e-2f + s
- * (2.476101927459239959716796875e-2f + s
- * (-7.0547382347285747528076171875e-3f))));
-
- phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
- phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi);
- phi = if_then_else(y < 0.0f , 1.0f - phi , phi);
- phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
- x = phi;
-}
-STAGE_GG(xy_to_radius, Ctx::None) {
- x = sqrt_(x*x + y*y);
-}
-
-// ~~~~~~ Compound stages ~~~~~~ //
-
-STAGE_PP(srcover_rgba_8888, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
-
- load_8888_(ptr, tail, &dr,&dg,&db,&da);
- r = r + div255( dr*inv(a) );
- g = g + div255( dg*inv(a) );
- b = b + div255( db*inv(a) );
- a = a + div255( da*inv(a) );
- store_8888_(ptr, tail, r,g,b,a);
-}
-STAGE_PP(srcover_bgra_8888, const SkJumper_MemoryCtx* ctx) {
- auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
-
- load_8888_(ptr, tail, &db,&dg,&dr,&da);
- r = r + div255( dr*inv(a) );
- g = g + div255( dg*inv(a) );
- b = b + div255( db*inv(a) );
- a = a + div255( da*inv(a) );
- store_8888_(ptr, tail, b,g,r,a);
-}
-
-// Now we'll add null stand-ins for stages we haven't implemented in lowp.
-// If a pipeline uses these stages, it'll boot it out of lowp into highp.
-
-using NotImplemented = void(*)(void);
-
-static NotImplemented
- callback, load_rgba, store_rgba,
- clamp_0, clamp_1,
- unpremul, dither,
- from_srgb, from_srgb_dst, to_srgb,
- load_f16 , load_f16_dst , store_f16 , gather_f16,
- load_f32 , load_f32_dst , store_f32 , gather_f32,
- load_1010102, load_1010102_dst, store_1010102, gather_1010102,
- load_u16_be, load_rgb_u16_be, store_u16_be,
- load_tables_u16_be, load_tables_rgb_u16_be,
- load_tables, byte_tables, byte_tables_rgb,
- colorburn, colordodge, softlight, hue, saturation, color, luminosity,
- matrix_3x4, matrix_4x5, matrix_4x3,
- parametric_r, parametric_g, parametric_b, parametric_a,
- table_r, table_g, table_b, table_a,
- gamma, gamma_dst,
- lab_to_xyz, rgb_to_hsl, hsl_to_rgb, clut_3D, clut_4D,
- gauss_a_to_rgba,
- mirror_x, repeat_x,
- mirror_y, repeat_y,
- negate_x,
- bilinear_nx, bilinear_ny, bilinear_px, bilinear_py,
- bicubic_n3x, bicubic_n1x, bicubic_p1x, bicubic_p3x,
- bicubic_n3y, bicubic_n1y, bicubic_p1y, bicubic_p3y,
- save_xy, accumulate,
- xy_to_2pt_conical_well_behaved,
- xy_to_2pt_conical_strip,
- xy_to_2pt_conical_focal_on_circle,
- xy_to_2pt_conical_smaller,
- xy_to_2pt_conical_greater,
- xy_to_2pt_conical_compensate_focal,
- alter_2pt_conical_compensate_focal,
- alter_2pt_conical_unswap,
- mask_2pt_conical_nan,
- mask_2pt_conical_degenerates,
- apply_vector_mask,
- bilerp_clamp_8888;
-
-#else // We're not Clang, so define all null lowp stages.
-
- #define M(st) static void (*st)(void) = nullptr;
- SK_RASTER_PIPELINE_STAGES(M)
- #undef M
- static void (*just_return)(void) = nullptr;
-
- static void start_pipeline(size_t,size_t,size_t,size_t, void**) {}
-
-#endif//defined(__clang__) for lowp stages
-} // namespace lowp
-
-} // namespace SK_OPTS_NS
-
-#endif//SkRasterPipeline_opts_DEFINED