aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ops/GrAAHairLinePathRenderer.cpp
diff options
context:
space:
mode:
authorGravatar Brian Salomon <bsalomon@google.com>2016-12-16 09:52:16 -0500
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2016-12-16 16:58:24 +0000
commit895274391db8df7357334aec260edca2e1735626 (patch)
tree6c447a64c6e376d67503ef18e20cfdb655b6a312 /src/gpu/ops/GrAAHairLinePathRenderer.cpp
parent6b316e9e20d67f0f13021ca62f4270105c6151b1 (diff)
move src/gpu/batches -> src/gpu/ops
Change-Id: I6410eae41f051ce38bef6f38d670924c3483c325 Reviewed-on: https://skia-review.googlesource.com/6163 Commit-Queue: Brian Salomon <bsalomon@google.com> Reviewed-by: Brian Osman <brianosman@google.com>
Diffstat (limited to 'src/gpu/ops/GrAAHairLinePathRenderer.cpp')
-rw-r--r--src/gpu/ops/GrAAHairLinePathRenderer.cpp985
1 files changed, 985 insertions, 0 deletions
diff --git a/src/gpu/ops/GrAAHairLinePathRenderer.cpp b/src/gpu/ops/GrAAHairLinePathRenderer.cpp
new file mode 100644
index 0000000000..7707afa6e2
--- /dev/null
+++ b/src/gpu/ops/GrAAHairLinePathRenderer.cpp
@@ -0,0 +1,985 @@
+/*
+ * Copyright 2011 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "GrAAHairLinePathRenderer.h"
+
+#include "GrBatchTest.h"
+#include "GrBuffer.h"
+#include "GrCaps.h"
+#include "GrContext.h"
+#include "GrDefaultGeoProcFactory.h"
+#include "GrOpFlushState.h"
+#include "GrPathUtils.h"
+#include "GrPipelineBuilder.h"
+#include "GrProcessor.h"
+#include "GrResourceProvider.h"
+#include "SkGeometry.h"
+#include "SkStroke.h"
+#include "SkTemplates.h"
+
+#include "ops/GrMeshDrawOp.h"
+
+#include "effects/GrBezierEffect.h"
+
+#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
+
+// quadratics are rendered as 5-sided polys in order to bound the
+// AA stroke around the center-curve. See comments in push_quad_index_buffer and
+// bloat_quad. Quadratics and conics share an index buffer
+
+// lines are rendered as:
+// *______________*
+// |\ -_______ /|
+// | \ \ / |
+// | *--------* |
+// | / ______/ \ |
+// */_-__________\*
+// For: 6 vertices and 18 indices (for 6 triangles)
+
+// Each quadratic is rendered as a five sided polygon. This poly bounds
+// the quadratic's bounding triangle but has been expanded so that the
+// 1-pixel wide area around the curve is inside the poly.
+// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
+// that is rendered would look like this:
+// b0
+// b
+//
+// a0 c0
+// a c
+// a1 c1
+// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
+// specified by these 9 indices:
+static const uint16_t kQuadIdxBufPattern[] = {
+ 0, 1, 2,
+ 2, 4, 3,
+ 1, 4, 2
+};
+
+static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
+static const int kQuadNumVertices = 5;
+static const int kQuadsNumInIdxBuffer = 256;
+GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
+
+static const GrBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
+ GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
+ return resourceProvider->findOrCreateInstancedIndexBuffer(
+ kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
+ gQuadsIndexBufferKey);
+}
+
+
+// Each line segment is rendered as two quads and two triangles.
+// p0 and p1 have alpha = 1 while all other points have alpha = 0.
+// The four external points are offset 1 pixel perpendicular to the
+// line and half a pixel parallel to the line.
+//
+// p4 p5
+// p0 p1
+// p2 p3
+//
+// Each is drawn as six triangles specified by these 18 indices:
+
+static const uint16_t kLineSegIdxBufPattern[] = {
+ 0, 1, 3,
+ 0, 3, 2,
+ 0, 4, 5,
+ 0, 5, 1,
+ 0, 2, 4,
+ 1, 5, 3
+};
+
+static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
+static const int kLineSegNumVertices = 6;
+static const int kLineSegsNumInIdxBuffer = 256;
+
+GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
+
+static const GrBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
+ GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
+ return resourceProvider->findOrCreateInstancedIndexBuffer(
+ kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
+ gLinesIndexBufferKey);
+}
+
+// Takes 178th time of logf on Z600 / VC2010
+static int get_float_exp(float x) {
+ GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
+#ifdef SK_DEBUG
+ static bool tested;
+ if (!tested) {
+ tested = true;
+ SkASSERT(get_float_exp(0.25f) == -2);
+ SkASSERT(get_float_exp(0.3f) == -2);
+ SkASSERT(get_float_exp(0.5f) == -1);
+ SkASSERT(get_float_exp(1.f) == 0);
+ SkASSERT(get_float_exp(2.f) == 1);
+ SkASSERT(get_float_exp(2.5f) == 1);
+ SkASSERT(get_float_exp(8.f) == 3);
+ SkASSERT(get_float_exp(100.f) == 6);
+ SkASSERT(get_float_exp(1000.f) == 9);
+ SkASSERT(get_float_exp(1024.f) == 10);
+ SkASSERT(get_float_exp(3000000.f) == 21);
+ }
+#endif
+ const int* iptr = (const int*)&x;
+ return (((*iptr) & 0x7f800000) >> 23) - 127;
+}
+
+// Uses the max curvature function for quads to estimate
+// where to chop the conic. If the max curvature is not
+// found along the curve segment it will return 1 and
+// dst[0] is the original conic. If it returns 2 the dst[0]
+// and dst[1] are the two new conics.
+static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
+ SkScalar t = SkFindQuadMaxCurvature(src);
+ if (t == 0) {
+ if (dst) {
+ dst[0].set(src, weight);
+ }
+ return 1;
+ } else {
+ if (dst) {
+ SkConic conic;
+ conic.set(src, weight);
+ if (!conic.chopAt(t, dst)) {
+ dst[0].set(src, weight);
+ return 1;
+ }
+ }
+ return 2;
+ }
+}
+
+// Calls split_conic on the entire conic and then once more on each subsection.
+// Most cases will result in either 1 conic (chop point is not within t range)
+// or 3 points (split once and then one subsection is split again).
+static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
+ SkConic dstTemp[2];
+ int conicCnt = split_conic(src, dstTemp, weight);
+ if (2 == conicCnt) {
+ int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
+ conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
+ } else {
+ dst[0] = dstTemp[0];
+ }
+ return conicCnt;
+}
+
+// returns 0 if quad/conic is degen or close to it
+// in this case approx the path with lines
+// otherwise returns 1
+static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
+ static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
+ static const SkScalar gDegenerateToLineTolSqd =
+ SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
+
+ if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
+ p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
+ return 1;
+ }
+
+ *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
+ if (*dsqd < gDegenerateToLineTolSqd) {
+ return 1;
+ }
+
+ if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
+ return 1;
+ }
+ return 0;
+}
+
+static int is_degen_quad_or_conic(const SkPoint p[3]) {
+ SkScalar dsqd;
+ return is_degen_quad_or_conic(p, &dsqd);
+}
+
+// we subdivide the quads to avoid huge overfill
+// if it returns -1 then should be drawn as lines
+static int num_quad_subdivs(const SkPoint p[3]) {
+ SkScalar dsqd;
+ if (is_degen_quad_or_conic(p, &dsqd)) {
+ return -1;
+ }
+
+ // tolerance of triangle height in pixels
+ // tuned on windows Quadro FX 380 / Z600
+ // trade off of fill vs cpu time on verts
+ // maybe different when do this using gpu (geo or tess shaders)
+ static const SkScalar gSubdivTol = 175 * SK_Scalar1;
+
+ if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
+ return 0;
+ } else {
+ static const int kMaxSub = 4;
+ // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
+ // = log4(d*d/tol*tol)/2
+ // = log2(d*d/tol*tol)
+
+ // +1 since we're ignoring the mantissa contribution.
+ int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
+ log = SkTMin(SkTMax(0, log), kMaxSub);
+ return log;
+ }
+}
+
+/**
+ * Generates the lines and quads to be rendered. Lines are always recorded in
+ * device space. We will do a device space bloat to account for the 1pixel
+ * thickness.
+ * Quads are recorded in device space unless m contains
+ * perspective, then in they are in src space. We do this because we will
+ * subdivide large quads to reduce over-fill. This subdivision has to be
+ * performed before applying the perspective matrix.
+ */
+static int gather_lines_and_quads(const SkPath& path,
+ const SkMatrix& m,
+ const SkIRect& devClipBounds,
+ GrAAHairLinePathRenderer::PtArray* lines,
+ GrAAHairLinePathRenderer::PtArray* quads,
+ GrAAHairLinePathRenderer::PtArray* conics,
+ GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
+ GrAAHairLinePathRenderer::FloatArray* conicWeights) {
+ SkPath::Iter iter(path, false);
+
+ int totalQuadCount = 0;
+ SkRect bounds;
+ SkIRect ibounds;
+
+ bool persp = m.hasPerspective();
+
+ for (;;) {
+ SkPoint pathPts[4];
+ SkPoint devPts[4];
+ SkPath::Verb verb = iter.next(pathPts);
+ switch (verb) {
+ case SkPath::kConic_Verb: {
+ SkConic dst[4];
+ // We chop the conics to create tighter clipping to hide error
+ // that appears near max curvature of very thin conics. Thin
+ // hyperbolas with high weight still show error.
+ int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
+ for (int i = 0; i < conicCnt; ++i) {
+ SkPoint* chopPnts = dst[i].fPts;
+ m.mapPoints(devPts, chopPnts, 3);
+ bounds.setBounds(devPts, 3);
+ bounds.outset(SK_Scalar1, SK_Scalar1);
+ bounds.roundOut(&ibounds);
+ if (SkIRect::Intersects(devClipBounds, ibounds)) {
+ if (is_degen_quad_or_conic(devPts)) {
+ SkPoint* pts = lines->push_back_n(4);
+ pts[0] = devPts[0];
+ pts[1] = devPts[1];
+ pts[2] = devPts[1];
+ pts[3] = devPts[2];
+ } else {
+ // when in perspective keep conics in src space
+ SkPoint* cPts = persp ? chopPnts : devPts;
+ SkPoint* pts = conics->push_back_n(3);
+ pts[0] = cPts[0];
+ pts[1] = cPts[1];
+ pts[2] = cPts[2];
+ conicWeights->push_back() = dst[i].fW;
+ }
+ }
+ }
+ break;
+ }
+ case SkPath::kMove_Verb:
+ break;
+ case SkPath::kLine_Verb:
+ m.mapPoints(devPts, pathPts, 2);
+ bounds.setBounds(devPts, 2);
+ bounds.outset(SK_Scalar1, SK_Scalar1);
+ bounds.roundOut(&ibounds);
+ if (SkIRect::Intersects(devClipBounds, ibounds)) {
+ SkPoint* pts = lines->push_back_n(2);
+ pts[0] = devPts[0];
+ pts[1] = devPts[1];
+ }
+ break;
+ case SkPath::kQuad_Verb: {
+ SkPoint choppedPts[5];
+ // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
+ // When it is degenerate it allows the approximation with lines to work since the
+ // chop point (if there is one) will be at the parabola's vertex. In the nearly
+ // degenerate the QuadUVMatrix computed for the points is almost singular which
+ // can cause rendering artifacts.
+ int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
+ for (int i = 0; i < n; ++i) {
+ SkPoint* quadPts = choppedPts + i * 2;
+ m.mapPoints(devPts, quadPts, 3);
+ bounds.setBounds(devPts, 3);
+ bounds.outset(SK_Scalar1, SK_Scalar1);
+ bounds.roundOut(&ibounds);
+
+ if (SkIRect::Intersects(devClipBounds, ibounds)) {
+ int subdiv = num_quad_subdivs(devPts);
+ SkASSERT(subdiv >= -1);
+ if (-1 == subdiv) {
+ SkPoint* pts = lines->push_back_n(4);
+ pts[0] = devPts[0];
+ pts[1] = devPts[1];
+ pts[2] = devPts[1];
+ pts[3] = devPts[2];
+ } else {
+ // when in perspective keep quads in src space
+ SkPoint* qPts = persp ? quadPts : devPts;
+ SkPoint* pts = quads->push_back_n(3);
+ pts[0] = qPts[0];
+ pts[1] = qPts[1];
+ pts[2] = qPts[2];
+ quadSubdivCnts->push_back() = subdiv;
+ totalQuadCount += 1 << subdiv;
+ }
+ }
+ }
+ break;
+ }
+ case SkPath::kCubic_Verb:
+ m.mapPoints(devPts, pathPts, 4);
+ bounds.setBounds(devPts, 4);
+ bounds.outset(SK_Scalar1, SK_Scalar1);
+ bounds.roundOut(&ibounds);
+ if (SkIRect::Intersects(devClipBounds, ibounds)) {
+ PREALLOC_PTARRAY(32) q;
+ // We convert cubics to quadratics (for now).
+ // In perspective have to do conversion in src space.
+ if (persp) {
+ SkScalar tolScale =
+ GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
+ GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
+ } else {
+ GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
+ }
+ for (int i = 0; i < q.count(); i += 3) {
+ SkPoint* qInDevSpace;
+ // bounds has to be calculated in device space, but q is
+ // in src space when there is perspective.
+ if (persp) {
+ m.mapPoints(devPts, &q[i], 3);
+ bounds.setBounds(devPts, 3);
+ qInDevSpace = devPts;
+ } else {
+ bounds.setBounds(&q[i], 3);
+ qInDevSpace = &q[i];
+ }
+ bounds.outset(SK_Scalar1, SK_Scalar1);
+ bounds.roundOut(&ibounds);
+ if (SkIRect::Intersects(devClipBounds, ibounds)) {
+ int subdiv = num_quad_subdivs(qInDevSpace);
+ SkASSERT(subdiv >= -1);
+ if (-1 == subdiv) {
+ SkPoint* pts = lines->push_back_n(4);
+ // lines should always be in device coords
+ pts[0] = qInDevSpace[0];
+ pts[1] = qInDevSpace[1];
+ pts[2] = qInDevSpace[1];
+ pts[3] = qInDevSpace[2];
+ } else {
+ SkPoint* pts = quads->push_back_n(3);
+ // q is already in src space when there is no
+ // perspective and dev coords otherwise.
+ pts[0] = q[0 + i];
+ pts[1] = q[1 + i];
+ pts[2] = q[2 + i];
+ quadSubdivCnts->push_back() = subdiv;
+ totalQuadCount += 1 << subdiv;
+ }
+ }
+ }
+ }
+ break;
+ case SkPath::kClose_Verb:
+ break;
+ case SkPath::kDone_Verb:
+ return totalQuadCount;
+ }
+ }
+}
+
+struct LineVertex {
+ SkPoint fPos;
+ float fCoverage;
+};
+
+struct BezierVertex {
+ SkPoint fPos;
+ union {
+ struct {
+ SkScalar fK;
+ SkScalar fL;
+ SkScalar fM;
+ } fConic;
+ SkVector fQuadCoord;
+ struct {
+ SkScalar fBogus[4];
+ };
+ };
+};
+
+GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
+
+static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
+ const SkPoint& ptB, const SkVector& normB,
+ SkPoint* result) {
+
+ SkScalar lineAW = -normA.dot(ptA);
+ SkScalar lineBW = -normB.dot(ptB);
+
+ SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
+ SkScalarMul(normA.fY, normB.fX);
+ wInv = SkScalarInvert(wInv);
+
+ result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
+ result->fX = SkScalarMul(result->fX, wInv);
+
+ result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
+ result->fY = SkScalarMul(result->fY, wInv);
+}
+
+static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
+ // this should be in the src space, not dev coords, when we have perspective
+ GrPathUtils::QuadUVMatrix DevToUV(qpts);
+ DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
+}
+
+static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
+ const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
+ SkASSERT(!toDevice == !toSrc);
+ // original quad is specified by tri a,b,c
+ SkPoint a = qpts[0];
+ SkPoint b = qpts[1];
+ SkPoint c = qpts[2];
+
+ if (toDevice) {
+ toDevice->mapPoints(&a, 1);
+ toDevice->mapPoints(&b, 1);
+ toDevice->mapPoints(&c, 1);
+ }
+ // make a new poly where we replace a and c by a 1-pixel wide edges orthog
+ // to edges ab and bc:
+ //
+ // before | after
+ // | b0
+ // b |
+ // |
+ // | a0 c0
+ // a c | a1 c1
+ //
+ // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
+ // respectively.
+ BezierVertex& a0 = verts[0];
+ BezierVertex& a1 = verts[1];
+ BezierVertex& b0 = verts[2];
+ BezierVertex& c0 = verts[3];
+ BezierVertex& c1 = verts[4];
+
+ SkVector ab = b;
+ ab -= a;
+ SkVector ac = c;
+ ac -= a;
+ SkVector cb = b;
+ cb -= c;
+
+ // We should have already handled degenerates
+ SkASSERT(ab.length() > 0 && cb.length() > 0);
+
+ ab.normalize();
+ SkVector abN;
+ abN.setOrthog(ab, SkVector::kLeft_Side);
+ if (abN.dot(ac) > 0) {
+ abN.negate();
+ }
+
+ cb.normalize();
+ SkVector cbN;
+ cbN.setOrthog(cb, SkVector::kLeft_Side);
+ if (cbN.dot(ac) < 0) {
+ cbN.negate();
+ }
+
+ a0.fPos = a;
+ a0.fPos += abN;
+ a1.fPos = a;
+ a1.fPos -= abN;
+
+ c0.fPos = c;
+ c0.fPos += cbN;
+ c1.fPos = c;
+ c1.fPos -= cbN;
+
+ intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
+
+ if (toSrc) {
+ toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
+ }
+}
+
+// Equations based off of Loop-Blinn Quadratic GPU Rendering
+// Input Parametric:
+// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
+// Output Implicit:
+// f(x, y, w) = f(P) = K^2 - LM
+// K = dot(k, P), L = dot(l, P), M = dot(m, P)
+// k, l, m are calculated in function GrPathUtils::getConicKLM
+static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
+ const SkScalar weight) {
+ SkScalar klm[9];
+
+ GrPathUtils::getConicKLM(p, weight, klm);
+
+ for (int i = 0; i < kQuadNumVertices; ++i) {
+ const SkPoint pnt = verts[i].fPos;
+ verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
+ verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
+ verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
+ }
+}
+
+static void add_conics(const SkPoint p[3],
+ const SkScalar weight,
+ const SkMatrix* toDevice,
+ const SkMatrix* toSrc,
+ BezierVertex** vert) {
+ bloat_quad(p, toDevice, toSrc, *vert);
+ set_conic_coeffs(p, *vert, weight);
+ *vert += kQuadNumVertices;
+}
+
+static void add_quads(const SkPoint p[3],
+ int subdiv,
+ const SkMatrix* toDevice,
+ const SkMatrix* toSrc,
+ BezierVertex** vert) {
+ SkASSERT(subdiv >= 0);
+ if (subdiv) {
+ SkPoint newP[5];
+ SkChopQuadAtHalf(p, newP);
+ add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
+ add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
+ } else {
+ bloat_quad(p, toDevice, toSrc, *vert);
+ set_uv_quad(p, *vert);
+ *vert += kQuadNumVertices;
+ }
+}
+
+static void add_line(const SkPoint p[2],
+ const SkMatrix* toSrc,
+ uint8_t coverage,
+ LineVertex** vert) {
+ const SkPoint& a = p[0];
+ const SkPoint& b = p[1];
+
+ SkVector ortho, vec = b;
+ vec -= a;
+
+ if (vec.setLength(SK_ScalarHalf)) {
+ // Create a vector orthogonal to 'vec' and of unit length
+ ortho.fX = 2.0f * vec.fY;
+ ortho.fY = -2.0f * vec.fX;
+
+ float floatCoverage = GrNormalizeByteToFloat(coverage);
+
+ (*vert)[0].fPos = a;
+ (*vert)[0].fCoverage = floatCoverage;
+ (*vert)[1].fPos = b;
+ (*vert)[1].fCoverage = floatCoverage;
+ (*vert)[2].fPos = a - vec + ortho;
+ (*vert)[2].fCoverage = 0;
+ (*vert)[3].fPos = b + vec + ortho;
+ (*vert)[3].fCoverage = 0;
+ (*vert)[4].fPos = a - vec - ortho;
+ (*vert)[4].fCoverage = 0;
+ (*vert)[5].fPos = b + vec - ortho;
+ (*vert)[5].fCoverage = 0;
+
+ if (toSrc) {
+ toSrc->mapPointsWithStride(&(*vert)->fPos,
+ sizeof(LineVertex),
+ kLineSegNumVertices);
+ }
+ } else {
+ // just make it degenerate and likely offscreen
+ for (int i = 0; i < kLineSegNumVertices; ++i) {
+ (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
+ }
+ }
+
+ *vert += kLineSegNumVertices;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
+ if (GrAAType::kCoverage != args.fAAType) {
+ return false;
+ }
+
+ if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
+ return false;
+ }
+
+ // We don't currently handle dashing in this class though perhaps we should.
+ if (args.fShape->style().pathEffect()) {
+ return false;
+ }
+
+ if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
+ args.fShaderCaps->shaderDerivativeSupport()) {
+ return true;
+ }
+
+ return false;
+}
+
+template <class VertexType>
+bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
+{
+ SkRect tolDevBounds = devBounds;
+ // The bounds ought to be tight, but in perspective the below code runs the verts
+ // through the view matrix to get back to dev coords, which can introduce imprecision.
+ if (viewMatrix.hasPerspective()) {
+ tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
+ } else {
+ // Non-persp matrices cause this path renderer to draw in device space.
+ SkASSERT(viewMatrix.isIdentity());
+ }
+ SkRect actualBounds;
+
+ VertexType* verts = reinterpret_cast<VertexType*>(vertices);
+ bool first = true;
+ for (int i = 0; i < vCount; ++i) {
+ SkPoint pos = verts[i].fPos;
+ // This is a hack to workaround the fact that we move some degenerate segments offscreen.
+ if (SK_ScalarMax == pos.fX) {
+ continue;
+ }
+ viewMatrix.mapPoints(&pos, 1);
+ if (first) {
+ actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
+ first = false;
+ } else {
+ actualBounds.growToInclude(pos.fX, pos.fY);
+ }
+ }
+ if (!first) {
+ return tolDevBounds.contains(actualBounds);
+ }
+
+ return true;
+}
+
+class AAHairlineOp final : public GrMeshDrawOp {
+public:
+ DEFINE_OP_CLASS_ID
+
+ static sk_sp<GrDrawOp> Make(GrColor color,
+ const SkMatrix& viewMatrix,
+ const SkPath& path,
+ const GrStyle& style,
+ const SkIRect& devClipBounds) {
+ SkScalar hairlineCoverage;
+ uint8_t newCoverage = 0xff;
+ if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
+ newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
+ }
+
+ return sk_sp<GrDrawOp>(
+ new AAHairlineOp(color, newCoverage, viewMatrix, path, devClipBounds));
+ }
+
+ const char* name() const override { return "AAHairlineOp"; }
+
+ SkString dumpInfo() const override {
+ SkString string;
+ string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
+ fPaths.count());
+ string.append(INHERITED::dumpInfo());
+ return string;
+ }
+
+ void computePipelineOptimizations(GrInitInvariantOutput* color,
+ GrInitInvariantOutput* coverage,
+ GrBatchToXPOverrides* overrides) const override {
+ color->setKnownFourComponents(fColor);
+ coverage->setUnknownSingleComponent();
+ }
+
+private:
+ AAHairlineOp(GrColor color,
+ uint8_t coverage,
+ const SkMatrix& viewMatrix,
+ const SkPath& path,
+ SkIRect devClipBounds)
+ : INHERITED(ClassID()), fColor(color), fCoverage(coverage) {
+ fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds});
+
+ this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
+ IsZeroArea::kYes);
+ }
+
+ void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
+ // Handle any color overrides
+ if (!overrides.readsColor()) {
+ fColor = GrColor_ILLEGAL;
+ }
+ overrides.getOverrideColorIfSet(&fColor);
+
+ fUsesLocalCoords = overrides.readsLocalCoords();
+ }
+
+ void onPrepareDraws(Target*) const override;
+
+ typedef SkTArray<SkPoint, true> PtArray;
+ typedef SkTArray<int, true> IntArray;
+ typedef SkTArray<float, true> FloatArray;
+
+ bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
+ AAHairlineOp* that = t->cast<AAHairlineOp>();
+
+ if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
+ that->bounds(), caps)) {
+ return false;
+ }
+
+ if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
+ return false;
+ }
+
+ // We go to identity if we don't have perspective
+ if (this->viewMatrix().hasPerspective() &&
+ !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
+ return false;
+ }
+
+ // TODO we can actually batch hairlines if they are the same color in a kind of bulk method
+ // but we haven't implemented this yet
+ // TODO investigate going to vertex color and coverage?
+ if (this->coverage() != that->coverage()) {
+ return false;
+ }
+
+ if (this->color() != that->color()) {
+ return false;
+ }
+
+ SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
+ if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
+ return false;
+ }
+
+ fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
+ this->joinBounds(*that);
+ return true;
+ }
+
+ GrColor color() const { return fColor; }
+ uint8_t coverage() const { return fCoverage; }
+ bool usesLocalCoords() const { return fUsesLocalCoords; }
+ const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
+
+ struct PathData {
+ SkMatrix fViewMatrix;
+ SkPath fPath;
+ SkIRect fDevClipBounds;
+ };
+
+ GrColor fColor;
+ uint8_t fCoverage;
+ bool fUsesLocalCoords;
+
+ SkSTArray<1, PathData, true> fPaths;
+
+ typedef GrMeshDrawOp INHERITED;
+};
+
+void AAHairlineOp::onPrepareDraws(Target* target) const {
+ // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
+ SkMatrix invert;
+ if (!this->viewMatrix().invert(&invert)) {
+ return;
+ }
+
+ // we will transform to identity space if the viewmatrix does not have perspective
+ bool hasPerspective = this->viewMatrix().hasPerspective();
+ const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
+ const SkMatrix* geometryProcessorLocalM = &invert;
+ const SkMatrix* toDevice = nullptr;
+ const SkMatrix* toSrc = nullptr;
+ if (hasPerspective) {
+ geometryProcessorViewM = &this->viewMatrix();
+ geometryProcessorLocalM = &SkMatrix::I();
+ toDevice = &this->viewMatrix();
+ toSrc = &invert;
+ }
+
+ // This is hand inlined for maximum performance.
+ PREALLOC_PTARRAY(128) lines;
+ PREALLOC_PTARRAY(128) quads;
+ PREALLOC_PTARRAY(128) conics;
+ IntArray qSubdivs;
+ FloatArray cWeights;
+ int quadCount = 0;
+
+ int instanceCount = fPaths.count();
+ for (int i = 0; i < instanceCount; i++) {
+ const PathData& args = fPaths[i];
+ quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
+ &lines, &quads, &conics, &qSubdivs, &cWeights);
+ }
+
+ int lineCount = lines.count() / 2;
+ int conicCount = conics.count() / 3;
+
+ // do lines first
+ if (lineCount) {
+ sk_sp<GrGeometryProcessor> lineGP;
+ {
+ using namespace GrDefaultGeoProcFactory;
+
+ Color color(this->color());
+ Coverage coverage(Coverage::kAttribute_Type);
+ LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
+ LocalCoords::kUnused_Type);
+ localCoords.fMatrix = geometryProcessorLocalM;
+ lineGP = GrDefaultGeoProcFactory::Make(color, coverage, localCoords,
+ *geometryProcessorViewM);
+ }
+
+ sk_sp<const GrBuffer> linesIndexBuffer(
+ ref_lines_index_buffer(target->resourceProvider()));
+
+ const GrBuffer* vertexBuffer;
+ int firstVertex;
+
+ size_t vertexStride = lineGP->getVertexStride();
+ int vertexCount = kLineSegNumVertices * lineCount;
+ LineVertex* verts = reinterpret_cast<LineVertex*>(
+ target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
+
+ if (!verts|| !linesIndexBuffer) {
+ SkDebugf("Could not allocate vertices\n");
+ return;
+ }
+
+ SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
+
+ for (int i = 0; i < lineCount; ++i) {
+ add_line(&lines[2*i], toSrc, this->coverage(), &verts);
+ }
+
+ GrMesh mesh;
+ mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer.get(),
+ firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
+ kLineSegsNumInIdxBuffer);
+ target->draw(lineGP.get(), mesh);
+ }
+
+ if (quadCount || conicCount) {
+ sk_sp<GrGeometryProcessor> quadGP(
+ GrQuadEffect::Make(this->color(),
+ *geometryProcessorViewM,
+ kHairlineAA_GrProcessorEdgeType,
+ target->caps(),
+ *geometryProcessorLocalM,
+ this->usesLocalCoords(),
+ this->coverage()));
+
+ sk_sp<GrGeometryProcessor> conicGP(
+ GrConicEffect::Make(this->color(),
+ *geometryProcessorViewM,
+ kHairlineAA_GrProcessorEdgeType,
+ target->caps(),
+ *geometryProcessorLocalM,
+ this->usesLocalCoords(),
+ this->coverage()));
+
+ const GrBuffer* vertexBuffer;
+ int firstVertex;
+
+ sk_sp<const GrBuffer> quadsIndexBuffer(
+ ref_quads_index_buffer(target->resourceProvider()));
+
+ size_t vertexStride = sizeof(BezierVertex);
+ int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
+ void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
+ &vertexBuffer, &firstVertex);
+
+ if (!vertices || !quadsIndexBuffer) {
+ SkDebugf("Could not allocate vertices\n");
+ return;
+ }
+
+ // Setup vertices
+ BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
+
+ int unsubdivQuadCnt = quads.count() / 3;
+ for (int i = 0; i < unsubdivQuadCnt; ++i) {
+ SkASSERT(qSubdivs[i] >= 0);
+ add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
+ }
+
+ // Start Conics
+ for (int i = 0; i < conicCount; ++i) {
+ add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
+ }
+
+ if (quadCount > 0) {
+ GrMesh mesh;
+ mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
+ firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
+ kQuadsNumInIdxBuffer);
+ target->draw(quadGP.get(), mesh);
+ firstVertex += quadCount * kQuadNumVertices;
+ }
+
+ if (conicCount > 0) {
+ GrMesh mesh;
+ mesh.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer.get(),
+ firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
+ kQuadsNumInIdxBuffer);
+ target->draw(conicGP.get(), mesh);
+ }
+ }
+}
+
+bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
+ GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
+ "GrAAHairlinePathRenderer::onDrawPath");
+ SkASSERT(!args.fRenderTargetContext->isUnifiedMultisampled());
+
+ SkIRect devClipBounds;
+ args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
+ args.fRenderTargetContext->height(),
+ &devClipBounds);
+ SkPath path;
+ args.fShape->asPath(&path);
+ sk_sp<GrDrawOp> op = AAHairlineOp::Make(args.fPaint->getColor(), *args.fViewMatrix, path,
+ args.fShape->style(), devClipBounds);
+ GrPipelineBuilder pipelineBuilder(*args.fPaint, args.fAAType);
+ pipelineBuilder.setUserStencil(args.fUserStencilSettings);
+ args.fRenderTargetContext->addDrawOp(pipelineBuilder, *args.fClip, std::move(op));
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+
+#ifdef GR_TEST_UTILS
+
+DRAW_BATCH_TEST_DEFINE(AAHairlineOp) {
+ GrColor color = GrRandomColor(random);
+ SkMatrix viewMatrix = GrTest::TestMatrix(random);
+ SkPath path = GrTest::TestPath(random);
+ SkIRect devClipBounds;
+ devClipBounds.setEmpty();
+ return AAHairlineOp::Make(color, viewMatrix, path, GrStyle::SimpleHairline(), devClipBounds)
+ .release();
+}
+
+#endif