aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ccpr
diff options
context:
space:
mode:
authorGravatar Chris Dalton <csmartdalton@google.com>2018-03-08 15:54:01 +0000
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-03-08 15:54:12 +0000
commitfe462efbcb105914e4c4bbf689525b530a438773 (patch)
treeb0cdff09f2988f61e7490cfb25621b4505c9119e /src/gpu/ccpr
parent4997e14c80f133ad43ce17e7b6adab55a37b9ada (diff)
Revert "ccpr: Simplify triangle corners"
This reverts commit 622650a1949f9a68793ac895d9fbadee7177d860. Reason for revert: Going to try to improve AAA quality on curve corners Original change's description: > ccpr: Simplify triangle corners > > Modifies triangle corner shaders to just approximate their coverage with > linear values that ramp to zero at bloat vertices outside the triangle. > > For the vertex backend, since corners now have the same fragment shader > as the rest of the triangle, we fold them in with the other steps and > draw triangles in a single pass. > > The geometry backend still draws triangles in two passes, as there is > not an apparent performance advantage in combining them. > > Bug: skia: > Change-Id: Ib4a89d793a3c706f734d0271875c8a3e5c87c49b > Reviewed-on: https://skia-review.googlesource.com/112632 > Commit-Queue: Chris Dalton <csmartdalton@google.com> > Reviewed-by: Brian Salomon <bsalomon@google.com> TBR=bsalomon@google.com,csmartdalton@google.com Change-Id: I45e7b9d7d7f8452b28bd54ca1e90a1f046cb2462 No-Presubmit: true No-Tree-Checks: true No-Try: true Bug: skia: Reviewed-on: https://skia-review.googlesource.com/113180 Reviewed-by: Chris Dalton <csmartdalton@google.com> Commit-Queue: Chris Dalton <csmartdalton@google.com>
Diffstat (limited to 'src/gpu/ccpr')
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor.cpp65
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor.h130
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp107
-rw-r--r--src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp521
-rw-r--r--src/gpu/ccpr/GrCCCubicShader.cpp18
-rw-r--r--src/gpu/ccpr/GrCCCubicShader.h7
-rw-r--r--src/gpu/ccpr/GrCCPathParser.cpp12
-rw-r--r--src/gpu/ccpr/GrCCQuadraticShader.cpp21
-rw-r--r--src/gpu/ccpr/GrCCQuadraticShader.h8
-rw-r--r--src/gpu/ccpr/GrCCTriangleShader.cpp151
-rw-r--r--src/gpu/ccpr/GrCCTriangleShader.h49
11 files changed, 601 insertions, 488 deletions
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.cpp b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
index 3a9eb7bfa7..76ca8f562e 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.cpp
@@ -7,21 +7,17 @@
#include "GrCCCoverageProcessor.h"
-#include "GrGpuCommandBuffer.h"
-#include "GrOpFlushState.h"
#include "SkMakeUnique.h"
#include "ccpr/GrCCCubicShader.h"
#include "ccpr/GrCCQuadraticShader.h"
+#include "ccpr/GrCCTriangleShader.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
- int key = ((int)fRenderPass << 3);
- if (GSTriangleSubpass::kCorners == fGSTriangleSubpass) {
- key |= 4;
- }
+ int key = (int)fRenderPass << 2;
if (WindMethod::kInstanceData == fWindMethod) {
key |= 2;
}
@@ -40,7 +36,10 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShad
std::unique_ptr<Shader> shader;
switch (fRenderPass) {
case RenderPass::kTriangles:
- shader = skstd::make_unique<Shader>();
+ shader = skstd::make_unique<GrCCTriangleShader>();
+ break;
+ case RenderPass::kTriangleCorners:
+ shader = skstd::make_unique<GrCCTriangleCornerShader>();
break;
case RenderPass::kQuadratics:
shader = skstd::make_unique<GrCCQuadraticShader>();
@@ -53,45 +52,12 @@ GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShad
: this->createVSImpl(std::move(shader));
}
-void GrCCCoverageProcessor::draw(GrOpFlushState* flushState, const GrPipeline& pipeline,
- const GrMesh meshes[],
- const GrPipeline::DynamicState dynamicStates[], int meshCount,
- const SkRect& drawBounds) const {
- GrGpuRTCommandBuffer* cmdBuff = flushState->rtCommandBuffer();
- cmdBuff->draw(pipeline, *this, meshes, dynamicStates, meshCount, drawBounds);
-
- // Geometry shader backend draws triangles in two subpasses.
- if (RenderPass::kTriangles == fRenderPass && Impl::kGeometryShader == fImpl) {
- SkASSERT(GSTriangleSubpass::kHullsAndEdges == fGSTriangleSubpass);
- GrCCCoverageProcessor cornerProc(*this, GSTriangleSubpass::kCorners);
- cmdBuff->draw(pipeline, cornerProc, meshes, dynamicStates, meshCount, drawBounds);
- }
-}
-
-void GrCCCoverageProcessor::Shader::emitVaryings(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVarying::Scope scope, SkString* code,
- const char* position, const char* coverage,
- const char* wind) {
- SkASSERT(GrGLSLVarying::Scope::kVertToGeo != scope);
- code->appendf("half coverageTimesWind = %s * %s;", coverage, wind);
- CoverageHandling coverageHandling = this->onEmitVaryings(varyingHandler, scope, code, position,
- "coverageTimesWind");
- if (CoverageHandling::kNotHandled == coverageHandling) {
- fCoverageTimesWind.reset(kHalf_GrSLType, scope);
- varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
- code->appendf("%s = coverageTimesWind;", OutName(fCoverageTimesWind));
- }
-}
-
void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
GrGLSLFPFragmentBuilder* f,
const char* skOutputColor,
const char* skOutputCoverage) const {
- f->codeAppendf("half coverage = +1;");
+ f->codeAppendf("half coverage = 0;");
this->onEmitFragmentCode(proc, f, "coverage");
- if (fCoverageTimesWind.fsIn()) {
- f->codeAppendf("coverage *= %s;", fCoverageTimesWind.fsIn());
- }
f->codeAppendf("%s.a = coverage;", skOutputColor);
f->codeAppendf("%s = half4(1);", skOutputCoverage);
#ifdef SK_DEBUG
@@ -136,20 +102,3 @@ void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGe
// GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage);
}
-
-void GrCCCoverageProcessor::Shader::CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder* s,
- const char* leftPt,
- const char* rightPt,
- const char* bloatDir1,
- const char* bloatDir2,
- const char* outputCoverages) {
- // See comments in CalcEdgeCoverageAtBloatVertex.
- s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
- rightPt, leftPt, leftPt, rightPt);
- s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
- s->codeAppendf("float2 t = n * float2x2(%s, %s);", bloatDir1, bloatDir2);
- s->codeAppendf("for (int i = 0; i < 2; ++i) {");
- s->codeAppendf( "%s[i] = (abs(t[i]) != nwidth ? t[i] / nwidth : sign(t[i])) * -.5 - .5;",
- outputCoverages);
- s->codeAppendf("}");
-}
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor.h b/src/gpu/ccpr/GrCCCoverageProcessor.h
index a8ad18ce55..7db424e219 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor.h
+++ b/src/gpu/ccpr/GrCCCoverageProcessor.h
@@ -10,7 +10,6 @@
#include "GrCaps.h"
#include "GrGeometryProcessor.h"
-#include "GrPipeline.h"
#include "GrShaderCaps.h"
#include "SkNx.h"
#include "glsl/GrGLSLGeometryProcessor.h"
@@ -19,7 +18,6 @@
class GrGLSLFPFragmentBuilder;
class GrGLSLVertexGeoBuilder;
class GrMesh;
-class GrOpFlushState;
/**
* This is the geometry processor for the simple convex primitive shapes (triangles and closed,
@@ -56,9 +54,11 @@ public:
void set(const SkPoint&, const SkPoint&, const SkPoint&, const Sk2f& trans, float w);
};
// Here we enumerate every render pass needed in order to produce a complete coverage count
- // mask. This is an exhaustive list of all ccpr coverage shaders.
+ // mask. Triangles require two render passes: One to draw a rough outline, and a second pass to
+ // touch up the corners. This is an exhaustive list of all ccpr coverage shaders.
enum class RenderPass {
kTriangles,
+ kTriangleCorners,
kQuadratics,
kCubics,
};
@@ -83,6 +83,18 @@ public:
}
}
+ // Appends a GrMesh that will draw the provided instances. The instanceBuffer must be an array
+ // of either TriPointInstance or QuadPointInstance, depending on this processor's RendererPass,
+ // with coordinates in the desired shape's final atlas-space position.
+ void appendMesh(GrBuffer* instanceBuffer, int instanceCount, int baseInstance,
+ SkTArray<GrMesh>* out) {
+ if (Impl::kGeometryShader == fImpl) {
+ this->appendGSMesh(instanceBuffer, instanceCount, baseInstance, out);
+ } else {
+ this->appendVSMesh(instanceBuffer, instanceCount, baseInstance, out);
+ }
+ }
+
// GrPrimitiveProcessor overrides.
const char* name() const override { return RenderPassName(fRenderPass); }
SkString dumpInfo() const override {
@@ -99,39 +111,39 @@ public:
float debugBloat() const { SkASSERT(this->debugVisualizationsEnabled()); return fDebugBloat; }
#endif
- // Appends a GrMesh that will draw the provided instances. The instanceBuffer must be an array
- // of either TriPointInstance or QuadPointInstance, depending on this processor's RendererPass,
- // with coordinates in the desired shape's final atlas-space position.
- void appendMesh(GrBuffer* instanceBuffer, int instanceCount, int baseInstance,
- SkTArray<GrMesh>* out) const {
- if (Impl::kGeometryShader == fImpl) {
- this->appendGSMesh(instanceBuffer, instanceCount, baseInstance, out);
- } else {
- this->appendVSMesh(instanceBuffer, instanceCount, baseInstance, out);
- }
- }
-
- void draw(GrOpFlushState*, const GrPipeline&, const GrMesh[], const GrPipeline::DynamicState[],
- int meshCount, const SkRect& drawBounds) const;
-
- // The Shader provides code to calculate a pixel's coverage.
+ // The Shader provides code to calculate each pixel's coverage in a RenderPass. It also
+ // provides details about shape-specific geometry.
class Shader {
public:
- // Called before generating geometry. Subclasses may use this opportunity to setup internal
- // member variables that will be needed during onEmitVaryings (e.g. transformation
- // matrices).
+ union GeometryVars {
+ struct {
+ const char* fAlternatePoints; // floatNx2 (if left null, will use input points).
+ } fHullVars;
+
+ struct {
+ const char* fPoint; // float2
+ } fCornerVars;
+
+ GeometryVars() { memset(this, 0, sizeof(*this)); }
+ };
+
+ // Called before generating geometry. Subclasses must fill out the applicable fields in
+ // GeometryVars (if any), and may also use this opportunity to setup internal member
+ // variables that will be needed during onEmitVaryings (e.g. transformation matrices).
//
- // Returns the name of a newly defined list of points around which the Impl should generate
- // its geometry, or null if it should just use the input points. (Regardless, the size of
- // whatever list of points indicated should match the size expected by the Impl: 3 points
- // for triangles, and 4 for quadratics and cubics.)
- virtual const char* emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts) const {
- return nullptr;
+ // repetitionID is a 0-based index and indicates which edge or corner is being generated.
+ // It will be null when generating a hull.
+ virtual void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts,
+ const char* repetitionID, const char* wind,
+ GeometryVars*) const {}
+
+ void emitVaryings(GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope,
+ SkString* code, const char* position, const char* inputCoverage,
+ const char* wind) {
+ SkASSERT(GrGLSLVarying::Scope::kVertToGeo != scope);
+ this->onEmitVaryings(varyingHandler, scope, code, position, inputCoverage, wind);
}
- void emitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
- const char* position, const char* coverage, const char* wind);
-
void emitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
const char* skOutputColor, const char* skOutputCoverage) const;
@@ -145,37 +157,20 @@ public:
const char* rightPt, const char* rasterVertexDir,
const char* outputCoverage);
- // Calculates an edge's coverage at two conservative raster vertices.
- // (See CalcEdgeCoverageAtBloatVertex).
- static void CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder*, const char* leftPt,
- const char* rightPt, const char* bloatDir1,
- const char* bloatDir2,
- const char* outputCoverages);
-
virtual ~Shader() {}
protected:
- enum class CoverageHandling : bool {
- kHandled,
- kNotHandled
- };
-
// Here the subclass adds its internal varyings to the handler and produces code to
- // initialize those varyings from a given position and coverage/wind.
+ // initialize those varyings from a given position, input coverage value, and wind.
//
- // Returns whether the subclass will handle coverage modulation or if this base class should
- // take charge of multiplying the final coverage output by 'coverageTimesWind'.
- virtual CoverageHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope,
- SkString* code, const char* position,
- const char* coverageTimesWind) {
- return CoverageHandling::kNotHandled;
- }
+ // NOTE: the coverage input is only relevant for triangles. Otherwise it is null.
+ virtual void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
+ const char* position, const char* inputCoverage,
+ const char* wind) = 0;
- // Emits the fragment code that calculates a pixel's coverage value. If using
- // CoverageHandling::kHandled, this value must be signed and modulated appropriately by
- // coverage.
+ // Emits the fragment code that calculates a pixel's signed coverage value.
virtual void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
- const char* outputCoverage) const {}
+ const char* outputCoverage) const = 0;
// Returns the name of a Shader's internal varying at the point where where its value is
// assigned. This is intended to work whether called for a vertex or a geometry shader.
@@ -184,9 +179,6 @@ public:
SkASSERT(Scope::kVertToGeo != varying.scope());
return Scope::kGeoToFrag == varying.scope() ? varying.gsOut() : varying.vsOut();
}
-
- private:
- GrGLSLVarying fCoverageTimesWind;
};
class GSImpl;
@@ -205,24 +197,6 @@ private:
kVertexShader
};
- // Geometry shader backend draws triangles in two subpasses.
- enum class GSTriangleSubpass : bool {
- kHullsAndEdges,
- kCorners
- };
-
- GrCCCoverageProcessor(const GrCCCoverageProcessor& proc, GSTriangleSubpass subpass)
- : INHERITED(kGrCCCoverageProcessor_ClassID)
- , fRenderPass(RenderPass::kTriangles)
- , fWindMethod(proc.fWindMethod)
- , fImpl(Impl::kGeometryShader)
- SkDEBUGCODE(, fDebugBloat(proc.fDebugBloat))
- , fGSTriangleSubpass(subpass) {
- SkASSERT(RenderPass::kTriangles == proc.fRenderPass);
- SkASSERT(Impl::kGeometryShader == proc.fImpl);
- this->initGS();
- }
-
void initGS();
void initVS(GrResourceProvider*);
@@ -239,9 +213,6 @@ private:
const Impl fImpl;
SkDEBUGCODE(float fDebugBloat = 0);
- // Used by GSImpl.
- const GSTriangleSubpass fGSTriangleSubpass = GSTriangleSubpass::kHullsAndEdges;
-
// Used by VSImpl.
sk_sp<const GrBuffer> fVertexBuffer;
sk_sp<const GrBuffer> fIndexBuffer;
@@ -283,6 +254,7 @@ inline void GrCCCoverageProcessor::QuadPointInstance::set(const SkPoint& p0, con
inline const char* GrCCCoverageProcessor::RenderPassName(RenderPass pass) {
switch (pass) {
case RenderPass::kTriangles: return "kTriangles";
+ case RenderPass::kTriangleCorners: return "kTriangleCorners";
case RenderPass::kQuadratics: return "kQuadratics";
case RenderPass::kCubics: return "kCubics";
}
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
index 1fef1c3338..e64b8c0838 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_GSImpl.cpp
@@ -75,7 +75,10 @@ protected:
SkString emitVertexFn;
SkSTArray<2, GrShaderVar> emitArgs;
const char* position = emitArgs.emplace_back("position", kFloat2_GrSLType).c_str();
- const char* coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str();
+ const char* coverage = nullptr;
+ if (RenderPass::kTriangleCorners != proc.fRenderPass) {
+ coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str();
+ }
g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() {
SkString fnBody;
fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kGeoToFrag, &fnBody,
@@ -113,7 +116,7 @@ protected:
* coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges
* into smooth, antialiased ones.
*
- * The final corners get touched up in a later step by GSTriangleCornerImpl.
+ * The final corners get touched up in a later step by GSCornerImpl.
*/
class GSTriangleImpl : public GrCCCoverageProcessor::GSImpl {
public:
@@ -121,8 +124,6 @@ public:
void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
const char* emitVertexFn) const override {
- SkAssertResult(!fShader->emitSetupCode(g, "pts"));
-
// Visualize the input triangle as upright and equilateral, with a flat base. Paying special
// attention to wind, we can identify the points as top, bottom-left, and bottom-right.
//
@@ -211,69 +212,19 @@ public:
};
/**
- * Generates conservative rasters around triangle corners (aka pixel-size boxes) and calculates
- * coverage ramps that fix up the coverage values written by GSTriangleImpl.
- */
-class GSTriangleCornerImpl : public GrCCCoverageProcessor::GSImpl {
-public:
- GSTriangleCornerImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
-
- void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
- const char* emitVertexFn) const override {
- SkAssertResult(!fShader->emitSetupCode(g, "pts"));
-
- g->codeAppendf("float2 corner = pts[sk_InvocationID];");
- g->codeAppendf("float2 left = pts[(sk_InvocationID + (%s > 0 ? 2 : 1)) %% 3];",
- wind.c_str());
- g->codeAppendf("float2 right = pts[(sk_InvocationID + (%s > 0 ? 1 : 2)) %% 3];",
- wind.c_str());
-
- // Find "outbloat" and "crossbloat" at our corner. The outbloat points diagonally out of the
- // triangle, in the direction that should ramp to zero coverage. The crossbloat runs
- // perpindicular to outbloat, and ramps from left-edge coverage to right-edge coverage.
- g->codeAppend ("float2 leftdir = normalize(corner - left);");
- g->codeAppend ("float2 rightdir = normalize(right - corner);");
- g->codeAppend ("float2 outbloat = float2(leftdir.x > rightdir.x ? +1 : -1, "
- "leftdir.y > rightdir.y ? +1 : -1);");
- g->codeAppend ("float2 crossbloat = float2(-outbloat.y, +outbloat.x);");
-
- g->codeAppend ("half2 left_coverages; {");
- Shader::CalcEdgeCoveragesAtBloatVertices(g, "left", "corner", "outbloat", "crossbloat",
- "left_coverages");
- g->codeAppend ("}");
-
- g->codeAppend ("half2 right_coverages; {");
- Shader::CalcEdgeCoveragesAtBloatVertices(g, "corner", "right", "outbloat", "-crossbloat",
- "right_coverages");
- g->codeAppend ("}");
-
- // Emit a corner box that erases whatever coverage was written previously, and replaces it
- // using linearly-interpolated values that ramp to zero in bloat vertices that fall outside
- // the triangle.
- //
- // NOTE: Since this is not a linear mapping, it is important that the box's diagonal shared
- // edge points out of the triangle as much as possible.
- g->codeAppendf("%s(corner - crossbloat * bloat, -right_coverages[1]);", emitVertexFn);
- g->codeAppendf("%s(corner + outbloat * bloat, "
- "-1 - left_coverages[0] - right_coverages[0]);", emitVertexFn);
- g->codeAppendf("%s(corner - outbloat * bloat, 0);", emitVertexFn);
- g->codeAppendf("%s(corner + crossbloat * bloat, -left_coverages[1]);", emitVertexFn);
-
- g->configure(InputType::kLines, OutputType::kTriangleStrip, 4, 3);
- }
-};
-
-/**
* Generates a conservative raster hull around a convex quadrilateral that encloses a cubic or
* quadratic, as well as its shared edge.
*/
-class GSCurveImpl : public GrCCCoverageProcessor::GSImpl {
+class GSHull4Impl : public GrCCCoverageProcessor::GSImpl {
public:
- GSCurveImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
+ GSHull4Impl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
const char* emitVertexFn) const override {
- const char* hullPts = fShader->emitSetupCode(g, "pts");
+ Shader::GeometryVars vars;
+ fShader->emitSetupCode(g, "pts", nullptr, wind.c_str(), &vars);
+
+ const char* hullPts = vars.fHullVars.fAlternatePoints;
if (!hullPts) {
hullPts = "pts";
}
@@ -363,6 +314,34 @@ public:
}
};
+/**
+ * Generates conservative rasters around corners. (See comments for RenderPass)
+ */
+class GSCornerImpl : public GrCCCoverageProcessor::GSImpl {
+public:
+ GSCornerImpl(std::unique_ptr<Shader> shader, int numCorners)
+ : GSImpl(std::move(shader)), fNumCorners(numCorners) {}
+
+ void onEmitGeometryShader(GrGLSLGeometryBuilder* g, const GrShaderVar& wind,
+ const char* emitVertexFn) const override {
+ Shader::GeometryVars vars;
+ fShader->emitSetupCode(g, "pts", "sk_InvocationID", wind.c_str(), &vars);
+
+ const char* corner = vars.fCornerVars.fPoint;
+ SkASSERT(corner);
+
+ g->codeAppendf("%s(%s + float2(-bloat, -bloat));", emitVertexFn, corner);
+ g->codeAppendf("%s(%s + float2(-bloat, +bloat));", emitVertexFn, corner);
+ g->codeAppendf("%s(%s + float2(+bloat, -bloat));", emitVertexFn, corner);
+ g->codeAppendf("%s(%s + float2(+bloat, +bloat));", emitVertexFn, corner);
+
+ g->configure(InputType::kLines, OutputType::kTriangleStrip, 4, fNumCorners);
+ }
+
+private:
+ const int fNumCorners;
+};
+
void GrCCCoverageProcessor::initGS() {
SkASSERT(Impl::kGeometryShader == fImpl);
if (RenderPass::kCubics == fRenderPass || WindMethod::kInstanceData == fWindMethod) {
@@ -393,12 +372,12 @@ void GrCCCoverageProcessor::appendGSMesh(GrBuffer* instanceBuffer, int instanceC
GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGSImpl(std::unique_ptr<Shader> shadr) const {
switch (fRenderPass) {
case RenderPass::kTriangles:
- return (GSTriangleSubpass::kHullsAndEdges == fGSTriangleSubpass)
- ? (GSImpl*) new GSTriangleImpl(std::move(shadr))
- : (GSImpl*) new GSTriangleCornerImpl(std::move(shadr));
+ return new GSTriangleImpl(std::move(shadr));
+ case RenderPass::kTriangleCorners:
+ return new GSCornerImpl(std::move(shadr), 3);
case RenderPass::kQuadratics:
case RenderPass::kCubics:
- return new GSCurveImpl(std::move(shadr));
+ return new GSHull4Impl(std::move(shadr));
}
SK_ABORT("Invalid RenderPass");
return nullptr;
diff --git a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
index c64ee755fe..08398e1900 100644
--- a/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
+++ b/src/gpu/ccpr/GrCCCoverageProcessor_VSImpl.cpp
@@ -10,15 +10,89 @@
#include "GrMesh.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
+using Shader = GrCCCoverageProcessor::Shader;
+
static constexpr int kAttribIdx_X = 0;
static constexpr int kAttribIdx_Y = 1;
static constexpr int kAttribIdx_VertexData = 2;
-static constexpr int kVertexData_LeftNeighborIdShift = 10;
-static constexpr int kVertexData_RightNeighborIdShift = 8;
-static constexpr int kVertexData_BloatIdxShift = 6;
-static constexpr int kVertexData_InvertNegativeCoverageBit = 1 << 5;
-static constexpr int kVertexData_IsCornerBit = 1 << 4;
+/**
+ * This class and its subclasses implement the coverage processor with vertex shaders.
+ */
+class GrCCCoverageProcessor::VSImpl : public GrGLSLGeometryProcessor {
+protected:
+ VSImpl(std::unique_ptr<Shader> shader) : fShader(std::move(shader)) {}
+
+ void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
+ FPCoordTransformIter&& transformIter) final {
+ this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
+ }
+
+ void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
+ const GrCCCoverageProcessor& proc = args.fGP.cast<GrCCCoverageProcessor>();
+
+ // Vertex shader.
+ GrGLSLVertexBuilder* v = args.fVertBuilder;
+ int numInputPoints = proc.numInputPoints();
+
+ const char* swizzle = (4 == numInputPoints) ? "xyzw" : "xyz";
+ v->codeAppendf("float%ix2 pts = transpose(float2x%i(%s.%s, %s.%s));",
+ numInputPoints, numInputPoints, proc.getAttrib(kAttribIdx_X).fName, swizzle,
+ proc.getAttrib(kAttribIdx_Y).fName, swizzle);
+
+ if (WindMethod::kCrossProduct == proc.fWindMethod) {
+ v->codeAppend ("float area_x2 = determinant(float2x2(pts[0] - pts[1], "
+ "pts[0] - pts[2]));");
+ if (4 == numInputPoints) {
+ v->codeAppend ("area_x2 += determinant(float2x2(pts[0] - pts[2], "
+ "pts[0] - pts[3]));");
+ }
+ v->codeAppend ("half wind = sign(area_x2);");
+ } else {
+ SkASSERT(WindMethod::kInstanceData == proc.fWindMethod);
+ SkASSERT(3 == numInputPoints);
+ SkASSERT(kFloat4_GrVertexAttribType == proc.getAttrib(kAttribIdx_X).fType);
+ v->codeAppendf("half wind = %s.w;", proc.getAttrib(kAttribIdx_X).fName);
+ }
+
+ float bloat = kAABloatRadius;
+#ifdef SK_DEBUG
+ if (proc.debugVisualizationsEnabled()) {
+ bloat *= proc.debugBloat();
+ }
+#endif
+ v->defineConstant("bloat", bloat);
+
+ const char* coverage = this->emitVertexPosition(proc, v, gpArgs);
+ SkASSERT(kFloat2_GrSLType == gpArgs->fPositionVar.getType());
+
+ GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
+ SkString varyingCode;
+ fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kVertToFrag, &varyingCode,
+ gpArgs->fPositionVar.c_str(), coverage, "wind");
+ v->codeAppend(varyingCode.c_str());
+
+ varyingHandler->emitAttributes(proc);
+ SkASSERT(!args.fFPCoordTransformHandler->nextCoordTransform());
+
+ // Fragment shader.
+ fShader->emitFragmentCode(proc, args.fFragBuilder, args.fOutputColor, args.fOutputCoverage);
+ }
+
+ virtual const char* emitVertexPosition(const GrCCCoverageProcessor&, GrGLSLVertexBuilder*,
+ GrGPArgs*) const = 0;
+
+ virtual ~VSImpl() {}
+
+ const std::unique_ptr<Shader> fShader;
+
+ typedef GrGLSLGeometryProcessor INHERITED;
+};
+
+static constexpr int kVertexData_LeftNeighborIdShift = 9;
+static constexpr int kVertexData_RightNeighborIdShift = 7;
+static constexpr int kVertexData_BloatIdxShift = 5;
+static constexpr int kVertexData_InvertNegativeCoverageBit = 1 << 4;
static constexpr int kVertexData_IsEdgeBit = 1 << 3;
static constexpr int kVertexData_IsHullBit = 1 << 2;
@@ -45,12 +119,8 @@ static constexpr int32_t edge_vertex_data(int32_t leftID, int rightID, int32_t b
return pack_vertex_data(leftID, leftID, bloatIdx, rightID, kVertexData_IsEdgeBit | extraData);
}
-static constexpr int32_t triangle_corner_vertex_data(int32_t cornerID, int32_t bloatIdx) {
- return pack_vertex_data((cornerID + 2) % 3, (cornerID + 1) % 3, bloatIdx, cornerID,
- kVertexData_IsCornerBit);
-}
-static constexpr int32_t kTriangleVertices[] = {
+static constexpr int32_t kHull3AndEdgeVertices[] = {
hull_vertex_data(0, 0, 3),
hull_vertex_data(0, 1, 3),
hull_vertex_data(0, 2, 3),
@@ -81,39 +151,21 @@ static constexpr int32_t kTriangleVertices[] = {
edge_vertex_data(0, 2, 0, kVertexData_InvertNegativeCoverageBit),
edge_vertex_data(0, 2, 1, kVertexData_InvertNegativeCoverageBit),
edge_vertex_data(0, 2, 2, kVertexData_InvertNegativeCoverageBit),
-
- triangle_corner_vertex_data(0, 0),
- triangle_corner_vertex_data(0, 1),
- triangle_corner_vertex_data(0, 2),
- triangle_corner_vertex_data(0, 3),
-
- triangle_corner_vertex_data(1, 0),
- triangle_corner_vertex_data(1, 1),
- triangle_corner_vertex_data(1, 2),
- triangle_corner_vertex_data(1, 3),
-
- triangle_corner_vertex_data(2, 0),
- triangle_corner_vertex_data(2, 1),
- triangle_corner_vertex_data(2, 2),
- triangle_corner_vertex_data(2, 3),
};
-GR_DECLARE_STATIC_UNIQUE_KEY(gTriangleVertexBufferKey);
+GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey);
static constexpr uint16_t kRestartStrip = 0xffff;
-static constexpr uint16_t kTriangleIndicesAsStrips[] = {
+static constexpr uint16_t kHull3AndEdgeIndicesAsStrips[] = {
1, 2, 0, 3, 8, kRestartStrip, // First corner and main body of the hull.
4, 5, 3, 6, 8, 7, kRestartStrip, // Opposite side and corners of the hull.
10, 9, 11, 14, 12, 13, kRestartStrip, // First edge.
16, 15, 17, 20, 18, 19, kRestartStrip, // Second edge.
- 22, 21, 23, 26, 24, 25, kRestartStrip, // Third edge.
- 27, 28, 30, 29, kRestartStrip, // First corner.
- 31, 32, 34, 33, kRestartStrip, // Second corner.
- 35, 36, 38, 37 // Third corner.
+ 22, 21, 23, 26, 24, 25 // Third edge.
};
-static constexpr uint16_t kTriangleIndicesAsTris[] = {
+static constexpr uint16_t kHull3AndEdgeIndicesAsTris[] = {
// First corner and main body of the hull.
1, 2, 0,
2, 3, 0,
@@ -142,21 +194,9 @@ static constexpr uint16_t kTriangleIndicesAsTris[] = {
21, 26, 23,
23, 26, 24,
26, 25, 24,
-
- // First corner.
- 27, 28, 30,
- 28, 29, 30,
-
- // Second corner.
- 31, 32, 34,
- 32, 33, 34,
-
- // Third corner.
- 35, 36, 38,
- 36, 37, 38,
};
-GR_DECLARE_STATIC_UNIQUE_KEY(gTriangleIndexBufferKey);
+GR_DECLARE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey);
static constexpr int32_t kHull4AndEdgeVertices[] = {
hull_vertex_data(0, 0, 4),
@@ -212,229 +252,162 @@ static constexpr uint16_t kHull4AndEdgeIndicesAsTris[] = {
GR_DECLARE_STATIC_UNIQUE_KEY(gHull4AndEdgeIndexBufferKey);
-
/**
- * This class and its subclasses implement the coverage processor with vertex shaders.
+ * Generates a conservative raster hull around a triangle or curve. For triangles we generate
+ * additional conservative rasters with coverage ramps around the edges. For curves we
+ * generate an additional raster with coverage ramps around its shared edge.
+ *
+ * Triangle rough outlines are drawn in two steps: (1) Draw a conservative raster of the entire
+ * triangle, with a coverage of +1. (2) Draw conservative rasters around each edge, with a
+ * coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges
+ * into smooth, antialiased ones. The final corners get touched up in a later step by VSCornerImpl.
+ *
+ * Curves are drawn in two steps: (1) Draw a conservative raster around the input points, passing
+ * coverage=+1 to the Shader. (2) Draw an additional conservative raster around the curve's shared
+ * edge, using coverage=-1 at bloat vertices that fall outside the input points. This erases what
+ * the hull just wrote and ramps coverage to zero.
*/
-class GrCCCoverageProcessor::VSImpl : public GrGLSLGeometryProcessor {
+class VSHullAndEdgeImpl : public GrCCCoverageProcessor::VSImpl {
public:
- VSImpl(std::unique_ptr<Shader> shader) : fShader(std::move(shader)) {}
-
-private:
- void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
- FPCoordTransformIter&& transformIter) override {
- this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
- }
-
- void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
+ VSHullAndEdgeImpl(std::unique_ptr<Shader> shader, int numSides)
+ : VSImpl(std::move(shader)), fNumSides(numSides) {}
- const char* emitVertexPosition(const GrCCCoverageProcessor&, GrGLSLVertexBuilder*,
- GrGPArgs*) const;
+ const char* emitVertexPosition(const GrCCCoverageProcessor& proc, GrGLSLVertexBuilder* v,
+ GrGPArgs* gpArgs) const override {
+ Shader::GeometryVars vars;
+ fShader->emitSetupCode(v, "pts", nullptr, "wind", &vars);
- const std::unique_ptr<Shader> fShader;
-};
+ const char* hullPts = vars.fHullVars.fAlternatePoints;
+ if (!hullPts) {
+ hullPts = "pts";
+ }
-void GrCCCoverageProcessor::VSImpl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
- const GrCCCoverageProcessor& proc = args.fGP.cast<GrCCCoverageProcessor>();
+ // Reverse all indices if the wind is counter-clockwise: [0, 1, 2] -> [2, 1, 0].
+ v->codeAppendf("int clockwise_indices = wind > 0 ? %s : 0x%x - %s;",
+ proc.getAttrib(kAttribIdx_VertexData).fName,
+ ((fNumSides - 1) << kVertexData_LeftNeighborIdShift) |
+ ((fNumSides - 1) << kVertexData_RightNeighborIdShift) |
+ (((1 << kVertexData_RightNeighborIdShift) - 1) ^ 3) |
+ (fNumSides - 1),
+ proc.getAttrib(kAttribIdx_VertexData).fName);
+
+ // Here we generate conservative raster geometry for the input polygon. It is the convex
+ // hull of N pixel-size boxes, one centered on each the input points. Each corner has three
+ // vertices, where one or two may cause degenerate triangles. The vertex data tells us how
+ // to offset each vertex. Edges are also handled here using the same concept. For more
+ // details on conservative raster, see:
+ // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
+ v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts);
+ v->codeAppendf("float2 left = %s[clockwise_indices >> %i];",
+ hullPts, kVertexData_LeftNeighborIdShift);
+ v->codeAppendf("float2 right = %s[(clockwise_indices >> %i) & 3];",
+ hullPts, kVertexData_RightNeighborIdShift);
+
+ v->codeAppend ("float2 leftbloat = sign(corner - left);");
+ v->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, "
+ "0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);");
+
+ v->codeAppend ("float2 rightbloat = sign(right - corner);");
+ v->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
+ "0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");
+
+ v->codeAppend ("bool2 left_right_notequal = notEqual(leftbloat, rightbloat);");
+
+ // At each corner of the polygon, our hull will have either 1, 2, or 3 vertices. We begin
+ // with the first hull vertex (leftbloat), then continue rotating 90 degrees clockwise until
+ // we reach the desired vertex for this invocation. Corners with less than 3 corresponding
+ // hull vertices will result in redundant vertices and degenerate triangles.
+ v->codeAppend ("float2 bloatdir = leftbloat;");
+ v->codeAppendf("int bloatidx = (%s >> %i) & 3;",
+ proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_BloatIdxShift);
+ v->codeAppend ("switch (bloatidx) {");
+ v->codeAppend ( "case 2:");
+ v->codeAppendf( "if (all(left_right_notequal)) {");
+ v->codeAppend ( "bloatdir = float2(-bloatdir.y, +bloatdir.x);");
+ v->codeAppend ( "}");
+ // fallthru.
+ v->codeAppend ( "case 1:");
+ v->codeAppendf( "if (any(left_right_notequal)) {");
+ v->codeAppend ( "bloatdir = float2(-bloatdir.y, +bloatdir.x);");
+ v->codeAppend ( "}");
+ // fallthru.
+ v->codeAppend ("}");
- // Vertex shader.
- GrGLSLVertexBuilder* v = args.fVertBuilder;
- int numInputPoints = proc.numInputPoints();
+ v->codeAppend ("float2 vertex = corner + bloatdir * bloat;");
+ gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
+
+ // The hull has a coverage of +1 all around.
+ v->codeAppend ("half coverage = +1;");
+
+ if (3 == fNumSides) {
+ v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
+ proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
+ Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage");
+ v->codeAppend ("}");
+ } else {
+ SkASSERT(4 == fNumSides);
+ v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
+ proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
+ v->codeAppend ( "coverage = -1;");
+ v->codeAppend ("}");
+ }
- const char* swizzle = (4 == numInputPoints) ? "xyzw" : "xyz";
- v->codeAppendf("float%ix2 pts = transpose(float2x%i(%s.%s, %s.%s));",
- numInputPoints, numInputPoints, proc.getAttrib(kAttribIdx_X).fName, swizzle,
- proc.getAttrib(kAttribIdx_Y).fName, swizzle);
+ v->codeAppendf("if (0 != (%s & %i)) {", // Invert coverage?
+ proc.getAttrib(kAttribIdx_VertexData).fName,
+ kVertexData_InvertNegativeCoverageBit);
+ v->codeAppend ( "coverage = -1 - coverage;");
+ v->codeAppend ("}");
- if (WindMethod::kCrossProduct == proc.fWindMethod) {
- v->codeAppend ("float area_x2 = determinant(float2x2(pts[0] - pts[1], "
- "pts[0] - pts[2]));");
- if (4 == numInputPoints) {
- v->codeAppend ("area_x2 += determinant(float2x2(pts[0] - pts[2], "
- "pts[0] - pts[3]));");
- }
- v->codeAppend ("half wind = sign(area_x2);");
- } else {
- SkASSERT(WindMethod::kInstanceData == proc.fWindMethod);
- SkASSERT(3 == numInputPoints);
- SkASSERT(kFloat4_GrVertexAttribType == proc.getAttrib(kAttribIdx_X).fType);
- v->codeAppendf("half wind = %s.w;", proc.getAttrib(kAttribIdx_X).fName);
+ return "coverage";
}
- float bloat = kAABloatRadius;
-#ifdef SK_DEBUG
- if (proc.debugVisualizationsEnabled()) {
- bloat *= proc.debugBloat();
- }
-#endif
- v->defineConstant("bloat", bloat);
+private:
+ const int fNumSides;
+};
- const char* coverage = this->emitVertexPosition(proc, v, gpArgs);
- SkASSERT(kFloat2_GrSLType == gpArgs->fPositionVar.getType());
+static constexpr uint16_t kCornerIndicesAsStrips[] = {
+ 0, 1, 2, 3, kRestartStrip, // First corner.
+ 4, 5, 6, 7, kRestartStrip, // Second corner.
+ 8, 9, 10, 11 // Third corner.
+};
- GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
- SkString varyingCode;
- fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kVertToFrag, &varyingCode,
- gpArgs->fPositionVar.c_str(), coverage, "wind");
- v->codeAppend(varyingCode.c_str());
+static constexpr uint16_t kCornerIndicesAsTris[] = {
+ // First corner.
+ 0, 1, 2,
+ 1, 3, 2,
- varyingHandler->emitAttributes(proc);
- SkASSERT(!args.fFPCoordTransformHandler->nextCoordTransform());
+ // Second corner.
+ 4, 5, 6,
+ 5, 7, 6,
- // Fragment shader.
- fShader->emitFragmentCode(proc, args.fFragBuilder, args.fOutputColor, args.fOutputCoverage);
-}
+ // Third corner.
+ 8, 9, 10,
+ 9, 11, 10,
+};
+
+GR_DECLARE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey);
/**
- * Generates a conservative raster hull around a triangle or curve. For triangles we generate
- * additional conservative rasters with coverage ramps around the edges. For curves we generate an
- * additional raster with coverage ramps around its shared edge.
- *
- * Triangles are drawn in three steps: (1) Draw a conservative raster of the entire triangle, with a
- * coverage of +1. (2) Draw conservative rasters around each edge, with a coverage ramp from -1 to
- * 0. These edge coverage values convert jagged conservative raster edges into smooth, antialiased
- * ones. (3) Draw conservative rasters (aka pixel-size boxes) around each corner, replacing the
- * previous coverage values with ones that ramp to zero in the bloat vertices that fall outside the
- * triangle.
- *
- * Curves are drawn in two steps: (1) Draw a conservative raster around the input points, passing
- * coverage=+1 to the Shader. (2) Draw an additional conservative raster around the curve's shared
- * edge, using coverage=-1 at bloat vertices that fall outside the input points. This erases what
- * the hull just wrote and ramps coverage to zero.
+ * Generates conservative rasters around corners. (See comments for RenderPass)
*/
-const char* GrCCCoverageProcessor::VSImpl::emitVertexPosition(const GrCCCoverageProcessor& proc,
- GrGLSLVertexBuilder* v,
- GrGPArgs* gpArgs) const {
- int numSides = (RenderPass::kTriangles == proc.fRenderPass) ? 3 : 4;
- const char* hullPts = fShader->emitSetupCode(v, "pts");
- if (!hullPts) {
- SkASSERT(numSides == proc.numInputPoints());
- hullPts = "pts";
- }
+class VSCornerImpl : public GrCCCoverageProcessor::VSImpl {
+public:
+ VSCornerImpl(std::unique_ptr<Shader> shader) : VSImpl(std::move(shader)) {}
- // Reverse all indices if the wind is counter-clockwise: [0, 1, 2] -> [2, 1, 0].
- v->codeAppendf("int clockwise_indices = wind > 0 ? %s : 0x%x - %s;",
- proc.getAttrib(kAttribIdx_VertexData).fName,
- ((numSides - 1) << kVertexData_LeftNeighborIdShift) |
- ((numSides - 1) << kVertexData_RightNeighborIdShift) |
- (((1 << kVertexData_RightNeighborIdShift) - 1) ^ 3) |
- (numSides - 1),
- proc.getAttrib(kAttribIdx_VertexData).fName);
-
- // Here we generate conservative raster geometry for the input polygon. It is the convex hull of
- // N pixel-size boxes, one centered on each the input points. Each corner has three vertices,
- // where one or two may cause degenerate triangles. The vertex data tells us how to offset each
- // vertex. Edges are also handled here using the same concept. For more details on conservative
- // raster, see: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
- v->codeAppendf("float2 corner = %s[clockwise_indices & 3];", hullPts);
- v->codeAppendf("float2 left = %s[clockwise_indices >> %i];",
- hullPts, kVertexData_LeftNeighborIdShift);
- v->codeAppendf("float2 right = %s[(clockwise_indices >> %i) & 3];",
- hullPts, kVertexData_RightNeighborIdShift);
-
- v->codeAppend ("float2 leftbloat = sign(corner - left);");
- v->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, "
- "0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);");
-
- v->codeAppend ("float2 rightbloat = sign(right - corner);");
- v->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
- "0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");
-
- v->codeAppend ("bool2 left_right_notequal = notEqual(leftbloat, rightbloat);");
-
- v->codeAppend ("float2 bloatdir = leftbloat;");
-
- if (RenderPass::kTriangles == proc.fRenderPass) { // Only triangles emit corner boxes.
- v->codeAppendf("if (0 != (%s & %i)) {", // Are we a corner?
- proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsCornerBit);
-
- // For corner boxes, we hack 'left_right_notequal' to [true, true]. This
- // causes the upcoming code to always rotate, which is the right thing
- // for corners.
- v->codeAppendf( "left_right_notequal = bool2(true, true);");
-
- // In corner boxes, all 4 coverage values will not map linearly, so it is
- // important to rotate the box so its diagonal shared edge points out of
- // the triangle, in the direction that ramps to zero.
- v->codeAppend ( "float2 bisect = normalize(corner - right) + normalize(corner - left);");
- v->codeAppend ( "if (sign(bisect) == sign(leftbloat)) {");
- v->codeAppend ( "bloatdir = float2(+bloatdir.y, -bloatdir.x);");
- v->codeAppend ( "}");
- v->codeAppend ("}");
- }
+ const char* emitVertexPosition(const GrCCCoverageProcessor&, GrGLSLVertexBuilder* v,
+ GrGPArgs* gpArgs) const override {
+ Shader::GeometryVars vars;
+ v->codeAppend ("int corner_id = sk_VertexID / 4;");
+ fShader->emitSetupCode(v, "pts", "corner_id", "wind", &vars);
- // At each corner of the polygon, our hull will have either 1, 2, or 3 vertices (or 4 if it's a
- // corner box). We begin with the first hull vertex (leftbloat), then continue rotating 90
- // degrees clockwise until we reach the desired vertex for this invocation. Corners with less
- // than 3 corresponding hull vertices will result in redundant vertices and degenerate
- // triangles.
- v->codeAppendf("int bloatidx = (%s >> %i) & 3;",
- proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_BloatIdxShift);
- v->codeAppend ("switch (bloatidx) {");
- if (RenderPass::kTriangles == proc.fRenderPass) { // Only triangles emit corner boxes.
- v->codeAppend ( "case 3:");
- // Only corners will have bloatidx=3, and corners always rotate.
- v->codeAppend ( "bloatdir = float2(-bloatdir.y, +bloatdir.x);"); // 90 deg CW.
- // fallthru.
- }
- v->codeAppend ( "case 2:");
- v->codeAppendf( "if (all(left_right_notequal)) {");
- v->codeAppend ( "bloatdir = float2(-bloatdir.y, +bloatdir.x);"); // 90 deg CW.
- v->codeAppend ( "}");
- // fallthru.
- v->codeAppend ( "case 1:");
- v->codeAppendf( "if (any(left_right_notequal)) {");
- v->codeAppend ( "bloatdir = float2(-bloatdir.y, +bloatdir.x);"); // 90 deg CW.
- v->codeAppend ( "}");
- // fallthru.
- v->codeAppend ("}");
-
- v->codeAppend ("float2 vertex = corner + bloatdir * bloat;");
- gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
-
- // The hull has a coverage of +1 all around.
- v->codeAppend ("half coverage = +1;");
-
- if (RenderPass::kTriangles == proc.fRenderPass) {
- v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge OR corner?
- proc.getAttrib(kAttribIdx_VertexData).fName,
- kVertexData_IsEdgeBit | kVertexData_IsCornerBit);
- Shader::CalcEdgeCoverageAtBloatVertex(v, "left", "corner", "bloatdir", "coverage");
- v->codeAppend ("}");
+ v->codeAppendf("float2 vertex = %s;", vars.fCornerVars.fPoint);
+ v->codeAppend ("vertex.x += (0 == (sk_VertexID & 2)) ? -bloat : +bloat;");
+ v->codeAppend ("vertex.y += (0 == (sk_VertexID & 1)) ? -bloat : +bloat;");
- v->codeAppendf("if (0 != (%s & %i)) {", // Are we a corner?
- proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsCornerBit);
- // Corner boxes erase whatever coverage was written previously, and
- // replace it with linearly-interpolated values that ramp to zero in the
- // diagonal that points out of the triangle, and ramp from left-edge
- // coverage to right-edge coverage in the other diagonal.
- v->codeAppend ( "half left_coverage = coverage;");
- v->codeAppend ( "half right_coverage;");
- Shader::CalcEdgeCoverageAtBloatVertex(v, "corner", "right", "bloatdir",
- "right_coverage");
- v->codeAppend ( "coverage = (1 == bloatidx) ? -1 : 0;");
- v->codeAppend ( "if (((bloatidx + 3) & 3) < 2) {");
- v->codeAppend ( "coverage -= left_coverage;");
- v->codeAppend ( "}");
- v->codeAppend ( "if (bloatidx < 2) {");
- v->codeAppend ( "coverage -= right_coverage;");
- v->codeAppend ( "}");
- v->codeAppend ("}");
- } else {
- v->codeAppendf("if (0 != (%s & %i)) {", // Are we an edge?
- proc.getAttrib(kAttribIdx_VertexData).fName, kVertexData_IsEdgeBit);
- v->codeAppend ( "coverage = -1;");
- v->codeAppend ("}");
+ gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex");
+ return nullptr; // Corner vertices don't have an initial coverage value.
}
-
- v->codeAppendf("if (0 != (%s & %i)) {", // Invert coverage?
- proc.getAttrib(kAttribIdx_VertexData).fName,
- kVertexData_InvertNegativeCoverageBit);
- v->codeAppend ( "coverage = -1 - coverage;");
- v->codeAppend ("}");
-
- return "coverage";
-}
+};
void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
SkASSERT(Impl::kVertexShader == fImpl);
@@ -442,24 +415,42 @@ void GrCCCoverageProcessor::initVS(GrResourceProvider* rp) {
switch (fRenderPass) {
case RenderPass::kTriangles: {
- GR_DEFINE_STATIC_UNIQUE_KEY(gTriangleVertexBufferKey);
+ GR_DEFINE_STATIC_UNIQUE_KEY(gHull3AndEdgeVertexBufferKey);
fVertexBuffer = rp->findOrMakeStaticBuffer(kVertex_GrBufferType,
- sizeof(kTriangleVertices),
- kTriangleVertices,
- gTriangleVertexBufferKey);
- GR_DEFINE_STATIC_UNIQUE_KEY(gTriangleIndexBufferKey);
+ sizeof(kHull3AndEdgeVertices),
+ kHull3AndEdgeVertices,
+ gHull3AndEdgeVertexBufferKey);
+ GR_DEFINE_STATIC_UNIQUE_KEY(gHull3AndEdgeIndexBufferKey);
+ if (caps.usePrimitiveRestart()) {
+ fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
+ sizeof(kHull3AndEdgeIndicesAsStrips),
+ kHull3AndEdgeIndicesAsStrips,
+ gHull3AndEdgeIndexBufferKey);
+ fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull3AndEdgeIndicesAsStrips);
+ } else {
+ fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
+ sizeof(kHull3AndEdgeIndicesAsTris),
+ kHull3AndEdgeIndicesAsTris,
+ gHull3AndEdgeIndexBufferKey);
+ fNumIndicesPerInstance = SK_ARRAY_COUNT(kHull3AndEdgeIndicesAsTris);
+ }
+ break;
+ }
+
+ case RenderPass::kTriangleCorners: {
+ GR_DEFINE_STATIC_UNIQUE_KEY(gCornerIndexBufferKey);
if (caps.usePrimitiveRestart()) {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
- sizeof(kTriangleIndicesAsStrips),
- kTriangleIndicesAsStrips,
- gTriangleIndexBufferKey);
- fNumIndicesPerInstance = SK_ARRAY_COUNT(kTriangleIndicesAsStrips);
+ sizeof(kCornerIndicesAsStrips),
+ kCornerIndicesAsStrips,
+ gCornerIndexBufferKey);
+ fNumIndicesPerInstance = SK_ARRAY_COUNT(kCornerIndicesAsStrips);
} else {
fIndexBuffer = rp->findOrMakeStaticBuffer(kIndex_GrBufferType,
- sizeof(kTriangleIndicesAsTris),
- kTriangleIndicesAsTris,
- gTriangleIndexBufferKey);
- fNumIndicesPerInstance = SK_ARRAY_COUNT(kTriangleIndicesAsTris);
+ sizeof(kCornerIndicesAsTris),
+ kCornerIndicesAsTris,
+ gCornerIndexBufferKey);
+ fNumIndicesPerInstance = SK_ARRAY_COUNT(kCornerIndicesAsTris);
}
break;
}
@@ -540,5 +531,15 @@ void GrCCCoverageProcessor::appendVSMesh(GrBuffer* instanceBuffer, int instanceC
}
GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createVSImpl(std::unique_ptr<Shader> shadr) const {
- return new VSImpl(std::move(shadr));
+ switch (fRenderPass) {
+ case RenderPass::kTriangles:
+ return new VSHullAndEdgeImpl(std::move(shadr), 3);
+ case RenderPass::kTriangleCorners:
+ return new VSCornerImpl(std::move(shadr));
+ case RenderPass::kQuadratics:
+ case RenderPass::kCubics:
+ return new VSHullAndEdgeImpl(std::move(shadr), 4);
+ }
+ SK_ABORT("Invalid RenderPass");
+ return nullptr;
}
diff --git a/src/gpu/ccpr/GrCCCubicShader.cpp b/src/gpu/ccpr/GrCCCubicShader.cpp
index 7066fbdaed..76d1646b65 100644
--- a/src/gpu/ccpr/GrCCCubicShader.cpp
+++ b/src/gpu/ccpr/GrCCCubicShader.cpp
@@ -12,7 +12,9 @@
using Shader = GrCCCoverageProcessor::Shader;
-const char* GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts) const {
+void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+ const char* /*repetitionID*/, const char* /*wind*/,
+ GeometryVars*) const {
// Find the cubic's power basis coefficients.
s->codeAppendf("float2x4 C = float4x4(-1, 3, -3, 1, "
" 3, -6, 3, 0, "
@@ -62,28 +64,24 @@ const char* GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char
s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, "
"0, orientation[0], 0, "
"0, 0, orientation[1]);", fKLMMatrix.c_str());
-
- return nullptr;
}
-Shader::CoverageHandling GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVarying::Scope scope, SkString* code,
- const char* position,
- const char* coverageTimesWind) {
+void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code,
+ const char* position, const char* inputCoverage,
+ const char* wind) {
code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
fKLMW.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("klmw", &fKLMW);
code->appendf("%s.xyz = klm;", OutName(fKLMW));
- code->appendf("%s.w = %s;", OutName(fKLMW), coverageTimesWind);
+ code->appendf("%s.w = %s * %s;", OutName(fKLMW), inputCoverage, wind);
fGradMatrix.reset(kFloat2x2_GrSLType, scope);
varyingHandler->addVarying("grad_matrix", &fGradMatrix);
code->appendf("%s[0] = 3 * klm[0] * %s[0].xy;", OutName(fGradMatrix), fKLMMatrix.c_str());
code->appendf("%s[1] = -klm[1] * %s[2].xy - klm[2] * %s[1].xy;",
OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str());
-
- return CoverageHandling::kHandled;
}
void GrCCCubicShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc,
diff --git a/src/gpu/ccpr/GrCCCubicShader.h b/src/gpu/ccpr/GrCCCubicShader.h
index 3ffce65042..70d3300461 100644
--- a/src/gpu/ccpr/GrCCCubicShader.h
+++ b/src/gpu/ccpr/GrCCCubicShader.h
@@ -23,10 +23,11 @@
*/
class GrCCCubicShader : public GrCCCoverageProcessor::Shader {
protected:
- const char* emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts) const override;
+ void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ const char* wind, GeometryVars*) const override;
- CoverageHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
- const char* position, const char* coverageTimesWind) override;
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
+ const char* position, const char* inputCoverage, const char* wind) override;
void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
const char* outputCoverage) const override;
diff --git a/src/gpu/ccpr/GrCCPathParser.cpp b/src/gpu/ccpr/GrCCPathParser.cpp
index 42f1010409..e625c43743 100644
--- a/src/gpu/ccpr/GrCCPathParser.cpp
+++ b/src/gpu/ccpr/GrCCPathParser.cpp
@@ -514,12 +514,17 @@ void GrCCPathParser::drawCoverageCount(GrOpFlushState* flushState, CoverageCount
if (batchTotalCounts.fTriangles) {
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangles,
WindMethod::kCrossProduct, &PrimitiveTallies::fTriangles, drawBounds);
+ this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleCorners,
+ WindMethod::kCrossProduct, &PrimitiveTallies::fTriangles, drawBounds);
}
if (batchTotalCounts.fWoundTriangles) {
this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangles,
WindMethod::kInstanceData, &PrimitiveTallies::fWoundTriangles,
drawBounds);
+ this->drawRenderPass(flushState, pipeline, batchID, RenderPass::kTriangleCorners,
+ WindMethod::kInstanceData, &PrimitiveTallies::fWoundTriangles,
+ drawBounds);
}
if (batchTotalCounts.fQuadratics) {
@@ -587,8 +592,9 @@ void GrCCPathParser::drawRenderPass(GrOpFlushState* flushState, const GrPipeline
SkASSERT(totalInstanceCount == batch.fTotalPrimitiveCounts.*instanceType);
if (!fMeshesScratchBuffer.empty()) {
- proc.draw(flushState, pipeline, fMeshesScratchBuffer.begin(),
- fDynamicStatesScratchBuffer.begin(), fMeshesScratchBuffer.count(),
- SkRect::Make(drawBounds));
+ SkASSERT(flushState->rtCommandBuffer());
+ flushState->rtCommandBuffer()->draw(pipeline, proc, fMeshesScratchBuffer.begin(),
+ fDynamicStatesScratchBuffer.begin(),
+ fMeshesScratchBuffer.count(), SkRect::Make(drawBounds));
}
}
diff --git a/src/gpu/ccpr/GrCCQuadraticShader.cpp b/src/gpu/ccpr/GrCCQuadraticShader.cpp
index e164cff862..baa10fd34e 100644
--- a/src/gpu/ccpr/GrCCQuadraticShader.cpp
+++ b/src/gpu/ccpr/GrCCQuadraticShader.cpp
@@ -13,7 +13,9 @@
using Shader = GrCCCoverageProcessor::Shader;
-const char* GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts) const {
+void GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+ const char* /*repetitionID*/, const char* /*wind*/,
+ GeometryVars* vars) const {
s->declareGlobal(fCanonicalMatrix);
s->codeAppendf("%s = float3x3(0.0, 0, 1, "
"0.5, 0, 1, "
@@ -36,20 +38,23 @@ const char* GrCCQuadraticShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const
"%s[0] + tan0 * t, "
"%s[1] + tan1 * t, "
"%s[2]);", pts, pts, pts, pts);
- return "quadratic_hull";
+ vars->fHullVars.fAlternatePoints = "quadratic_hull";
}
-Shader::CoverageHandling GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVarying::Scope scope,
- SkString* code, const char* position,
- const char* coverageTimesWind) {
+void GrCCQuadraticShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code,
+ const char* position, const char* inputCoverage,
+ const char* wind) {
fCoords.reset(kFloat4_GrSLType, scope);
varyingHandler->addVarying("coords", &fCoords);
code->appendf("%s.xy = (%s * float3(%s, 1)).xy;",
OutName(fCoords), fCanonicalMatrix.c_str(), position);
code->appendf("%s.zw = float2(2 * %s.x, -1) * float2x2(%s);",
OutName(fCoords), OutName(fCoords), fCanonicalMatrix.c_str());
- return CoverageHandling::kNotHandled;
+
+ fCoverageTimesWind.reset(kHalf_GrSLType, scope);
+ varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
+ code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
}
void GrCCQuadraticShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc,
@@ -62,5 +67,5 @@ void GrCCQuadraticShader::onEmitFragmentCode(const GrCCCoverageProcessor& proc,
f->codeAppendf("d /= %f;", proc.debugBloat());
}
#endif
- f->codeAppendf("%s = clamp(0.5 - d, 0, 1);", outputCoverage);
+ f->codeAppendf("%s = clamp(0.5 - d, 0, 1) * %s;", outputCoverage, fCoverageTimesWind.fsIn());
}
diff --git a/src/gpu/ccpr/GrCCQuadraticShader.h b/src/gpu/ccpr/GrCCQuadraticShader.h
index a2ac5dab9f..d91f943471 100644
--- a/src/gpu/ccpr/GrCCQuadraticShader.h
+++ b/src/gpu/ccpr/GrCCQuadraticShader.h
@@ -22,16 +22,18 @@
*/
class GrCCQuadraticShader : public GrCCCoverageProcessor::Shader {
protected:
- const char* emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts) const override;
+ void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ const char* wind, GeometryVars*) const override;
- CoverageHandling onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
- const char* position, const char* coverageTimesWind) override;
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
+ const char* position, const char* inputCoverage, const char* wind) override;
void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
const char* outputCoverage) const override;
const GrShaderVar fCanonicalMatrix{"canonical_matrix", kFloat3x3_GrSLType};
GrGLSLVarying fCoords;
+ GrGLSLVarying fCoverageTimesWind;
};
#endif
diff --git a/src/gpu/ccpr/GrCCTriangleShader.cpp b/src/gpu/ccpr/GrCCTriangleShader.cpp
new file mode 100644
index 0000000000..8135313965
--- /dev/null
+++ b/src/gpu/ccpr/GrCCTriangleShader.cpp
@@ -0,0 +1,151 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "GrCCTriangleShader.h"
+
+#include "glsl/GrGLSLFragmentShaderBuilder.h"
+#include "glsl/GrGLSLVertexGeoBuilder.h"
+
+using Shader = GrCCCoverageProcessor::Shader;
+
+void GrCCTriangleShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code,
+ const char* /*position*/, const char* inputCoverage,
+ const char* wind) {
+ SkASSERT(inputCoverage);
+ fCoverageTimesWind.reset(kHalf_GrSLType, scope);
+ varyingHandler->addVarying("coverage_times_wind", &fCoverageTimesWind);
+ code->appendf("%s = %s * %s;", OutName(fCoverageTimesWind), inputCoverage, wind);
+}
+
+void GrCCTriangleShader::onEmitFragmentCode(const GrCCCoverageProcessor&,
+ GrGLSLFPFragmentBuilder* f,
+ const char* outputCoverage) const {
+ f->codeAppendf("%s = %s;", outputCoverage, fCoverageTimesWind.fsIn());
+}
+
+void GrCCTriangleCornerShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
+ const char* repetitionID, const char* wind,
+ GeometryVars* vars) const {
+ s->codeAppendf("float2 corner = %s[%s];", pts, repetitionID);
+ vars->fCornerVars.fPoint = "corner";
+
+ s->codeAppendf("float2x2 vectors = float2x2(corner - %s[0 != %s ? %s - 1 : 2], "
+ "corner - %s[2 != %s ? %s + 1 : 0]);",
+ pts, repetitionID, repetitionID, pts, repetitionID,
+ repetitionID);
+
+ // Make sure neither vector is 0 to avoid a divide-by-zero. Wind will be zero anyway if this
+ // is the case, so whatever we output won't have any effect as long it isn't NaN or Inf.
+ s->codeAppend ("for (int i = 0; i < 2; ++i) {");
+ s->codeAppend ( "vectors[i] = (vectors[i] != float2(0)) ? vectors[i] : float2(1);");
+ s->codeAppend ("}");
+
+ // Find the vector that bisects the region outside the incoming edges. Each edge is
+ // responsible to subtract the outside region on its own the side of the bisector.
+ s->codeAppendf("float2 leftdir = normalize(vectors[%s > 0 ? 0 : 1]);", wind);
+ s->codeAppendf("float2 rightdir = normalize(vectors[%s > 0 ? 1 : 0]);", wind);
+ s->codeAppend ("float2 bisect = dot(leftdir, rightdir) >= 0 ? "
+ "leftdir + rightdir : "
+ "float2(leftdir.y - rightdir.y, rightdir.x - leftdir.x);");
+
+ // In ccpr we don't calculate exact geometric pixel coverage. What the distance-to-edge
+ // method actually finds is coverage inside a logical "AA box", one that is rotated inline
+ // with the edge, and in our case, up-scaled to circumscribe the actual pixel. Below we set
+ // up transformations into normalized logical AA box space for both incoming edges. These
+ // will tell the fragment shader where the corner is located within each edge's AA box.
+ s->declareGlobal(fAABoxMatrices);
+ s->declareGlobal(fAABoxTranslates);
+ s->declareGlobal(fGeoShaderBisects);
+ s->codeAppendf("for (int i = 0; i < 2; ++i) {");
+ // The X component runs parallel to the edge (i.e. distance to the corner).
+ s->codeAppendf( "float2 n = -vectors[%s > 0 ? i : 1 - i];", wind);
+ s->codeAppend ( "float nwidth = (abs(n.x) + abs(n.y)) * (bloat * 2);");
+ s->codeAppend ( "n /= nwidth;"); // nwidth != 0 because both vectors != 0.
+ s->codeAppendf( "%s[i][0] = n;", fAABoxMatrices.c_str());
+ s->codeAppendf( "%s[i][0] = -dot(n, corner) + .5;", fAABoxTranslates.c_str());
+
+ // The Y component runs perpendicular to the edge (i.e. distance-to-edge).
+ s->codeAppend ( "n = (i == 0) ? float2(-n.y, n.x) : float2(n.y, -n.x);");
+ s->codeAppendf( "%s[i][1] = n;", fAABoxMatrices.c_str());
+ s->codeAppendf( "%s[i][1] = -dot(n, corner) + .5;", fAABoxTranslates.c_str());
+
+ // Translate the bisector into logical AA box space.
+ // NOTE: Since the region outside two edges of a convex shape is in [180 deg, 360 deg], the
+ // bisector will therefore be in [90 deg, 180 deg]. Or, x >= 0 and y <= 0 in AA box space.
+ s->codeAppendf( "%s[i] = -bisect * %s[i];",
+ fGeoShaderBisects.c_str(), fAABoxMatrices.c_str());
+ s->codeAppend ("}");
+}
+
+void GrCCTriangleCornerShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
+ GrGLSLVarying::Scope scope, SkString* code,
+ const char* position, const char* inputCoverage,
+ const char* wind) {
+ using Interpolation = GrGLSLVaryingHandler::Interpolation;
+ SkASSERT(!inputCoverage);
+
+ fCornerLocationInAABoxes.reset(kFloat2x2_GrSLType, scope);
+ varyingHandler->addVarying("corner_location_in_aa_boxes", &fCornerLocationInAABoxes);
+
+ fBisectInAABoxes.reset(kFloat2x2_GrSLType, scope);
+ varyingHandler->addVarying("bisect_in_aa_boxes", &fBisectInAABoxes, Interpolation::kCanBeFlat);
+
+ code->appendf("for (int i = 0; i < 2; ++i) {");
+ code->appendf( "%s[i] = %s * %s[i] + %s[i];",
+ OutName(fCornerLocationInAABoxes), position, fAABoxMatrices.c_str(),
+ fAABoxTranslates.c_str());
+ code->appendf( "%s[i] = %s[i];", OutName(fBisectInAABoxes), fGeoShaderBisects.c_str());
+ code->appendf("}");
+
+ fWindTimesHalf.reset(kHalf_GrSLType, scope);
+ varyingHandler->addVarying("wind_times_half", &fWindTimesHalf, Interpolation::kCanBeFlat);
+ code->appendf("%s = %s * .5;", OutName(fWindTimesHalf), wind);
+}
+
+void GrCCTriangleCornerShader::onEmitFragmentCode(const GrCCCoverageProcessor&,
+ GrGLSLFPFragmentBuilder* f,
+ const char* outputCoverage) const {
+ // By the time we reach this shader, the pixel is in the following state:
+ //
+ // 1. The hull shader has emitted a coverage of 1.
+ // 2. Both edges have subtracted the area on their outside.
+ //
+ // This generally works, but it is a problem for corner pixels. There is a region within
+ // corner pixels that is outside both edges at the same time. This means the region has been
+ // double subtracted (once by each edge). The purpose of this shader is to fix these corner
+ // pixels.
+ //
+ // More specifically, each edge redoes its coverage analysis so that it only subtracts the
+ // outside area that falls on its own side of the bisector line.
+ //
+ // NOTE: unless the edges fall on multiples of 90 deg from one another, they will have
+ // different AA boxes. (For an explanation of AA boxes, see comments in
+ // onEmitGeometryShader.) This means the coverage analysis will only be approximate. It
+ // seems acceptable, but if we want exact coverage we will need to switch to a more
+ // expensive model.
+ f->codeAppendf("for (int i = 0; i < 2; ++i) {"); // Loop through both edges.
+ f->codeAppendf( "half2 corner = %s[i];", fCornerLocationInAABoxes.fsIn());
+ f->codeAppendf( "half2 bisect = %s[i];", fBisectInAABoxes.fsIn());
+
+ // Find the point at which the bisector exits the logical AA box.
+ // (The inequality works because bisect.x is known >= 0 and bisect.y is known <= 0.)
+ f->codeAppendf( "half2 d = half2(1 - corner.x, -corner.y);");
+ f->codeAppendf( "half T = d.y * bisect.x >= d.x * bisect.y ? d.y / bisect.y "
+ ": d.x / bisect.x;");
+ f->codeAppendf( "half2 exit = corner + bisect * T;");
+
+ // These lines combined (and the final multiply by .5) accomplish the following:
+ // 1. Add back the area beyond the corner that was subtracted out previously.
+ // 2. Subtract out the area beyond the corner, but under the bisector.
+ // The other edge will take care of the area on its own side of the bisector.
+ f->codeAppendf( "%s += (2 - corner.x - exit.x) * corner.y;", outputCoverage);
+ f->codeAppendf( "%s += (corner.x - 1) * exit.y;", outputCoverage);
+ f->codeAppendf("}");
+
+ f->codeAppendf("%s *= %s;", outputCoverage, fWindTimesHalf.fsIn());
+}
diff --git a/src/gpu/ccpr/GrCCTriangleShader.h b/src/gpu/ccpr/GrCCTriangleShader.h
new file mode 100644
index 0000000000..6dae8df497
--- /dev/null
+++ b/src/gpu/ccpr/GrCCTriangleShader.h
@@ -0,0 +1,49 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef GrCCTriangleShader_DEFINED
+#define GrCCTriangleShader_DEFINED
+
+#include "ccpr/GrCCCoverageProcessor.h"
+
+/**
+ * Steps 1 & 2: Draw the triangle's conservative raster hull with a coverage of +1, then smooth the
+ * edges by drawing the conservative rasters of all 3 edges and interpolating from
+ * coverage=-1 on the outside to coverage=0 on the inside. The Impl may choose to
+ * implement these steps in either one or two actual render passes.
+ */
+class GrCCTriangleShader : public GrCCCoverageProcessor::Shader {
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
+ const char* position, const char* inputCoverage, const char* wind) override;
+ void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
+ const char* outputCoverage) const override;
+
+ GrGLSLVarying fCoverageTimesWind;
+};
+
+/**
+ * Step 3: Touch up the corner pixels. Here we fix the simple distance-to-edge coverage analysis
+ * done previously so that it takes into account the region that is outside both edges at
+ * the same time.
+ */
+class GrCCTriangleCornerShader : public GrCCCoverageProcessor::Shader {
+ void emitSetupCode(GrGLSLVertexGeoBuilder*, const char* pts, const char* repetitionID,
+ const char* wind, GeometryVars*) const override;
+ void onEmitVaryings(GrGLSLVaryingHandler*, GrGLSLVarying::Scope, SkString* code,
+ const char* position, const char* inputCoverage, const char* wind) override;
+ void onEmitFragmentCode(const GrCCCoverageProcessor&, GrGLSLFPFragmentBuilder*,
+ const char* outputCoverage) const override;
+
+ GrShaderVar fAABoxMatrices{"aa_box_matrices", kFloat2x2_GrSLType, 2};
+ GrShaderVar fAABoxTranslates{"aa_box_translates", kFloat2_GrSLType, 2};
+ GrShaderVar fGeoShaderBisects{"bisects", kFloat2_GrSLType, 2};
+ GrGLSLVarying fCornerLocationInAABoxes;
+ GrGLSLVarying fBisectInAABoxes;
+ GrGLSLVarying fWindTimesHalf;
+};
+
+#endif