aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/effects
diff options
context:
space:
mode:
authorGravatar Mike Reed <reed@google.com>2018-06-26 10:37:06 -0400
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-06-26 15:01:52 +0000
commit538e1a10b75380fe271e79a2726018f50aed24cb (patch)
treee7cf04ca52b5d3a40d4cfb29790bc056915a22ac /src/effects
parentc1b6066263b1a1dd19f5dedd38e20cf0b142f271 (diff)
move blurimagefilter.cpp back into effects
Bug: skia: Change-Id: I5711a9a8fcd135344e75cb4b505bd06044414c85 Reviewed-on: https://skia-review.googlesource.com/137581 Reviewed-by: Ben Wagner <bungeman@google.com> Commit-Queue: Mike Reed <reed@google.com>
Diffstat (limited to 'src/effects')
-rw-r--r--src/effects/imagefilters/SkBlurImageFilter.cpp698
1 files changed, 698 insertions, 0 deletions
diff --git a/src/effects/imagefilters/SkBlurImageFilter.cpp b/src/effects/imagefilters/SkBlurImageFilter.cpp
new file mode 100644
index 0000000000..818644818c
--- /dev/null
+++ b/src/effects/imagefilters/SkBlurImageFilter.cpp
@@ -0,0 +1,698 @@
+/*
+ * Copyright 2011 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkBlurImageFilter.h"
+
+#include <algorithm>
+
+#include "SkArenaAlloc.h"
+#include "SkAutoPixmapStorage.h"
+#include "SkBitmap.h"
+#include "SkColorData.h"
+#include "SkColorSpaceXformer.h"
+#include "SkImageFilterPriv.h"
+#include "SkTFitsIn.h"
+#include "SkGpuBlurUtils.h"
+#include "SkNx.h"
+#include "SkOpts.h"
+#include "SkReadBuffer.h"
+#include "SkSpecialImage.h"
+#include "SkWriteBuffer.h"
+
+#if SK_SUPPORT_GPU
+#include "GrContext.h"
+#include "GrTextureProxy.h"
+#include "SkGr.h"
+#endif
+
+static constexpr double kPi = 3.14159265358979323846264338327950288;
+
+class SkBlurImageFilterImpl final : public SkImageFilter {
+public:
+ SkBlurImageFilterImpl(SkScalar sigmaX,
+ SkScalar sigmaY,
+ sk_sp<SkImageFilter> input,
+ const CropRect* cropRect,
+ SkBlurImageFilter::TileMode tileMode);
+
+ SkRect computeFastBounds(const SkRect&) const override;
+
+ SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkBlurImageFilterImpl)
+
+protected:
+ void flatten(SkWriteBuffer&) const override;
+ sk_sp<SkSpecialImage> onFilterImage(SkSpecialImage* source, const Context&,
+ SkIPoint* offset) const override;
+ sk_sp<SkImageFilter> onMakeColorSpace(SkColorSpaceXformer*) const override;
+ SkIRect onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
+ MapDirection, const SkIRect* inputRect) const override;
+
+private:
+ typedef SkImageFilter INHERITED;
+ friend class SkImageFilter;
+
+#if SK_SUPPORT_GPU
+ sk_sp<SkSpecialImage> gpuFilter(
+ SkSpecialImage *source, SkVector sigma, const sk_sp<SkSpecialImage> &input,
+ SkIRect inputBounds, SkIRect dstBounds, SkIPoint inputOffset,
+ const OutputProperties& outProps, SkIPoint* offset) const;
+#endif
+
+ SkSize fSigma;
+ SkBlurImageFilter::TileMode fTileMode;
+};
+
+SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkImageFilter)
+ SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkBlurImageFilterImpl)
+SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
+
+///////////////////////////////////////////////////////////////////////////////
+
+sk_sp<SkImageFilter> SkBlurImageFilter::Make(SkScalar sigmaX, SkScalar sigmaY,
+ sk_sp<SkImageFilter> input,
+ const SkImageFilter::CropRect* cropRect,
+ TileMode tileMode) {
+ if (sigmaX < SK_ScalarNearlyZero && sigmaY < SK_ScalarNearlyZero && !cropRect) {
+ return input;
+ }
+ return sk_sp<SkImageFilter>(
+ new SkBlurImageFilterImpl(sigmaX, sigmaY, input, cropRect, tileMode));
+}
+
+// This rather arbitrary-looking value results in a maximum box blur kernel size
+// of 1000 pixels on the raster path, which matches the WebKit and Firefox
+// implementations. Since the GPU path does not compute a box blur, putting
+// the limit on sigma ensures consistent behaviour between the GPU and
+// raster paths.
+#define MAX_SIGMA SkIntToScalar(532)
+
+static SkVector map_sigma(const SkSize& localSigma, const SkMatrix& ctm) {
+ SkVector sigma = SkVector::Make(localSigma.width(), localSigma.height());
+ ctm.mapVectors(&sigma, 1);
+ sigma.fX = SkMinScalar(SkScalarAbs(sigma.fX), MAX_SIGMA);
+ sigma.fY = SkMinScalar(SkScalarAbs(sigma.fY), MAX_SIGMA);
+ return sigma;
+}
+
+SkBlurImageFilterImpl::SkBlurImageFilterImpl(SkScalar sigmaX,
+ SkScalar sigmaY,
+ sk_sp<SkImageFilter> input,
+ const CropRect* cropRect,
+ SkBlurImageFilter::TileMode tileMode)
+ : INHERITED(&input, 1, cropRect), fSigma{sigmaX, sigmaY}, fTileMode(tileMode) {}
+
+sk_sp<SkFlattenable> SkBlurImageFilterImpl::CreateProc(SkReadBuffer& buffer) {
+ SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
+ SkScalar sigmaX = buffer.readScalar();
+ SkScalar sigmaY = buffer.readScalar();
+ SkBlurImageFilter::TileMode tileMode;
+ if (buffer.isVersionLT(SkReadBuffer::kTileModeInBlurImageFilter_Version)) {
+ tileMode = SkBlurImageFilter::kClampToBlack_TileMode;
+ } else {
+ tileMode = buffer.read32LE(SkBlurImageFilter::kLast_TileMode);
+ }
+
+ static_assert(SkBlurImageFilter::kLast_TileMode == 2, "CreateProc");
+
+ return SkBlurImageFilter::Make(
+ sigmaX, sigmaY, common.getInput(0), &common.cropRect(), tileMode);
+}
+
+void SkBlurImageFilterImpl::flatten(SkWriteBuffer& buffer) const {
+ this->INHERITED::flatten(buffer);
+ buffer.writeScalar(fSigma.fWidth);
+ buffer.writeScalar(fSigma.fHeight);
+
+ static_assert(SkBlurImageFilter::kLast_TileMode == 2, "flatten");
+ SkASSERT(fTileMode <= SkBlurImageFilter::kLast_TileMode);
+
+ buffer.writeInt(static_cast<int>(fTileMode));
+}
+
+#if SK_SUPPORT_GPU
+static GrTextureDomain::Mode to_texture_domain_mode(SkBlurImageFilter::TileMode tileMode) {
+ switch (tileMode) {
+ case SkBlurImageFilter::TileMode::kClamp_TileMode:
+ return GrTextureDomain::kClamp_Mode;
+ case SkBlurImageFilter::TileMode::kClampToBlack_TileMode:
+ return GrTextureDomain::kDecal_Mode;
+ case SkBlurImageFilter::TileMode::kRepeat_TileMode:
+ return GrTextureDomain::kRepeat_Mode;
+ default:
+ SK_ABORT("Unsupported tile mode.");
+ return GrTextureDomain::kDecal_Mode;
+ }
+}
+#endif
+
+// This is defined by the SVG spec:
+// https://drafts.fxtf.org/filter-effects/#feGaussianBlurElement
+static int calculate_window(double sigma) {
+ // NB 136 is the largest sigma that will not cause a buffer full of 255 mask values to overflow
+ // using the Gauss filter. It also limits the size of buffers used hold intermediate values.
+ // Explanation of maximums:
+ // sum0 = window * 255
+ // sum1 = window * sum0 -> window * window * 255
+ // sum2 = window * sum1 -> window * window * window * 255 -> window^3 * 255
+ //
+ // The value window^3 * 255 must fit in a uint32_t. So,
+ // window^3 < 2^32. window = 255.
+ //
+ // window = floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5)
+ // For window <= 255, the largest value for sigma is 136.
+ sigma = SkTPin(sigma, 0.0, 136.0);
+ auto possibleWindow = static_cast<int>(floor(sigma * 3 * sqrt(2 * kPi) / 4 + 0.5));
+ return std::max(1, possibleWindow);
+}
+
+// Calculating the border is tricky. The border is the distance in pixels between the first dst
+// pixel and the first src pixel (or the last src pixel and the last dst pixel).
+// I will go through the odd case which is simpler, and then through the even case. Given a
+// stack of filters seven wide for the odd case of three passes.
+//
+// S
+// aaaAaaa
+// bbbBbbb
+// cccCccc
+// D
+//
+// The furthest changed pixel is when the filters are in the following configuration.
+//
+// S
+// aaaAaaa
+// bbbBbbb
+// cccCccc
+// D
+//
+// The A pixel is calculated using the value S, the B uses A, and the C uses B, and
+// finally D is C. So, with a window size of seven the border is nine. In the odd case, the
+// border is 3*((window - 1)/2).
+//
+// For even cases the filter stack is more complicated. The spec specifies two passes
+// of even filters and a final pass of odd filters. A stack for a width of six looks like
+// this.
+//
+// S
+// aaaAaa
+// bbBbbb
+// cccCccc
+// D
+//
+// The furthest pixel looks like this.
+//
+// S
+// aaaAaa
+// bbBbbb
+// cccCccc
+// D
+//
+// For a window of six, the border value is eight. In the even case the border is 3 *
+// (window/2) - 1.
+static int calculate_border(int window) {
+ return (window & 1) == 1 ? 3 * ((window - 1) / 2) : 3 * (window / 2) - 1;
+}
+
+static int calculate_buffer(int window) {
+ int bufferSize = window - 1;
+ return (window & 1) == 1 ? 3 * bufferSize : 3 * bufferSize + 1;
+}
+
+// blur_one_direction implements the common three pass box filter approximation of Gaussian blur,
+// but combines all three passes into a single pass. This approach is facilitated by three circular
+// buffers the width of the window which track values for trailing edges of each of the three
+// passes. This allows the algorithm to use more precision in the calculation because the values
+// are not rounded each pass. And this implementation also avoids a trap that's easy to fall
+// into resulting in blending in too many zeroes near the edge.
+//
+// In general, a window sum has the form:
+// sum_n+1 = sum_n + leading_edge - trailing_edge.
+// If instead we do the subtraction at the end of the previous iteration, we can just
+// calculate the sums instead of having to do the subtractions too.
+//
+// In previous iteration:
+// sum_n+1 = sum_n - trailing_edge.
+//
+// In this iteration:
+// sum_n+1 = sum_n + leading_edge.
+//
+// Now we can stack all three sums and do them at once. Sum0 gets its leading edge from the
+// actual data. Sum1's leading edge is just Sum0, and Sum2's leading edge is Sum1. So, doing the
+// three passes at the same time has the form:
+//
+// sum0_n+1 = sum0_n + leading edge
+// sum1_n+1 = sum1_n + sum0_n+1
+// sum2_n+1 = sum2_n + sum1_n+1
+//
+// sum2_n+1 / window^3 is the new value of the destination pixel.
+//
+// Reduce the sums by the trailing edges which were stored in the circular buffers,
+// for the next go around. This is the case for odd sized windows, even windows the the third
+// circular buffer is one larger then the first two circular buffers.
+//
+// sum2_n+2 = sum2_n+1 - buffer2[i];
+// buffer2[i] = sum1;
+// sum1_n+2 = sum1_n+1 - buffer1[i];
+// buffer1[i] = sum0;
+// sum0_n+2 = sum0_n+1 - buffer0[i];
+// buffer0[i] = leading edge
+//
+// This is all encapsulated in the processValue function below.
+//
+using Pass0And1 = Sk4u[2];
+// The would be dLeft parameter is assumed to be 0.
+static void blur_one_direction(Sk4u* buffer, int window,
+ int srcLeft, int srcRight, int dstRight,
+ const uint32_t* src, int srcXStride, int srcYStride, int srcH,
+ uint32_t* dst, int dstXStride, int dstYStride) {
+
+ // The circular buffers are one less than the window.
+ auto pass0Count = window - 1,
+ pass1Count = window - 1,
+ pass2Count = (window & 1) == 1 ? window - 1 : window;
+
+ Pass0And1* buffer01Start = (Pass0And1*)buffer;
+ Sk4u* buffer2Start = buffer + pass0Count + pass1Count;
+ Pass0And1* buffer01End = (Pass0And1*)buffer2Start;
+ Sk4u* buffer2End = buffer2Start + pass2Count;
+
+ // If the window is odd then the divisor is just window ^ 3 otherwise,
+ // it is window * window * (window + 1) = window ^ 3 + window ^ 2;
+ auto window2 = window * window;
+ auto window3 = window2 * window;
+ auto divisor = (window & 1) == 1 ? window3 : window3 + window2;
+
+ // NB the sums in the blur code use the following technique to avoid
+ // adding 1/2 to round the divide.
+ //
+ // Sum/d + 1/2 == (Sum + h) / d
+ // Sum + d(1/2) == Sum + h
+ // h == (1/2)d
+ //
+ // But the d/2 it self should be rounded.
+ // h == d/2 + 1/2 == (d + 1) / 2
+ //
+ // weight = 1 / d * 2 ^ 32
+ auto weight = static_cast<uint32_t>(round(1.0 / divisor * (1ull << 32)));
+ auto half = static_cast<uint32_t>((divisor + 1) / 2);
+
+ auto border = calculate_border(window);
+
+ // Calculate the start and end of the source pixels with respect to the destination start.
+ auto srcStart = srcLeft - border,
+ srcEnd = srcRight - border,
+ dstEnd = dstRight;
+
+ for (auto y = 0; y < srcH; y++) {
+ auto buffer01Cursor = buffer01Start;
+ auto buffer2Cursor = buffer2Start;
+
+ Sk4u sum0{0u};
+ Sk4u sum1{0u};
+ Sk4u sum2{half};
+
+ sk_bzero(buffer01Start, (buffer2End - (Sk4u *) (buffer01Start)) * sizeof(*buffer2Start));
+
+ // Given an expanded input pixel, move the window ahead using the leadingEdge value.
+ auto processValue = [&](const Sk4u& leadingEdge) -> Sk4u {
+ sum0 += leadingEdge;
+ sum1 += sum0;
+ sum2 += sum1;
+
+ Sk4u value = sum2.mulHi(weight);
+
+ sum2 -= *buffer2Cursor;
+ *buffer2Cursor = sum1;
+ buffer2Cursor = (buffer2Cursor + 1) < buffer2End ? buffer2Cursor + 1 : buffer2Start;
+
+ sum1 -= (*buffer01Cursor)[1];
+ (*buffer01Cursor)[1] = sum0;
+ sum0 -= (*buffer01Cursor)[0];
+ (*buffer01Cursor)[0] = leadingEdge;
+ buffer01Cursor =
+ (buffer01Cursor + 1) < buffer01End ? buffer01Cursor + 1 : buffer01Start;
+
+ return value;
+ };
+
+ auto srcIdx = srcStart;
+ auto dstIdx = 0;
+ const uint32_t* srcCursor = src;
+ uint32_t* dstCursor = dst;
+
+ // The destination pixels are not effected by the src pixels,
+ // change to zero as per the spec.
+ // https://drafts.fxtf.org/filter-effects/#FilterPrimitivesOverviewIntro
+ while (dstIdx < srcIdx) {
+ *dstCursor = 0;
+ dstCursor += dstXStride;
+ SK_PREFETCH(dstCursor);
+ dstIdx++;
+ }
+
+ // The edge of the source is before the edge of the destination. Calculate the sums for
+ // the pixels before the start of the destination.
+ while (dstIdx > srcIdx) {
+ Sk4u leadingEdge = srcIdx < srcEnd ? SkNx_cast<uint32_t>(Sk4b::Load(srcCursor)) : 0;
+ (void) processValue(leadingEdge);
+ srcCursor += srcXStride;
+ srcIdx++;
+ }
+
+ // The dstIdx and srcIdx are in sync now; the code just uses the dstIdx for both now.
+ // Consume the source generating pixels to dst.
+ auto loopEnd = std::min(dstEnd, srcEnd);
+ while (dstIdx < loopEnd) {
+ Sk4u leadingEdge = SkNx_cast<uint32_t>(Sk4b::Load(srcCursor));
+ SkNx_cast<uint8_t>(processValue(leadingEdge)).store(dstCursor);
+ srcCursor += srcXStride;
+ dstCursor += dstXStride;
+ SK_PREFETCH(dstCursor);
+ dstIdx++;
+ }
+
+ // The leading edge is beyond the end of the source. Assume that the pixels
+ // are now 0x0000 until the end of the destination.
+ loopEnd = dstEnd;
+ while (dstIdx < loopEnd) {
+ SkNx_cast<uint8_t>(processValue(0u)).store(dstCursor);
+ dstCursor += dstXStride;
+ SK_PREFETCH(dstCursor);
+ dstIdx++;
+ }
+
+ src += srcYStride;
+ dst += dstYStride;
+ }
+}
+
+static sk_sp<SkSpecialImage> copy_image_with_bounds(
+ SkSpecialImage *source, const sk_sp<SkSpecialImage> &input,
+ SkIRect srcBounds, SkIRect dstBounds) {
+ SkBitmap inputBM;
+ if (!input->getROPixels(&inputBM)) {
+ return nullptr;
+ }
+
+ if (inputBM.colorType() != kN32_SkColorType) {
+ return nullptr;
+ }
+
+ SkBitmap src;
+ inputBM.extractSubset(&src, srcBounds);
+
+ // Make everything relative to the destination bounds.
+ srcBounds.offset(-dstBounds.x(), -dstBounds.y());
+ dstBounds.offset(-dstBounds.x(), -dstBounds.y());
+
+ auto srcW = srcBounds.width(),
+ dstW = dstBounds.width(),
+ dstH = dstBounds.height();
+
+ SkImageInfo dstInfo = SkImageInfo::Make(dstW, dstH, inputBM.colorType(), inputBM.alphaType());
+
+ SkBitmap dst;
+ if (!dst.tryAllocPixels(dstInfo)) {
+ return nullptr;
+ }
+
+ // There is no blurring to do, but we still need to copy the source while accounting for the
+ // dstBounds. Remember that the src was intersected with the dst.
+ int y = 0;
+ size_t dstWBytes = dstW * sizeof(uint32_t);
+ for (;y < srcBounds.top(); y++) {
+ sk_bzero(dst.getAddr32(0, y), dstWBytes);
+ }
+
+ for (;y < srcBounds.bottom(); y++) {
+ int x = 0;
+ uint32_t* dstPtr = dst.getAddr32(0, y);
+ for (;x < srcBounds.left(); x++) {
+ *dstPtr++ = 0;
+ }
+
+ memcpy(dstPtr, src.getAddr32(x - srcBounds.left(), y - srcBounds.top()),
+ srcW * sizeof(uint32_t));
+
+ dstPtr += srcW;
+ x += srcW;
+
+ for (;x < dstBounds.right(); x++) {
+ *dstPtr++ = 0;
+ }
+ }
+
+ for (;y < dstBounds.bottom(); y++) {
+ sk_bzero(dst.getAddr32(0, y), dstWBytes);
+ }
+
+ return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(),
+ dstBounds.height()),
+ dst, &source->props());
+}
+
+// TODO: Implement CPU backend for different fTileMode.
+static sk_sp<SkSpecialImage> cpu_blur(
+ SkVector sigma,
+ SkSpecialImage *source, const sk_sp<SkSpecialImage> &input,
+ SkIRect srcBounds, SkIRect dstBounds) {
+ auto windowW = calculate_window(sigma.x()),
+ windowH = calculate_window(sigma.y());
+
+ if (windowW <= 1 && windowH <= 1) {
+ return copy_image_with_bounds(source, input, srcBounds, dstBounds);
+ }
+
+ SkBitmap inputBM;
+
+ if (!input->getROPixels(&inputBM)) {
+ return nullptr;
+ }
+
+ if (inputBM.colorType() != kN32_SkColorType) {
+ return nullptr;
+ }
+
+ SkBitmap src;
+ inputBM.extractSubset(&src, srcBounds);
+
+ // Make everything relative to the destination bounds.
+ srcBounds.offset(-dstBounds.x(), -dstBounds.y());
+ dstBounds.offset(-dstBounds.x(), -dstBounds.y());
+
+ auto srcW = srcBounds.width(),
+ srcH = srcBounds.height(),
+ dstW = dstBounds.width(),
+ dstH = dstBounds.height();
+
+ SkImageInfo dstInfo = SkImageInfo::Make(dstW, dstH, inputBM.colorType(), inputBM.alphaType());
+
+ SkBitmap dst;
+ if (!dst.tryAllocPixels(dstInfo)) {
+ return nullptr;
+ }
+
+ auto bufferSizeW = calculate_buffer(windowW),
+ bufferSizeH = calculate_buffer(windowH);
+
+ // The amount 1024 is enough for buffers up to 10 sigma. The tmp bitmap will be
+ // allocated on the heap.
+ SkSTArenaAlloc<1024> alloc;
+ Sk4u* buffer = alloc.makeArrayDefault<Sk4u>(std::max(bufferSizeW, bufferSizeH));
+
+ // Basic Plan: The three cases to handle
+ // * Horizontal and Vertical - blur horizontally while copying values from the source to
+ // the destination. Then, do an in-place vertical blur.
+ // * Horizontal only - blur horizontally copying values from the source to the destination.
+ // * Vertical only - blur vertically copying values from the source to the destination.
+
+ // Default to vertical only blur case. If a horizontal blur is needed, then these values
+ // will be adjusted while doing the horizontal blur.
+ auto intermediateSrc = static_cast<uint32_t *>(src.getPixels());
+ auto intermediateRowBytesAsPixels = src.rowBytesAsPixels();
+ auto intermediateWidth = srcW;
+
+ // Because the border is calculated before the fork of the GPU/CPU path. The border is
+ // the maximum of the two rendering methods. In the case where sigma is zero, then the
+ // src and dst left values are the same. If sigma is small resulting in a window size of
+ // 1, then border calculations add some pixels which will always be zero. Inset the
+ // destination by those zero pixels. This case is very rare.
+ auto intermediateDst = dst.getAddr32(srcBounds.left(), 0);
+
+ // The following code is executed very rarely, I have never seen it in a real web
+ // page. If sigma is small but not zero then shared GPU/CPU border calculation
+ // code adds extra pixels for the border. Just clear everything to clear those pixels.
+ // This solution is overkill, but very simple.
+ if (windowW == 1 || windowH == 1) {
+ dst.eraseColor(0);
+ }
+
+ if (windowW > 1) {
+ // Make int64 to avoid overflow in multiplication below.
+ int64_t shift = srcBounds.top() - dstBounds.top();
+
+ // For the horizontal blur, starts part way down in anticipation of the vertical blur.
+ // For a vertical sigma of zero shift should be zero. But, for small sigma,
+ // shift may be > 0 but the vertical window could be 1.
+ intermediateSrc = static_cast<uint32_t *>(dst.getPixels())
+ + (shift > 0 ? shift * dst.rowBytesAsPixels() : 0);
+ intermediateRowBytesAsPixels = dst.rowBytesAsPixels();
+ intermediateWidth = dstW;
+ intermediateDst = static_cast<uint32_t *>(dst.getPixels());
+
+ blur_one_direction(
+ buffer, windowW,
+ srcBounds.left(), srcBounds.right(), dstBounds.right(),
+ static_cast<uint32_t *>(src.getPixels()), 1, src.rowBytesAsPixels(), srcH,
+ intermediateSrc, 1, intermediateRowBytesAsPixels);
+ }
+
+ if (windowH > 1) {
+ blur_one_direction(
+ buffer, windowH,
+ srcBounds.top(), srcBounds.bottom(), dstBounds.bottom(),
+ intermediateSrc, intermediateRowBytesAsPixels, 1, intermediateWidth,
+ intermediateDst, dst.rowBytesAsPixels(), 1);
+ }
+
+ return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(),
+ dstBounds.height()),
+ dst, &source->props());
+}
+
+sk_sp<SkSpecialImage> SkBlurImageFilterImpl::onFilterImage(SkSpecialImage* source,
+ const Context& ctx,
+ SkIPoint* offset) const {
+ SkIPoint inputOffset = SkIPoint::Make(0, 0);
+
+ sk_sp<SkSpecialImage> input(this->filterInput(0, source, ctx, &inputOffset));
+ if (!input) {
+ return nullptr;
+ }
+
+ SkIRect inputBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY,
+ input->width(), input->height());
+
+ // Calculate the destination bounds.
+ SkIRect dstBounds;
+ if (!this->applyCropRect(this->mapContext(ctx), inputBounds, &dstBounds)) {
+ return nullptr;
+ }
+ if (!inputBounds.intersect(dstBounds)) {
+ return nullptr;
+ }
+
+ // Save the offset in preparation to make all rectangles relative to the inputOffset.
+ SkIPoint resultOffset = SkIPoint::Make(dstBounds.fLeft, dstBounds.fTop);
+
+ // Make all bounds relative to the inputOffset.
+ inputBounds.offset(-inputOffset);
+ dstBounds.offset(-inputOffset);
+
+ const SkVector sigma = map_sigma(fSigma, ctx.ctm());
+ if (sigma.x() < 0 || sigma.y() < 0) {
+ return nullptr;
+ }
+
+ sk_sp<SkSpecialImage> result;
+#if SK_SUPPORT_GPU
+ if (source->isTextureBacked()) {
+ // Ensure the input is in the destination's gamut. This saves us from having to do the
+ // xform during the filter itself.
+ input = ImageToColorSpace(input.get(), ctx.outputProperties());
+
+ result = this->gpuFilter(source, sigma, input, inputBounds, dstBounds, inputOffset,
+ ctx.outputProperties(), &resultOffset);
+ } else
+#endif
+ {
+ result = cpu_blur(sigma, source, input, inputBounds, dstBounds);
+ }
+
+ // Return the resultOffset if the blur succeeded.
+ if (result != nullptr) {
+ *offset = resultOffset;
+ }
+ return result;
+}
+
+#if SK_SUPPORT_GPU
+sk_sp<SkSpecialImage> SkBlurImageFilterImpl::gpuFilter(
+ SkSpecialImage *source, SkVector sigma, const sk_sp<SkSpecialImage> &input,
+ SkIRect inputBounds, SkIRect dstBounds, SkIPoint inputOffset,
+ const OutputProperties& outProps, SkIPoint* offset) const
+{
+ if (0 == sigma.x() && 0 == sigma.y()) {
+ offset->fX = inputBounds.x() + inputOffset.fX;
+ offset->fY = inputBounds.y() + inputOffset.fY;
+ return input->makeSubset(inputBounds);
+ }
+
+ GrContext* context = source->getContext();
+
+ sk_sp<GrTextureProxy> inputTexture(input->asTextureProxyRef(context));
+ if (!inputTexture) {
+ return nullptr;
+ }
+
+ // Typically, we would create the RTC with the output's color space (from ctx), but we
+ // always blur in the PixelConfig of the *input*. Those might not be compatible (if they
+ // have different transfer functions). We've already guaranteed that those color spaces
+ // have the same gamut, so in this case, we do everything in the input's color space.
+ // ...
+ // Unless the output is legacy. In that case, the input could be almost anything (if we're
+ // using SkColorSpaceXformCanvas), but we can't make a corresponding RTC. We don't care to,
+ // either, we want to do our blending (and blurring) without any color correction, so pass
+ // nullptr here, causing us to operate entirely in the input's color space, with no decoding.
+ // Then, when we create the output image later, we tag it with the input's color space, so
+ // it will be tagged correctly, regardless of how we created the intermediate RTCs.
+ sk_sp<GrRenderTargetContext> renderTargetContext(SkGpuBlurUtils::GaussianBlur(
+ context,
+ std::move(inputTexture),
+ outProps.colorSpace() ? sk_ref_sp(input->getColorSpace()) : nullptr,
+ dstBounds,
+ inputBounds,
+ sigma.x(),
+ sigma.y(),
+ to_texture_domain_mode(fTileMode),
+ input->alphaType()));
+ if (!renderTargetContext) {
+ return nullptr;
+ }
+
+ return SkSpecialImage::MakeDeferredFromGpu(
+ context,
+ SkIRect::MakeWH(dstBounds.width(), dstBounds.height()),
+ kNeedNewImageUniqueID_SpecialImage,
+ renderTargetContext->asTextureProxyRef(),
+ sk_ref_sp(input->getColorSpace()),
+ &source->props());
+}
+#endif
+
+sk_sp<SkImageFilter> SkBlurImageFilterImpl::onMakeColorSpace(SkColorSpaceXformer* xformer)
+const {
+ SkASSERT(1 == this->countInputs());
+
+ auto input = xformer->apply(this->getInput(0));
+ if (this->getInput(0) != input.get()) {
+ return SkBlurImageFilter::Make(fSigma.width(), fSigma.height(), std::move(input),
+ this->getCropRectIfSet(), fTileMode);
+ }
+ return this->refMe();
+}
+
+SkRect SkBlurImageFilterImpl::computeFastBounds(const SkRect& src) const {
+ SkRect bounds = this->getInput(0) ? this->getInput(0)->computeFastBounds(src) : src;
+ bounds.outset(fSigma.width() * 3, fSigma.height() * 3);
+ return bounds;
+}
+
+SkIRect SkBlurImageFilterImpl::onFilterNodeBounds(const SkIRect& src, const SkMatrix& ctm,
+ MapDirection, const SkIRect* inputRect) const {
+ SkVector sigma = map_sigma(fSigma, ctm);
+ return src.makeOutset(SkScalarCeilToInt(sigma.x() * 3), SkScalarCeilToInt(sigma.y() * 3));
+}