diff options
author | Herb Derby <herb@google.com> | 2017-11-09 22:39:51 +0000 |
---|---|---|
committer | Skia Commit-Bot <skia-commit-bot@chromium.org> | 2017-11-09 22:39:57 +0000 |
commit | 66918078bb373e28e381cab51409e789fe521315 (patch) | |
tree | d557529bf5d905bfa707ab29c17284365af454c9 /src/core | |
parent | 77e487dfc005be66346ebf3e33d3ec394de4cc36 (diff) |
Revert "Gauss filter calculation"
This reverts commit 53ec7dc7cb523f220a9f5cd713b241c706779c81.
Reason for revert: Segv on very specific machines.
Original change's description:
> Gauss filter calculation
>
> Change-Id: I921ef815d4f788c312aa729f353b6ea154140555
> Reviewed-on: https://skia-review.googlesource.com/67723
> Commit-Queue: Herb Derby <herb@google.com>
> Reviewed-by: Robert Phillips <robertphillips@google.com>
TBR=herb@google.com,robertphillips@google.com
Change-Id: I15164809d081dee0076e815b40fbfdbc6374cfba
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Reviewed-on: https://skia-review.googlesource.com/69641
Reviewed-by: Herb Derby <herb@google.com>
Commit-Queue: Herb Derby <herb@google.com>
Diffstat (limited to 'src/core')
-rw-r--r-- | src/core/SkGaussFilter.cpp | 152 | ||||
-rw-r--r-- | src/core/SkGaussFilter.h | 41 |
2 files changed, 0 insertions, 193 deletions
diff --git a/src/core/SkGaussFilter.cpp b/src/core/SkGaussFilter.cpp deleted file mode 100644 index 548ff4398d..0000000000 --- a/src/core/SkGaussFilter.cpp +++ /dev/null @@ -1,152 +0,0 @@ -/* - * Copyright 2017 Google Inc. - * - * Use of this source code is governed by a BSD-style license that can be - * found in the LICENSE file. - */ - - -#include "SkGaussFilter.h" - -#include <cmath> -#include "SkTypes.h" - -static constexpr double kPi = 3.14159265358979323846264338327950288; - -// The value when we can stop expanding the filter. The spec implies that 3% is acceptable, but -// we just use 1%. -static constexpr double kGoodEnough = 1.0 / 100.0; - -// Normalize the values of gauss to 1.0, and make sure they add to one. -// NB if n == 1, then this will force gauss[0] == 1. -static void normalize(int n, double* gauss) { - // Carefully add from smallest to largest to calculate the normalizing sum. - double sum = 0; - for (int i = n-1; i >= 1; i--) { - sum += 2 * gauss[i]; - } - sum += gauss[0]; - - // Normalize gauss. - for (int i = 0; i < n; i++) { - gauss[i] /= sum; - } - - // The factors should sum to 1. Take any remaining slop, and add it to gauss[0]. Add the - // values in such a way to maintain the most accuracy. - sum = 0; - for (int i = n - 1; i >= 1; i--) { - sum += 2 * gauss[i]; - } - - gauss[0] = 1 - sum; -} - -static int calculate_bessel_factors(double sigma, double *gauss) { - auto var = sigma * sigma; - - // The two functions below come from the equations in "Handbook of Mathematical Functions" - // by Abramowitz and Stegun. Specifically, equation 9.6.10 on page 375. Bessel0 is given - // explicitly as 9.6.12 - // BesselI_0 for 0 <= sigma < 2. - // NB the k = 0 factor is just sum = 1.0. - auto besselI_0 = [](double t) -> double { - auto tSquaredOver4 = t * t / 4.0; - auto sum = 1.0; - auto factor = 1.0; - auto k = 1; - // Use a variable number of loops. When sigma is small, this only requires 3-4 loops, but - // when sigma is near 2, it could require 10 loops. The same holds for BesselI_1. - while(factor > 1.0/1000000.0) { - factor *= tSquaredOver4 / (k * k); - sum += factor; - k += 1; - } - return sum; - }; - // BesselI_1 for 0 <= sigma < 2. - auto besselI_1 = [](double t) -> double { - auto tSquaredOver4 = t * t / 4.0; - auto sum = t / 2.0; - auto factor = sum; - auto k = 1; - while (factor > 1.0/1000000.0) { - factor *= tSquaredOver4 / (k * (k + 1)); - sum += factor; - k += 1; - } - return sum; - }; - - // The following formula for calculating the Gaussian kernel is from - // "Scale-Space for Discrete Signals" by Tony Lindeberg. - // gauss(n; var) = besselI_n(var) / (e^var) - auto d = std::exp(var); - double b[6] = {besselI_0(var), besselI_1(var)}; - gauss[0] = b[0]/d; - gauss[1] = b[1]/d; - - int n = 1; - // The recurrence relation below is from "Numerical Recipes" 3rd Edition. - // Equation 6.5.16 p.282 - while (gauss[n] > kGoodEnough) { - b[n+1] = -(2*n/var) * b[n] + b[n-1]; - gauss[n+1] = b[n+1] / d; - n += 1; - } - - normalize(n, gauss); - - return n; -} - -static int calculate_gauss_factors(double sigma, double* gauss) { - SkASSERT(0 <= sigma && sigma < 2); - - // From the SVG blur spec: 8.13 Filter primitive <feGaussianBlur>. - // H(x) = exp(-x^2/ (2s^2)) / sqrt(2π * s^2) - auto var = sigma * sigma; - auto expGaussDenom = -2 * var; - auto normalizeDenom = std::sqrt(2 * kPi) * sigma; - - // Use the recursion relation from "Incremental Computation of the Gaussian" by Ken - // Turkowski in GPUGems 3. Page 877. - double g0 = 1.0 / normalizeDenom; - double g1 = std::exp(1.0 / expGaussDenom); - double g2 = g1 * g1; - - gauss[0] = g0; - g0 *= g1; - g1 *= g2; - gauss[1] = g0; - - int n = 1; - while (gauss[n] > kGoodEnough) { - g0 *= g1; - g1 *= g2; - gauss[n+1] = g0; - n += 1; - } - - normalize(n, gauss); - - return n; -} - -SkGaussFilter::SkGaussFilter(double sigma, Type type) { - SkASSERT(0 <= sigma && sigma < 2); - - if (type == Type::Bessel) { - fN = calculate_bessel_factors(sigma, fBasis); - } else { - fN = calculate_gauss_factors(sigma, fBasis); - } -} - -int SkGaussFilter::filterDouble(double* values) const { - for (int i = 0; i < fN; i++) { - values[i] = fBasis[i]; - } - return fN; -} - diff --git a/src/core/SkGaussFilter.h b/src/core/SkGaussFilter.h deleted file mode 100644 index 9af45c875b..0000000000 --- a/src/core/SkGaussFilter.h +++ /dev/null @@ -1,41 +0,0 @@ -/* - * Copyright 2017 Google Inc. - * - * Use of this source code is governed by a BSD-style license that can be - * found in the LICENSE file. - */ - -#ifndef SkGaussFilter_DEFINED -#define SkGaussFilter_DEFINED - -#include <cstdint> - -// Define gaussian filters for values of sigma < 2. Produce values good to 1 part in 1,000,000. -// Gaussian produces values as defined in the SVG 1.1 spec: -// https://www.w3.org/TR/SVG/filters.html#feGaussianBlurElement -// Bessel produces values as defined in "Scale-Space for Discrete Signals" by Tony Lindeberg -class SkGaussFilter { -public: - enum class Type : bool { - Gaussian, - Bessel - }; - - // Type selects which method is used to calculate the gaussian factors. - SkGaussFilter(double sigma, Type type); - - int radius() const { return fN - 1; } - int width() const { return 2 * this->radius() + 1; } - - // Take an array of values where the gaussian factors will be placed. Return the number of - // values filled. - int filterDouble(double values[5]) const; - -private: - double fBasis[5]; - int fN; -}; - -#endif // SkGaussFilter_DEFINED - - |