aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/SkMatrix.cpp
diff options
context:
space:
mode:
authorGravatar reed@android.com <reed@android.com@2bbb7eff-a529-9590-31e7-b0007b416f81>2008-12-17 15:59:43 +0000
committerGravatar reed@android.com <reed@android.com@2bbb7eff-a529-9590-31e7-b0007b416f81>2008-12-17 15:59:43 +0000
commit8a1c16ff38322f0210116fa7293eb8817c7e477e (patch)
treefe40e07f6c8983318a2f79032b9a706ede1090c1 /src/core/SkMatrix.cpp
parent2559c629078f738ac37095d896d580b681ac6a30 (diff)
grab from latest android
git-svn-id: http://skia.googlecode.com/svn/trunk@27 2bbb7eff-a529-9590-31e7-b0007b416f81
Diffstat (limited to 'src/core/SkMatrix.cpp')
-rw-r--r--src/core/SkMatrix.cpp1690
1 files changed, 1690 insertions, 0 deletions
diff --git a/src/core/SkMatrix.cpp b/src/core/SkMatrix.cpp
new file mode 100644
index 0000000000..893aea17d4
--- /dev/null
+++ b/src/core/SkMatrix.cpp
@@ -0,0 +1,1690 @@
+/* libs/corecg/SkMatrix.cpp
+**
+** Copyright 2006, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+#include "SkMatrix.h"
+#include "Sk64.h"
+#include "SkFloatBits.h"
+#include "SkString.h"
+
+#ifdef SK_SCALAR_IS_FLOAT
+ #define kMatrix22Elem SK_Scalar1
+#else
+ #define kMatrix22Elem SK_Fract1
+#endif
+
+/* [scale-x skew-x trans-x] [X] [X']
+ [skew-y scale-y trans-y] * [Y] = [Y']
+ [persp-0 persp-1 persp-2] [1] [1 ]
+*/
+
+void SkMatrix::reset() {
+ fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1;
+ fMat[kMSkewX] = fMat[kMSkewY] =
+ fMat[kMTransX] = fMat[kMTransY] =
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ this->setTypeMask(kIdentity_Mask | kRectStaysRect_Mask);
+}
+
+static inline int has_perspective(const SkMatrix& matrix) {
+ return matrix.getType() & SkMatrix::kPerspective_Mask;
+}
+
+// this guy aligns with the masks, so we can compute a mask from a varaible 0/1
+enum {
+ kTranslate_Shift,
+ kScale_Shift,
+ kAffine_Shift,
+ kPerspective_Shift,
+ kRectStaysRect_Shift
+};
+
+#ifdef SK_SCALAR_IS_FLOAT
+ static const int32_t kScalar1Int = 0x3f800000;
+ static const int32_t kPersp1Int = 0x3f800000;
+#else
+ #define scalarAsInt(x) (x)
+ static const int32_t kScalar1Int = (1 << 16);
+ static const int32_t kPersp1Int = (1 << 30);
+#endif
+
+uint8_t SkMatrix::computeTypeMask() const {
+ unsigned mask = 0;
+
+ if (SkScalarAs2sCompliment(fMat[kMPersp0]) |
+ SkScalarAs2sCompliment(fMat[kMPersp1]) |
+ (SkScalarAs2sCompliment(fMat[kMPersp2]) - kPersp1Int)) {
+ mask |= kPerspective_Mask;
+ }
+
+ if (SkScalarAs2sCompliment(fMat[kMTransX]) |
+ SkScalarAs2sCompliment(fMat[kMTransY])) {
+ mask |= kTranslate_Mask;
+ }
+
+ int m00 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleX]);
+ int m01 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewX]);
+ int m10 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewY]);
+ int m11 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleY]);
+
+ if (m01 | m10) {
+ mask |= kAffine_Mask;
+ }
+
+ if ((m00 - kScalar1Int) | (m11 - kScalar1Int)) {
+ mask |= kScale_Mask;
+ }
+
+ if ((mask & kPerspective_Mask) == 0) {
+ // map non-zero to 1
+ m00 = m00 != 0;
+ m01 = m01 != 0;
+ m10 = m10 != 0;
+ m11 = m11 != 0;
+
+ // record if the (p)rimary and (s)econdary diagonals are all 0 or
+ // all non-zero (answer is 0 or 1)
+ int dp0 = (m00 | m11) ^ 1; // true if both are 0
+ int dp1 = m00 & m11; // true if both are 1
+ int ds0 = (m01 | m10) ^ 1; // true if both are 0
+ int ds1 = m01 & m10; // true if both are 1
+
+ // return 1 if primary is 1 and secondary is 0 or
+ // primary is 0 and secondary is 1
+ mask |= ((dp0 & ds1) | (dp1 & ds0)) << kRectStaysRect_Shift;
+ }
+
+ return SkToU8(mask);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::setTranslate(SkScalar dx, SkScalar dy) {
+ if (SkScalarAs2sCompliment(dx) | SkScalarAs2sCompliment(dy)) {
+ fMat[kMTransX] = dx;
+ fMat[kMTransY] = dy;
+
+ fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1;
+ fMat[kMSkewX] = fMat[kMSkewY] =
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ this->setTypeMask(kTranslate_Mask | kRectStaysRect_Mask);
+ } else {
+ this->reset();
+ }
+}
+
+bool SkMatrix::preTranslate(SkScalar dx, SkScalar dy) {
+ if (has_perspective(*this)) {
+ SkMatrix m;
+ m.setTranslate(dx, dy);
+ return this->preConcat(m);
+ }
+
+ if (SkScalarAs2sCompliment(dx) | SkScalarAs2sCompliment(dy)) {
+ fMat[kMTransX] += SkScalarMul(fMat[kMScaleX], dx) +
+ SkScalarMul(fMat[kMSkewX], dy);
+ fMat[kMTransY] += SkScalarMul(fMat[kMSkewY], dx) +
+ SkScalarMul(fMat[kMScaleY], dy);
+
+ this->setTypeMask(kUnknown_Mask);
+ }
+ return true;
+}
+
+bool SkMatrix::postTranslate(SkScalar dx, SkScalar dy) {
+ if (has_perspective(*this)) {
+ SkMatrix m;
+ m.setTranslate(dx, dy);
+ return this->postConcat(m);
+ }
+
+ if (SkScalarAs2sCompliment(dx) | SkScalarAs2sCompliment(dy)) {
+ fMat[kMTransX] += dx;
+ fMat[kMTransY] += dy;
+ this->setTypeMask(kUnknown_Mask);
+ }
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
+ fMat[kMScaleX] = sx;
+ fMat[kMScaleY] = sy;
+ fMat[kMTransX] = px - SkScalarMul(sx, px);
+ fMat[kMTransY] = py - SkScalarMul(sy, py);
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ fMat[kMSkewX] = fMat[kMSkewY] =
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+
+ this->setTypeMask(kScale_Mask | kTranslate_Mask | kRectStaysRect_Mask);
+}
+
+void SkMatrix::setScale(SkScalar sx, SkScalar sy) {
+ fMat[kMScaleX] = sx;
+ fMat[kMScaleY] = sy;
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ fMat[kMTransX] = fMat[kMTransY] =
+ fMat[kMSkewX] = fMat[kMSkewY] =
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+
+ this->setTypeMask(kScale_Mask | kRectStaysRect_Mask);
+}
+
+bool SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
+ SkMatrix m;
+ m.setScale(sx, sy, px, py);
+ return this->preConcat(m);
+}
+
+bool SkMatrix::preScale(SkScalar sx, SkScalar sy) {
+ SkMatrix m;
+ m.setScale(sx, sy);
+ return this->preConcat(m);
+}
+
+bool SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
+ SkMatrix m;
+ m.setScale(sx, sy, px, py);
+ return this->postConcat(m);
+}
+
+bool SkMatrix::postScale(SkScalar sx, SkScalar sy) {
+ SkMatrix m;
+ m.setScale(sx, sy);
+ return this->postConcat(m);
+}
+
+#ifdef SK_SCALAR_IS_FIXED
+ static inline SkFixed roundidiv(SkFixed numer, int denom) {
+ int ns = numer >> 31;
+ int ds = denom >> 31;
+ numer = (numer ^ ns) - ns;
+ denom = (denom ^ ds) - ds;
+
+ SkFixed answer = (numer + (denom >> 1)) / denom;
+ int as = ns ^ ds;
+ return (answer ^ as) - as;
+ }
+#endif
+
+// this guy perhaps can go away, if we have a fract/high-precision way to
+// scale matrices
+bool SkMatrix::postIDiv(int divx, int divy) {
+ if (divx == 0 || divy == 0) {
+ return false;
+ }
+
+#ifdef SK_SCALAR_IS_FIXED
+ fMat[kMScaleX] = roundidiv(fMat[kMScaleX], divx);
+ fMat[kMSkewX] = roundidiv(fMat[kMSkewX], divx);
+ fMat[kMTransX] = roundidiv(fMat[kMTransX], divx);
+
+ fMat[kMScaleY] = roundidiv(fMat[kMScaleY], divy);
+ fMat[kMSkewY] = roundidiv(fMat[kMSkewY], divy);
+ fMat[kMTransY] = roundidiv(fMat[kMTransY], divy);
+#else
+ const float invX = 1.f / divx;
+ const float invY = 1.f / divy;
+
+ fMat[kMScaleX] *= invX;
+ fMat[kMSkewX] *= invX;
+ fMat[kMTransX] *= invX;
+
+ fMat[kMScaleY] *= invY;
+ fMat[kMSkewY] *= invY;
+ fMat[kMTransY] *= invY;
+#endif
+
+ this->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV,
+ SkScalar px, SkScalar py) {
+ const SkScalar oneMinusCosV = SK_Scalar1 - cosV;
+
+ fMat[kMScaleX] = cosV;
+ fMat[kMSkewX] = -sinV;
+ fMat[kMTransX] = SkScalarMul(sinV, py) + SkScalarMul(oneMinusCosV, px);
+
+ fMat[kMSkewY] = sinV;
+ fMat[kMScaleY] = cosV;
+ fMat[kMTransY] = SkScalarMul(-sinV, px) + SkScalarMul(oneMinusCosV, py);
+
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ this->setTypeMask(kUnknown_Mask);
+}
+
+void SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) {
+ fMat[kMScaleX] = cosV;
+ fMat[kMSkewX] = -sinV;
+ fMat[kMTransX] = 0;
+
+ fMat[kMSkewY] = sinV;
+ fMat[kMScaleY] = cosV;
+ fMat[kMTransY] = 0;
+
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ this->setTypeMask(kUnknown_Mask);
+}
+
+void SkMatrix::setRotate(SkScalar degrees, SkScalar px, SkScalar py) {
+ SkScalar sinV, cosV;
+ sinV = SkScalarSinCos(SkDegreesToRadians(degrees), &cosV);
+ this->setSinCos(sinV, cosV, px, py);
+}
+
+void SkMatrix::setRotate(SkScalar degrees) {
+ SkScalar sinV, cosV;
+ sinV = SkScalarSinCos(SkDegreesToRadians(degrees), &cosV);
+ this->setSinCos(sinV, cosV);
+}
+
+bool SkMatrix::preRotate(SkScalar degrees, SkScalar px, SkScalar py) {
+ SkMatrix m;
+ m.setRotate(degrees, px, py);
+ return this->preConcat(m);
+}
+
+bool SkMatrix::preRotate(SkScalar degrees) {
+ SkMatrix m;
+ m.setRotate(degrees);
+ return this->preConcat(m);
+}
+
+bool SkMatrix::postRotate(SkScalar degrees, SkScalar px, SkScalar py) {
+ SkMatrix m;
+ m.setRotate(degrees, px, py);
+ return this->postConcat(m);
+}
+
+bool SkMatrix::postRotate(SkScalar degrees) {
+ SkMatrix m;
+ m.setRotate(degrees);
+ return this->postConcat(m);
+}
+
+////////////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
+ fMat[kMScaleX] = SK_Scalar1;
+ fMat[kMSkewX] = sx;
+ fMat[kMTransX] = SkScalarMul(-sx, py);
+
+ fMat[kMSkewY] = sy;
+ fMat[kMScaleY] = SK_Scalar1;
+ fMat[kMTransY] = SkScalarMul(-sy, px);
+
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ this->setTypeMask(kUnknown_Mask);
+}
+
+void SkMatrix::setSkew(SkScalar sx, SkScalar sy) {
+ fMat[kMScaleX] = SK_Scalar1;
+ fMat[kMSkewX] = sx;
+ fMat[kMTransX] = 0;
+
+ fMat[kMSkewY] = sy;
+ fMat[kMScaleY] = SK_Scalar1;
+ fMat[kMTransY] = 0;
+
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+ fMat[kMPersp2] = kMatrix22Elem;
+
+ this->setTypeMask(kUnknown_Mask);
+}
+
+bool SkMatrix::preSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
+ SkMatrix m;
+ m.setSkew(sx, sy, px, py);
+ return this->preConcat(m);
+}
+
+bool SkMatrix::preSkew(SkScalar sx, SkScalar sy) {
+ SkMatrix m;
+ m.setSkew(sx, sy);
+ return this->preConcat(m);
+}
+
+bool SkMatrix::postSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
+ SkMatrix m;
+ m.setSkew(sx, sy, px, py);
+ return this->postConcat(m);
+}
+
+bool SkMatrix::postSkew(SkScalar sx, SkScalar sy) {
+ SkMatrix m;
+ m.setSkew(sx, sy);
+ return this->postConcat(m);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+bool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst,
+ ScaleToFit align)
+{
+ if (src.isEmpty()) {
+ this->reset();
+ return false;
+ }
+
+ if (dst.isEmpty()) {
+ bzero(fMat, 8 * sizeof(SkScalar));
+ this->setTypeMask(kScale_Mask | kRectStaysRect_Mask);
+ } else {
+ SkScalar tx, sx = SkScalarDiv(dst.width(), src.width());
+ SkScalar ty, sy = SkScalarDiv(dst.height(), src.height());
+ bool xLarger = false;
+
+ if (align != kFill_ScaleToFit) {
+ if (sx > sy) {
+ xLarger = true;
+ sx = sy;
+ } else {
+ sy = sx;
+ }
+ }
+
+ tx = dst.fLeft - SkScalarMul(src.fLeft, sx);
+ ty = dst.fTop - SkScalarMul(src.fTop, sy);
+ if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) {
+ SkScalar diff;
+
+ if (xLarger) {
+ diff = dst.width() - SkScalarMul(src.width(), sy);
+ } else {
+ diff = dst.height() - SkScalarMul(src.height(), sy);
+ }
+
+ if (align == kCenter_ScaleToFit) {
+ diff = SkScalarHalf(diff);
+ }
+
+ if (xLarger) {
+ tx += diff;
+ } else {
+ ty += diff;
+ }
+ }
+
+ fMat[kMScaleX] = sx;
+ fMat[kMScaleY] = sy;
+ fMat[kMTransX] = tx;
+ fMat[kMTransY] = ty;
+ fMat[kMSkewX] = fMat[kMSkewY] =
+ fMat[kMPersp0] = fMat[kMPersp1] = 0;
+
+ this->setTypeMask(kScale_Mask | kTranslate_Mask | kRectStaysRect_Mask);
+ }
+ // shared cleanup
+ fMat[kMPersp2] = kMatrix22Elem;
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_SCALAR_IS_FLOAT
+ static inline int fixmuladdmul(float a, float b, float c, float d,
+ float* result) {
+ *result = a * b + c * d;
+ return true;
+ }
+
+ static inline int fixmuladdmulshiftmul(float a, float b, float c, float d,
+ int /*shift not used*/, float scale, float* result) {
+ *result = (a * b + c * d) * scale;
+ return true;
+ }
+
+ static inline bool rowcol3(const float row[], const float col[],
+ float* result) {
+ *result = row[0] * col[0] + row[1] * col[3] + row[2] * col[6];
+ return true;
+ }
+
+ static inline int negifaddoverflows(float& result, float a, float b) {
+ result = a + b;
+ return 0;
+ }
+#else
+ static inline bool fixmuladdmul(SkFixed a, SkFixed b, SkFixed c, SkFixed d,
+ SkFixed* result) {
+ Sk64 tmp1, tmp2;
+ tmp1.setMul(a, b);
+ tmp2.setMul(c, d);
+ tmp1.add(tmp2);
+ if (tmp1.isFixed()) {
+ *result = tmp1.getFixed();
+ return true;
+ }
+ return false;
+ }
+
+ static inline bool fixmuladdmulshiftmul(SkFixed a, SkFixed b, SkFixed c,
+ SkFixed d, int shift, SkFixed scale, SkFixed* result) {
+ Sk64 tmp1, tmp2;
+ tmp1.setMul(a, b);
+ tmp2.setMul(c, d);
+ tmp1.add(tmp2);
+
+ int32_t hi = SkAbs32(tmp1.fHi);
+ int afterShift = 16;
+ if (hi >> 15) {
+ int clz = 17 - SkCLZ(hi);
+ SkASSERT(clz > 0 && clz <= 16);
+ afterShift -= clz;
+ shift += clz;
+ }
+
+ tmp1.roundRight(shift + 16);
+ SkASSERT(tmp1.is32());
+
+ tmp1.setMul(tmp1.get32(), scale);
+ tmp1.roundRight(afterShift);
+ if (tmp1.is32()) {
+ *result = tmp1.get32();
+ return true;
+ }
+ return false;
+ }
+
+ static inline SkFixed fracmuladdmul(SkFixed a, SkFract b, SkFixed c,
+ SkFract d) {
+ Sk64 tmp1, tmp2;
+ tmp1.setMul(a, b);
+ tmp2.setMul(c, d);
+ tmp1.add(tmp2);
+ return tmp1.getFract();
+ }
+
+ static inline bool rowcol3(const SkFixed row[], const SkFixed col[],
+ SkFixed* result) {
+ Sk64 tmp1, tmp2;
+
+ tmp1.setMul(row[0], col[0]); // N * fixed
+ tmp2.setMul(row[1], col[3]); // N * fixed
+ tmp1.add(tmp2);
+
+ tmp2.setMul(row[2], col[6]); // N * fract
+ tmp2.roundRight(14); // make it fixed
+ tmp1.add(tmp2);
+
+ if (tmp1.isFixed()) {
+ *result = tmp1.getFixed();
+ return true;
+ }
+ return false;
+ }
+
+ static inline int negifaddoverflows(SkFixed& result, SkFixed a, SkFixed b) {
+ SkFixed c = a + b;
+ result = c;
+ return (c ^ a) & (c ^ b);
+ }
+#endif
+
+static void normalize_perspective(SkScalar mat[9]) {
+ if (SkScalarAbs(mat[SkMatrix::kMPersp2]) > kMatrix22Elem) {
+ for (int i = 0; i < 9; i++)
+ mat[i] = SkScalarHalf(mat[i]);
+ }
+}
+
+bool SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) {
+ TypeMask aType = a.getType();
+ TypeMask bType = b.getType();
+
+ if (0 == aType) {
+ *this = b;
+ } else if (0 == bType) {
+ *this = a;
+ } else {
+ SkMatrix tmp;
+
+ if ((aType | bType) & kPerspective_Mask) {
+ if (!rowcol3(&a.fMat[0], &b.fMat[0], &tmp.fMat[kMScaleX])) {
+ return false;
+ }
+ if (!rowcol3(&a.fMat[0], &b.fMat[1], &tmp.fMat[kMSkewX])) {
+ return false;
+ }
+ if (!rowcol3(&a.fMat[0], &b.fMat[2], &tmp.fMat[kMTransX])) {
+ return false;
+ }
+
+ if (!rowcol3(&a.fMat[3], &b.fMat[0], &tmp.fMat[kMSkewY])) {
+ return false;
+ }
+ if (!rowcol3(&a.fMat[3], &b.fMat[1], &tmp.fMat[kMScaleY])) {
+ return false;
+ }
+ if (!rowcol3(&a.fMat[3], &b.fMat[2], &tmp.fMat[kMTransY])) {
+ return false;
+ }
+
+ if (!rowcol3(&a.fMat[6], &b.fMat[0], &tmp.fMat[kMPersp0])) {
+ return false;
+ }
+ if (!rowcol3(&a.fMat[6], &b.fMat[1], &tmp.fMat[kMPersp1])) {
+ return false;
+ }
+ if (!rowcol3(&a.fMat[6], &b.fMat[2], &tmp.fMat[kMPersp2])) {
+ return false;
+ }
+
+ normalize_perspective(tmp.fMat);
+ } else { // not perspective
+ if (!fixmuladdmul(a.fMat[kMScaleX], b.fMat[kMScaleX],
+ a.fMat[kMSkewX], b.fMat[kMSkewY], &tmp.fMat[kMScaleX])) {
+ return false;
+ }
+ if (!fixmuladdmul(a.fMat[kMScaleX], b.fMat[kMSkewX],
+ a.fMat[kMSkewX], b.fMat[kMScaleY], &tmp.fMat[kMSkewX])) {
+ return false;
+ }
+ if (!fixmuladdmul(a.fMat[kMScaleX], b.fMat[kMTransX],
+ a.fMat[kMSkewX], b.fMat[kMTransY], &tmp.fMat[kMTransX])) {
+ return false;
+ }
+ if (negifaddoverflows(tmp.fMat[kMTransX], tmp.fMat[kMTransX],
+ a.fMat[kMTransX]) < 0) {
+ return false;
+ }
+
+ if (!fixmuladdmul(a.fMat[kMSkewY], b.fMat[kMScaleX],
+ a.fMat[kMScaleY], b.fMat[kMSkewY], &tmp.fMat[kMSkewY])) {
+ return false;
+ }
+ if (!fixmuladdmul(a.fMat[kMSkewY], b.fMat[kMSkewX],
+ a.fMat[kMScaleY], b.fMat[kMScaleY], &tmp.fMat[kMScaleY])) {
+ return false;
+ }
+ if (!fixmuladdmul(a.fMat[kMSkewY], b.fMat[kMTransX],
+ a.fMat[kMScaleY], b.fMat[kMTransY], &tmp.fMat[kMTransY])) {
+ return false;
+ }
+ if (negifaddoverflows(tmp.fMat[kMTransY], tmp.fMat[kMTransY],
+ a.fMat[kMTransY]) < 0) {
+ return false;
+ }
+
+ tmp.fMat[kMPersp0] = tmp.fMat[kMPersp1] = 0;
+ tmp.fMat[kMPersp2] = kMatrix22Elem;
+ }
+ *this = tmp;
+ }
+ this->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+bool SkMatrix::preConcat(const SkMatrix& mat) {
+ // check for identity first, so we don't do a needless copy of ourselves
+ // to ourselves inside setConcat()
+ return mat.isIdentity() || this->setConcat(*this, mat);
+}
+
+bool SkMatrix::postConcat(const SkMatrix& mat) {
+ // check for identity first, so we don't do a needless copy of ourselves
+ // to ourselves inside setConcat()
+ return mat.isIdentity() || this->setConcat(mat, *this);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_SCALAR_IS_FLOAT
+ #define SkPerspMul(a, b) SkScalarMul(a, b)
+ #define SkScalarMulShift(a, b, s) SkScalarMul(a, b)
+ static float sk_inv_determinant(const float mat[9], int isPerspective,
+ int* /* (only used in Fixed case) */) {
+ double det;
+
+ if (isPerspective) {
+ det = mat[SkMatrix::kMScaleX] * ((double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp2] - (double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp1]) +
+ mat[SkMatrix::kMSkewX] * ((double)mat[SkMatrix::kMTransY] * mat[SkMatrix::kMPersp0] - (double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp2]) +
+ mat[SkMatrix::kMTransX] * ((double)mat[SkMatrix::kMSkewY] * mat[SkMatrix::kMPersp1] - (double)mat[SkMatrix::kMScaleY] * mat[SkMatrix::kMPersp0]);
+ } else {
+ det = (double)mat[SkMatrix::kMScaleX] * mat[SkMatrix::kMScaleY] - (double)mat[SkMatrix::kMSkewX] * mat[SkMatrix::kMSkewY];
+ }
+
+ // Since the determinant is on the order of the square of the matrix members,
+ // compare to the square of the default nearly-zero constant
+ if (SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
+ return 0;
+ }
+ return (float)(1.0 / det);
+ }
+#else
+ #define SkPerspMul(a, b) SkFractMul(a, b)
+ #define SkScalarMulShift(a, b, s) SkMulShift(a, b, s)
+ static void set_muladdmul(Sk64* dst, int32_t a, int32_t b, int32_t c,
+ int32_t d) {
+ Sk64 tmp;
+ dst->setMul(a, b);
+ tmp.setMul(c, d);
+ dst->add(tmp);
+ }
+
+ static SkFixed sk_inv_determinant(const SkFixed mat[9], int isPerspective,
+ int* shift) {
+ Sk64 tmp1, tmp2;
+
+ if (isPerspective) {
+ tmp1.setMul(mat[SkMatrix::kMScaleX], fracmuladdmul(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2], -mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1]));
+ tmp2.setMul(mat[SkMatrix::kMSkewX], fracmuladdmul(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0], -mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp2]));
+ tmp1.add(tmp2);
+ tmp2.setMul(mat[SkMatrix::kMTransX], fracmuladdmul(mat[SkMatrix::kMSkewY], mat[SkMatrix::kMPersp1], -mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]));
+ tmp1.add(tmp2);
+ } else {
+ tmp1.setMul(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY]);
+ tmp2.setMul(mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]);
+ tmp1.sub(tmp2);
+ }
+
+ int s = tmp1.getClzAbs();
+ *shift = s;
+
+ SkFixed denom;
+ if (s <= 32) {
+ denom = tmp1.getShiftRight(33 - s);
+ } else {
+ denom = (int32_t)tmp1.fLo << (s - 33);
+ }
+
+ if (denom == 0) {
+ return 0;
+ }
+ /** This could perhaps be a special fractdiv function, since both of its
+ arguments are known to have bit 31 clear and bit 30 set (when they
+ are made positive), thus eliminating the need for calling clz()
+ */
+ return SkFractDiv(SK_Fract1, denom);
+ }
+#endif
+
+bool SkMatrix::invert(SkMatrix* inv) const {
+ int isPersp = has_perspective(*this);
+ int shift;
+ SkScalar scale = sk_inv_determinant(fMat, isPersp, &shift);
+
+ if (scale == 0) { // underflow
+ return false;
+ }
+
+ if (inv) {
+ SkMatrix tmp;
+ if (inv == this)
+ inv = &tmp;
+
+ if (isPersp) {
+ shift = 61 - shift;
+ inv->fMat[kMScaleX] = SkScalarMulShift(SkPerspMul(fMat[kMScaleY], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransY], fMat[kMPersp1]), scale, shift);
+ inv->fMat[kMSkewX] = SkScalarMulShift(SkPerspMul(fMat[kMTransX], fMat[kMPersp1]) - SkPerspMul(fMat[kMSkewX], fMat[kMPersp2]), scale, shift);
+ inv->fMat[kMTransX] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMTransY]) - SkScalarMul(fMat[kMTransX], fMat[kMScaleY]), scale, shift);
+
+ inv->fMat[kMSkewY] = SkScalarMulShift(SkPerspMul(fMat[kMTransY], fMat[kMPersp0]) - SkPerspMul(fMat[kMSkewY], fMat[kMPersp2]), scale, shift);
+ inv->fMat[kMScaleY] = SkScalarMulShift(SkPerspMul(fMat[kMScaleX], fMat[kMPersp2]) - SkPerspMul(fMat[kMTransX], fMat[kMPersp0]), scale, shift);
+ inv->fMat[kMTransY] = SkScalarMulShift(SkScalarMul(fMat[kMTransX], fMat[kMSkewY]) - SkScalarMul(fMat[kMScaleX], fMat[kMTransY]), scale, shift);
+
+ inv->fMat[kMPersp0] = SkScalarMulShift(SkScalarMul(fMat[kMSkewY], fMat[kMPersp1]) - SkScalarMul(fMat[kMScaleY], fMat[kMPersp0]), scale, shift);
+ inv->fMat[kMPersp1] = SkScalarMulShift(SkScalarMul(fMat[kMSkewX], fMat[kMPersp0]) - SkScalarMul(fMat[kMScaleX], fMat[kMPersp1]), scale, shift);
+ inv->fMat[kMPersp2] = SkScalarMulShift(SkScalarMul(fMat[kMScaleX], fMat[kMScaleY]) - SkScalarMul(fMat[kMSkewX], fMat[kMSkewY]), scale, shift);
+#ifdef SK_SCALAR_IS_FIXED
+ if (SkAbs32(inv->fMat[kMPersp2]) > SK_Fixed1) {
+ Sk64 tmp;
+
+ tmp.set(SK_Fract1);
+ tmp.shiftLeft(16);
+ tmp.div(inv->fMat[kMPersp2], Sk64::kRound_DivOption);
+
+ SkFract scale = tmp.get32();
+
+ for (int i = 0; i < 9; i++) {
+ inv->fMat[i] = SkFractMul(inv->fMat[i], scale);
+ }
+ }
+ inv->fMat[kMPersp2] = SkFixedToFract(inv->fMat[kMPersp2]);
+#endif
+ } else { // not perspective
+#ifdef SK_SCALAR_IS_FIXED
+ Sk64 tx, ty;
+ int clzNumer;
+
+ // check the 2x2 for overflow
+ {
+ int32_t value = SkAbs32(fMat[kMScaleY]);
+ value |= SkAbs32(fMat[kMSkewX]);
+ value |= SkAbs32(fMat[kMScaleX]);
+ value |= SkAbs32(fMat[kMSkewY]);
+ clzNumer = SkCLZ(value);
+ if (shift - clzNumer > 31)
+ return false; // overflow
+ }
+
+ set_muladdmul(&tx, fMat[kMSkewX], fMat[kMTransY], -fMat[kMScaleY], fMat[kMTransX]);
+ set_muladdmul(&ty, fMat[kMSkewY], fMat[kMTransX], -fMat[kMScaleX], fMat[kMTransY]);
+ // check tx,ty for overflow
+ clzNumer = SkCLZ(SkAbs32(tx.fHi) | SkAbs32(ty.fHi));
+ if (shift - clzNumer > 14) {
+ return false; // overflow
+ }
+
+ int fixedShift = 61 - shift;
+ int sk64shift = 44 - shift + clzNumer;
+
+ inv->fMat[kMScaleX] = SkMulShift(fMat[kMScaleY], scale, fixedShift);
+ inv->fMat[kMSkewX] = SkMulShift(-fMat[kMSkewX], scale, fixedShift);
+ inv->fMat[kMTransX] = SkMulShift(tx.getShiftRight(33 - clzNumer), scale, sk64shift);
+
+ inv->fMat[kMSkewY] = SkMulShift(-fMat[kMSkewY], scale, fixedShift);
+ inv->fMat[kMScaleY] = SkMulShift(fMat[kMScaleX], scale, fixedShift);
+ inv->fMat[kMTransY] = SkMulShift(ty.getShiftRight(33 - clzNumer), scale, sk64shift);
+#else
+ inv->fMat[kMScaleX] = SkScalarMul(fMat[kMScaleY], scale);
+ inv->fMat[kMSkewX] = SkScalarMul(-fMat[kMSkewX], scale);
+ if (!fixmuladdmulshiftmul(fMat[kMSkewX], fMat[kMTransY], -fMat[kMScaleY], fMat[kMTransX], shift, scale, &inv->fMat[kMTransX])) {
+ return false;
+ }
+
+ inv->fMat[kMSkewY] = SkScalarMul(-fMat[kMSkewY], scale);
+ inv->fMat[kMScaleY] = SkScalarMul(fMat[kMScaleX], scale);
+ if (!fixmuladdmulshiftmul(fMat[kMSkewY], fMat[kMTransX], -fMat[kMScaleX], fMat[kMTransY], shift, scale, &inv->fMat[kMTransY])) {
+ return false;
+ }
+#endif
+ inv->fMat[kMPersp0] = 0;
+ inv->fMat[kMPersp1] = 0;
+ inv->fMat[kMPersp2] = kMatrix22Elem;
+ }
+
+ if (inv == &tmp) {
+ *(SkMatrix*)this = tmp;
+ }
+ inv->setTypeMask(kUnknown_Mask);
+ }
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::Identity_pts(const SkMatrix& m, SkPoint dst[],
+ const SkPoint src[], int count) {
+ SkASSERT(m.getType() == 0);
+
+ if (dst != src && count > 0)
+ memcpy(dst, src, count * sizeof(SkPoint));
+}
+
+void SkMatrix::Trans_pts(const SkMatrix& m, SkPoint dst[],
+ const SkPoint src[], int count) {
+ SkASSERT(m.getType() == kTranslate_Mask);
+
+ if (count > 0) {
+ SkScalar tx = m.fMat[kMTransX];
+ SkScalar ty = m.fMat[kMTransY];
+ do {
+ dst->fY = src->fY + ty;
+ dst->fX = src->fX + tx;
+ src += 1;
+ dst += 1;
+ } while (--count);
+ }
+}
+
+void SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[],
+ const SkPoint src[], int count) {
+ SkASSERT(m.getType() == kScale_Mask);
+
+ if (count > 0) {
+ SkScalar mx = m.fMat[kMScaleX];
+ SkScalar my = m.fMat[kMScaleY];
+ do {
+ dst->fY = SkScalarMul(src->fY, my);
+ dst->fX = SkScalarMul(src->fX, mx);
+ src += 1;
+ dst += 1;
+ } while (--count);
+ }
+}
+
+void SkMatrix::ScaleTrans_pts(const SkMatrix& m, SkPoint dst[],
+ const SkPoint src[], int count) {
+ SkASSERT(m.getType() == (kScale_Mask | kTranslate_Mask));
+
+ if (count > 0) {
+ SkScalar mx = m.fMat[kMScaleX];
+ SkScalar my = m.fMat[kMScaleY];
+ SkScalar tx = m.fMat[kMTransX];
+ SkScalar ty = m.fMat[kMTransY];
+ do {
+ dst->fY = SkScalarMulAdd(src->fY, my, ty);
+ dst->fX = SkScalarMulAdd(src->fX, mx, tx);
+ src += 1;
+ dst += 1;
+ } while (--count);
+ }
+}
+
+void SkMatrix::Rot_pts(const SkMatrix& m, SkPoint dst[],
+ const SkPoint src[], int count) {
+ SkASSERT((m.getType() & (kPerspective_Mask | kTranslate_Mask)) == 0);
+
+ if (count > 0) {
+ SkScalar mx = m.fMat[kMScaleX];
+ SkScalar my = m.fMat[kMScaleY];
+ SkScalar kx = m.fMat[kMSkewX];
+ SkScalar ky = m.fMat[kMSkewY];
+ do {
+ SkScalar sy = src->fY;
+ SkScalar sx = src->fX;
+ src += 1;
+ dst->fY = SkScalarMul(sx, ky) + SkScalarMul(sy, my);
+ dst->fX = SkScalarMul(sx, mx) + SkScalarMul(sy, kx);
+ dst += 1;
+ } while (--count);
+ }
+}
+
+void SkMatrix::RotTrans_pts(const SkMatrix& m, SkPoint dst[],
+ const SkPoint src[], int count) {
+ SkASSERT((m.getType() & kPerspective_Mask) == 0);
+
+ if (count > 0) {
+ SkScalar mx = m.fMat[kMScaleX];
+ SkScalar my = m.fMat[kMScaleY];
+ SkScalar kx = m.fMat[kMSkewX];
+ SkScalar ky = m.fMat[kMSkewY];
+ SkScalar tx = m.fMat[kMTransX];
+ SkScalar ty = m.fMat[kMTransY];
+ do {
+ SkScalar sy = src->fY;
+ SkScalar sx = src->fX;
+ src += 1;
+ dst->fY = SkScalarMul(sx, ky) + SkScalarMulAdd(sy, my, ty);
+ dst->fX = SkScalarMul(sx, mx) + SkScalarMulAdd(sy, kx, tx);
+ dst += 1;
+ } while (--count);
+ }
+}
+
+void SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[],
+ const SkPoint src[], int count) {
+ SkASSERT(m.getType() & kPerspective_Mask);
+
+#ifdef SK_SCALAR_IS_FIXED
+ SkFixed persp2 = SkFractToFixed(m.fMat[kMPersp2]);
+#endif
+
+ if (count > 0) {
+ do {
+ SkScalar sy = src->fY;
+ SkScalar sx = src->fX;
+ src += 1;
+
+ SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) +
+ SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
+ SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) +
+ SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
+#ifdef SK_SCALAR_IS_FIXED
+ SkFixed z = SkFractMul(sx, m.fMat[kMPersp0]) +
+ SkFractMul(sy, m.fMat[kMPersp1]) + persp2;
+#else
+ float z = SkScalarMul(sx, m.fMat[kMPersp0]) +
+ SkScalarMulAdd(sy, m.fMat[kMPersp1], m.fMat[kMPersp2]);
+#endif
+ if (z) {
+ z = SkScalarFastInvert(z);
+ }
+
+ dst->fY = SkScalarMul(y, z);
+ dst->fX = SkScalarMul(x, z);
+ dst += 1;
+ } while (--count);
+ }
+}
+
+const SkMatrix::MapPtsProc SkMatrix::gMapPtsProcs[] = {
+ SkMatrix::Identity_pts, SkMatrix::Trans_pts,
+ SkMatrix::Scale_pts, SkMatrix::ScaleTrans_pts,
+ SkMatrix::Rot_pts, SkMatrix::RotTrans_pts,
+ SkMatrix::Rot_pts, SkMatrix::RotTrans_pts,
+ // repeat the persp proc 8 times
+ SkMatrix::Persp_pts, SkMatrix::Persp_pts,
+ SkMatrix::Persp_pts, SkMatrix::Persp_pts,
+ SkMatrix::Persp_pts, SkMatrix::Persp_pts,
+ SkMatrix::Persp_pts, SkMatrix::Persp_pts
+};
+
+void SkMatrix::mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
+ SkASSERT((dst && src && count > 0) || count == 0);
+ // no partial overlap
+ SkASSERT(src == dst || SkAbs32((int32_t)(src - dst)) >= count);
+
+ this->getMapPtsProc()(*this, dst, src, count);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::mapVectors(SkPoint dst[], const SkPoint src[], int count) const {
+ if (this->getType() & kPerspective_Mask) {
+ SkPoint origin;
+
+ MapXYProc proc = this->getMapXYProc();
+ proc(*this, 0, 0, &origin);
+
+ for (int i = count - 1; i >= 0; --i) {
+ SkPoint tmp;
+
+ proc(*this, src[i].fX, src[i].fY, &tmp);
+ dst[i].set(tmp.fX - origin.fX, tmp.fY - origin.fY);
+ }
+ } else {
+ SkMatrix tmp = *this;
+
+ tmp.fMat[kMTransX] = tmp.fMat[kMTransY] = 0;
+ tmp.clearTypeMask(kTranslate_Mask);
+ tmp.mapPoints(dst, src, count);
+ }
+}
+
+bool SkMatrix::mapRect(SkRect* dst, const SkRect& src) const {
+ SkASSERT(dst && &src);
+
+ if (this->rectStaysRect()) {
+ this->mapPoints((SkPoint*)dst, (const SkPoint*)&src, 2);
+ dst->sort();
+ return true;
+ } else {
+ SkPoint quad[4];
+
+ src.toQuad(quad);
+ this->mapPoints(quad, quad, 4);
+ dst->set(quad, 4);
+ return false;
+ }
+}
+
+SkScalar SkMatrix::mapRadius(SkScalar radius) const {
+ SkVector vec[2];
+
+ vec[0].set(radius, 0);
+ vec[1].set(0, radius);
+ this->mapVectors(vec, 2);
+
+ SkScalar d0 = vec[0].length();
+ SkScalar d1 = vec[1].length();
+
+ return SkScalarMean(d0, d1);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
+ SkPoint* pt) {
+ SkASSERT(m.getType() & kPerspective_Mask);
+
+ SkScalar x = SkScalarMul(sx, m.fMat[kMScaleX]) +
+ SkScalarMul(sy, m.fMat[kMSkewX]) + m.fMat[kMTransX];
+ SkScalar y = SkScalarMul(sx, m.fMat[kMSkewY]) +
+ SkScalarMul(sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
+#ifdef SK_SCALAR_IS_FIXED
+ SkFixed z = SkFractMul(sx, m.fMat[kMPersp0]) +
+ SkFractMul(sy, m.fMat[kMPersp1]) +
+ SkFractToFixed(m.fMat[kMPersp2]);
+#else
+ float z = SkScalarMul(sx, m.fMat[kMPersp0]) +
+ SkScalarMul(sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2];
+#endif
+ if (z) {
+ z = SkScalarFastInvert(z);
+ }
+ pt->fX = SkScalarMul(x, z);
+ pt->fY = SkScalarMul(y, z);
+}
+
+#ifdef SK_SCALAR_IS_FIXED
+static SkFixed fixmuladdmul(SkFixed a, SkFixed b, SkFixed c, SkFixed d) {
+ Sk64 tmp, tmp1;
+
+ tmp.setMul(a, b);
+ tmp1.setMul(c, d);
+ return tmp.addGetFixed(tmp1);
+// tmp.add(tmp1);
+// return tmp.getFixed();
+}
+#endif
+
+void SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
+ SkPoint* pt) {
+ SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask);
+
+#ifdef SK_SCALAR_IS_FIXED
+ pt->fX = fixmuladdmul(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]) +
+ m.fMat[kMTransX];
+ pt->fY = fixmuladdmul(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]) +
+ m.fMat[kMTransY];
+#else
+ pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) +
+ SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]);
+ pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) +
+ SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
+#endif
+}
+
+void SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
+ SkPoint* pt) {
+ SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask))== kAffine_Mask);
+ SkASSERT(0 == m.fMat[kMTransX]);
+ SkASSERT(0 == m.fMat[kMTransY]);
+
+#ifdef SK_SCALAR_IS_FIXED
+ pt->fX = fixmuladdmul(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX]);
+ pt->fY = fixmuladdmul(sx, m.fMat[kMSkewY], sy, m.fMat[kMScaleY]);
+#else
+ pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]) +
+ SkScalarMulAdd(sy, m.fMat[kMSkewX], m.fMat[kMTransX]);
+ pt->fY = SkScalarMul(sx, m.fMat[kMSkewY]) +
+ SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
+#endif
+}
+
+void SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
+ SkPoint* pt) {
+ SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask))
+ == kScale_Mask);
+
+ pt->fX = SkScalarMulAdd(sx, m.fMat[kMScaleX], m.fMat[kMTransX]);
+ pt->fY = SkScalarMulAdd(sy, m.fMat[kMScaleY], m.fMat[kMTransY]);
+}
+
+void SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
+ SkPoint* pt) {
+ SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask))
+ == kScale_Mask);
+ SkASSERT(0 == m.fMat[kMTransX]);
+ SkASSERT(0 == m.fMat[kMTransY]);
+
+ pt->fX = SkScalarMul(sx, m.fMat[kMScaleX]);
+ pt->fY = SkScalarMul(sy, m.fMat[kMScaleY]);
+}
+
+void SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
+ SkPoint* pt) {
+ SkASSERT(m.getType() == kTranslate_Mask);
+
+ pt->fX = sx + m.fMat[kMTransX];
+ pt->fY = sy + m.fMat[kMTransY];
+}
+
+void SkMatrix::Identity_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
+ SkPoint* pt) {
+ SkASSERT(0 == m.getType());
+
+ pt->fX = sx;
+ pt->fY = sy;
+}
+
+const SkMatrix::MapXYProc SkMatrix::gMapXYProcs[] = {
+ SkMatrix::Identity_xy, SkMatrix::Trans_xy,
+ SkMatrix::Scale_xy, SkMatrix::ScaleTrans_xy,
+ SkMatrix::Rot_xy, SkMatrix::RotTrans_xy,
+ SkMatrix::Rot_xy, SkMatrix::RotTrans_xy,
+ // repeat the persp proc 8 times
+ SkMatrix::Persp_xy, SkMatrix::Persp_xy,
+ SkMatrix::Persp_xy, SkMatrix::Persp_xy,
+ SkMatrix::Persp_xy, SkMatrix::Persp_xy,
+ SkMatrix::Persp_xy, SkMatrix::Persp_xy
+};
+
+///////////////////////////////////////////////////////////////////////////////
+
+// if its nearly zero (just made up 26, perhaps it should be bigger or smaller)
+#ifdef SK_SCALAR_IS_FIXED
+ typedef SkFract SkPerspElemType;
+ #define PerspNearlyZero(x) (SkAbs32(x) < (SK_Fract1 >> 26))
+#else
+ typedef float SkPerspElemType;
+ #define PerspNearlyZero(x) SkScalarNearlyZero(x, (1.0f / (1 << 26)))
+#endif
+
+bool SkMatrix::fixedStepInX(SkScalar y, SkFixed* stepX, SkFixed* stepY) const {
+ if (PerspNearlyZero(fMat[kMPersp0])) {
+ if (stepX || stepY) {
+ if (PerspNearlyZero(fMat[kMPersp1]) &&
+ PerspNearlyZero(fMat[kMPersp2] - kMatrix22Elem)) {
+ if (stepX) {
+ *stepX = SkScalarToFixed(fMat[kMScaleX]);
+ }
+ if (stepY) {
+ *stepY = SkScalarToFixed(fMat[kMSkewY]);
+ }
+ } else {
+#ifdef SK_SCALAR_IS_FIXED
+ SkFixed z = SkFractMul(y, fMat[kMPersp1]) +
+ SkFractToFixed(fMat[kMPersp2]);
+#else
+ float z = y * fMat[kMPersp1] + fMat[kMPersp2];
+#endif
+ if (stepX) {
+ *stepX = SkScalarToFixed(SkScalarDiv(fMat[kMScaleX], z));
+ }
+ if (stepY) {
+ *stepY = SkScalarToFixed(SkScalarDiv(fMat[kMSkewY], z));
+ }
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#include "SkPerspIter.h"
+
+SkPerspIter::SkPerspIter(const SkMatrix& m, SkScalar x0, SkScalar y0, int count)
+ : fMatrix(m), fSX(x0), fSY(y0), fCount(count) {
+ SkPoint pt;
+
+ SkMatrix::Persp_xy(m, x0, y0, &pt);
+ fX = SkScalarToFixed(pt.fX);
+ fY = SkScalarToFixed(pt.fY);
+}
+
+int SkPerspIter::next() {
+ int n = fCount;
+
+ if (0 == n) {
+ return 0;
+ }
+ SkPoint pt;
+ SkFixed x = fX;
+ SkFixed y = fY;
+ SkFixed dx, dy;
+
+ if (n >= kCount) {
+ n = kCount;
+ fSX += SkIntToScalar(kCount);
+ SkMatrix::Persp_xy(fMatrix, fSX, fSY, &pt);
+ fX = SkScalarToFixed(pt.fX);
+ fY = SkScalarToFixed(pt.fY);
+ dx = (fX - x) >> kShift;
+ dy = (fY - y) >> kShift;
+ } else {
+ fSX += SkIntToScalar(n);
+ SkMatrix::Persp_xy(fMatrix, fSX, fSY, &pt);
+ fX = SkScalarToFixed(pt.fX);
+ fY = SkScalarToFixed(pt.fY);
+ dx = (fX - x) / n;
+ dy = (fY - y) / n;
+ }
+
+ SkFixed* p = fStorage;
+ for (int i = 0; i < n; i++) {
+ *p++ = x; x += dx;
+ *p++ = y; y += dy;
+ }
+
+ fCount -= n;
+ return n;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_SCALAR_IS_FIXED
+
+static inline bool poly_to_point(SkPoint* pt, const SkPoint poly[], int count) {
+ SkFixed x = SK_Fixed1, y = SK_Fixed1;
+ SkPoint pt1, pt2;
+ Sk64 w1, w2;
+
+ if (count > 1) {
+ pt1.fX = poly[1].fX - poly[0].fX;
+ pt1.fY = poly[1].fY - poly[0].fY;
+ y = SkPoint::Length(pt1.fX, pt1.fY);
+ if (y == 0) {
+ return false;
+ }
+ switch (count) {
+ case 2:
+ break;
+ case 3:
+ pt2.fX = poly[0].fY - poly[2].fY;
+ pt2.fY = poly[2].fX - poly[0].fX;
+ goto CALC_X;
+ default:
+ pt2.fX = poly[0].fY - poly[3].fY;
+ pt2.fY = poly[3].fX - poly[0].fX;
+ CALC_X:
+ w1.setMul(pt1.fX, pt2.fX);
+ w2.setMul(pt1.fY, pt2.fY);
+ w1.add(w2);
+ w1.div(y, Sk64::kRound_DivOption);
+ if (!w1.is32()) {
+ return false;
+ }
+ x = w1.get32();
+ break;
+ }
+ }
+ pt->set(x, y);
+ return true;
+}
+
+bool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst,
+ const SkPoint& scalePt) {
+ // need to check if SkFixedDiv overflows...
+
+ const SkFixed scale = scalePt.fY;
+ dst->fMat[kMScaleX] = SkFixedDiv(srcPt[1].fY - srcPt[0].fY, scale);
+ dst->fMat[kMSkewY] = SkFixedDiv(srcPt[0].fX - srcPt[1].fX, scale);
+ dst->fMat[kMPersp0] = 0;
+ dst->fMat[kMSkewX] = SkFixedDiv(srcPt[1].fX - srcPt[0].fX, scale);
+ dst->fMat[kMScaleY] = SkFixedDiv(srcPt[1].fY - srcPt[0].fY, scale);
+ dst->fMat[kMPersp1] = 0;
+ dst->fMat[kMTransX] = srcPt[0].fX;
+ dst->fMat[kMTransY] = srcPt[0].fY;
+ dst->fMat[kMPersp2] = SK_Fract1;
+ dst->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+bool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst,
+ const SkPoint& scale) {
+ // really, need to check if SkFixedDiv overflow'd
+
+ dst->fMat[kMScaleX] = SkFixedDiv(srcPt[2].fX - srcPt[0].fX, scale.fX);
+ dst->fMat[kMSkewY] = SkFixedDiv(srcPt[2].fY - srcPt[0].fY, scale.fX);
+ dst->fMat[kMPersp0] = 0;
+ dst->fMat[kMSkewX] = SkFixedDiv(srcPt[1].fX - srcPt[0].fX, scale.fY);
+ dst->fMat[kMScaleY] = SkFixedDiv(srcPt[1].fY - srcPt[0].fY, scale.fY);
+ dst->fMat[kMPersp1] = 0;
+ dst->fMat[kMTransX] = srcPt[0].fX;
+ dst->fMat[kMTransY] = srcPt[0].fY;
+ dst->fMat[kMPersp2] = SK_Fract1;
+ dst->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst,
+ const SkPoint& scale) {
+ SkFract a1, a2;
+ SkFixed x0, y0, x1, y1, x2, y2;
+
+ x0 = srcPt[2].fX - srcPt[0].fX;
+ y0 = srcPt[2].fY - srcPt[0].fY;
+ x1 = srcPt[2].fX - srcPt[1].fX;
+ y1 = srcPt[2].fY - srcPt[1].fY;
+ x2 = srcPt[2].fX - srcPt[3].fX;
+ y2 = srcPt[2].fY - srcPt[3].fY;
+
+ /* check if abs(x2) > abs(y2) */
+ if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) {
+ SkFixed denom = SkMulDiv(x1, y2, x2) - y1;
+ if (0 == denom) {
+ return false;
+ }
+ a1 = SkFractDiv(SkMulDiv(x0 - x1, y2, x2) - y0 + y1, denom);
+ } else {
+ SkFixed denom = x1 - SkMulDiv(y1, x2, y2);
+ if (0 == denom) {
+ return false;
+ }
+ a1 = SkFractDiv(x0 - x1 - SkMulDiv(y0 - y1, x2, y2), denom);
+ }
+
+ /* check if abs(x1) > abs(y1) */
+ if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) {
+ SkFixed denom = y2 - SkMulDiv(x2, y1, x1);
+ if (0 == denom) {
+ return false;
+ }
+ a2 = SkFractDiv(y0 - y2 - SkMulDiv(x0 - x2, y1, x1), denom);
+ } else {
+ SkFixed denom = SkMulDiv(y2, x1, y1) - x2;
+ if (0 == denom) {
+ return false;
+ }
+ a2 = SkFractDiv(SkMulDiv(y0 - y2, x1, y1) - x0 + x2, denom);
+ }
+
+ // need to check if SkFixedDiv overflows...
+ dst->fMat[kMScaleX] = SkFixedDiv(SkFractMul(a2, srcPt[3].fX) +
+ srcPt[3].fX - srcPt[0].fX, scale.fX);
+ dst->fMat[kMSkewY] = SkFixedDiv(SkFractMul(a2, srcPt[3].fY) +
+ srcPt[3].fY - srcPt[0].fY, scale.fX);
+ dst->fMat[kMPersp0] = SkFixedDiv(a2, scale.fX);
+ dst->fMat[kMSkewX] = SkFixedDiv(SkFractMul(a1, srcPt[1].fX) +
+ srcPt[1].fX - srcPt[0].fX, scale.fY);
+ dst->fMat[kMScaleY] = SkFixedDiv(SkFractMul(a1, srcPt[1].fY) +
+ srcPt[1].fY - srcPt[0].fY, scale.fY);
+ dst->fMat[kMPersp1] = SkFixedDiv(a1, scale.fY);
+ dst->fMat[kMTransX] = srcPt[0].fX;
+ dst->fMat[kMTransY] = srcPt[0].fY;
+ dst->fMat[kMPersp2] = SK_Fract1;
+ dst->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+#else /* Scalar is float */
+
+static inline bool checkForZero(float x) {
+ return x*x == 0;
+}
+
+static inline bool poly_to_point(SkPoint* pt, const SkPoint poly[], int count) {
+ float x = 1, y = 1;
+ SkPoint pt1, pt2;
+
+ if (count > 1) {
+ pt1.fX = poly[1].fX - poly[0].fX;
+ pt1.fY = poly[1].fY - poly[0].fY;
+ y = SkPoint::Length(pt1.fX, pt1.fY);
+ if (checkForZero(y)) {
+ return false;
+ }
+ switch (count) {
+ case 2:
+ break;
+ case 3:
+ pt2.fX = poly[0].fY - poly[2].fY;
+ pt2.fY = poly[2].fX - poly[0].fX;
+ goto CALC_X;
+ default:
+ pt2.fX = poly[0].fY - poly[3].fY;
+ pt2.fY = poly[3].fX - poly[0].fX;
+ CALC_X:
+ x = SkScalarDiv(SkScalarMul(pt1.fX, pt2.fX) +
+ SkScalarMul(pt1.fY, pt2.fY), y);
+ break;
+ }
+ }
+ pt->set(x, y);
+ return true;
+}
+
+bool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst,
+ const SkPoint& scale) {
+ float invScale = 1 / scale.fY;
+
+ dst->fMat[kMScaleX] = (srcPt[1].fY - srcPt[0].fY) * invScale;
+ dst->fMat[kMSkewY] = (srcPt[0].fX - srcPt[1].fX) * invScale;
+ dst->fMat[kMPersp0] = 0;
+ dst->fMat[kMSkewX] = (srcPt[1].fX - srcPt[0].fX) * invScale;
+ dst->fMat[kMScaleY] = (srcPt[1].fY - srcPt[0].fY) * invScale;
+ dst->fMat[kMPersp1] = 0;
+ dst->fMat[kMTransX] = srcPt[0].fX;
+ dst->fMat[kMTransY] = srcPt[0].fY;
+ dst->fMat[kMPersp2] = 1;
+ dst->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+bool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst,
+ const SkPoint& scale) {
+ float invScale = 1 / scale.fX;
+ dst->fMat[kMScaleX] = (srcPt[2].fX - srcPt[0].fX) * invScale;
+ dst->fMat[kMSkewY] = (srcPt[2].fY - srcPt[0].fY) * invScale;
+ dst->fMat[kMPersp0] = 0;
+
+ invScale = 1 / scale.fY;
+ dst->fMat[kMSkewX] = (srcPt[1].fX - srcPt[0].fX) * invScale;
+ dst->fMat[kMScaleY] = (srcPt[1].fY - srcPt[0].fY) * invScale;
+ dst->fMat[kMPersp1] = 0;
+
+ dst->fMat[kMTransX] = srcPt[0].fX;
+ dst->fMat[kMTransY] = srcPt[0].fY;
+ dst->fMat[kMPersp2] = 1;
+ dst->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+bool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst,
+ const SkPoint& scale) {
+ float a1, a2;
+ float x0, y0, x1, y1, x2, y2;
+
+ x0 = srcPt[2].fX - srcPt[0].fX;
+ y0 = srcPt[2].fY - srcPt[0].fY;
+ x1 = srcPt[2].fX - srcPt[1].fX;
+ y1 = srcPt[2].fY - srcPt[1].fY;
+ x2 = srcPt[2].fX - srcPt[3].fX;
+ y2 = srcPt[2].fY - srcPt[3].fY;
+
+ /* check if abs(x2) > abs(y2) */
+ if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) {
+ float denom = SkScalarMulDiv(x1, y2, x2) - y1;
+ if (checkForZero(denom)) {
+ return false;
+ }
+ a1 = SkScalarDiv(SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1, denom);
+ } else {
+ float denom = x1 - SkScalarMulDiv(y1, x2, y2);
+ if (checkForZero(denom)) {
+ return false;
+ }
+ a1 = SkScalarDiv(x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2), denom);
+ }
+
+ /* check if abs(x1) > abs(y1) */
+ if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) {
+ float denom = y2 - SkScalarMulDiv(x2, y1, x1);
+ if (checkForZero(denom)) {
+ return false;
+ }
+ a2 = SkScalarDiv(y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1), denom);
+ } else {
+ float denom = SkScalarMulDiv(y2, x1, y1) - x2;
+ if (checkForZero(denom)) {
+ return false;
+ }
+ a2 = SkScalarDiv(SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2, denom);
+ }
+
+ float invScale = 1 / scale.fX;
+ dst->fMat[kMScaleX] = SkScalarMul(SkScalarMul(a2, srcPt[3].fX) +
+ srcPt[3].fX - srcPt[0].fX, invScale);
+ dst->fMat[kMSkewY] = SkScalarMul(SkScalarMul(a2, srcPt[3].fY) +
+ srcPt[3].fY - srcPt[0].fY, invScale);
+ dst->fMat[kMPersp0] = SkScalarMul(a2, invScale);
+ invScale = 1 / scale.fY;
+ dst->fMat[kMSkewX] = SkScalarMul(SkScalarMul(a1, srcPt[1].fX) +
+ srcPt[1].fX - srcPt[0].fX, invScale);
+ dst->fMat[kMScaleY] = SkScalarMul(SkScalarMul(a1, srcPt[1].fY) +
+ srcPt[1].fY - srcPt[0].fY, invScale);
+ dst->fMat[kMPersp1] = SkScalarMul(a1, invScale);
+ dst->fMat[kMTransX] = srcPt[0].fX;
+ dst->fMat[kMTransY] = srcPt[0].fY;
+ dst->fMat[kMPersp2] = 1;
+ dst->setTypeMask(kUnknown_Mask);
+ return true;
+}
+
+#endif
+
+typedef bool (*PolyMapProc)(const SkPoint[], SkMatrix*, const SkPoint&);
+
+/* Taken from Rob Johnson's original sample code in QuickDraw GX
+*/
+bool SkMatrix::setPolyToPoly(const SkPoint src[], const SkPoint dst[],
+ int count) {
+ if ((unsigned)count > 4) {
+ SkDebugf("--- SkMatrix::setPolyToPoly count out of range %d\n", count);
+ return false;
+ }
+
+ if (0 == count) {
+ this->reset();
+ return true;
+ }
+ if (1 == count) {
+ this->setTranslate(dst[0].fX - src[0].fX, dst[0].fY - src[0].fY);
+ return true;
+ }
+
+ SkPoint scale;
+ if (!poly_to_point(&scale, src, count) ||
+ SkScalarNearlyZero(scale.fX) ||
+ SkScalarNearlyZero(scale.fY)) {
+ return false;
+ }
+
+ static const PolyMapProc gPolyMapProcs[] = {
+ SkMatrix::Poly2Proc, SkMatrix::Poly3Proc, SkMatrix::Poly4Proc
+ };
+ PolyMapProc proc = gPolyMapProcs[count - 2];
+
+ SkMatrix tempMap, result;
+ tempMap.setTypeMask(kUnknown_Mask);
+
+ if (!proc(src, &tempMap, scale)) {
+ return false;
+ }
+ if (!tempMap.invert(&result)) {
+ return false;
+ }
+ if (!proc(dst, &tempMap, scale)) {
+ return false;
+ }
+ if (!result.setConcat(tempMap, result)) {
+ return false;
+ }
+ *this = result;
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+void SkMatrix::dump() const {
+ SkString str;
+ this->toDumpString(&str);
+ SkDebugf("%s\n", str.c_str());
+}
+
+void SkMatrix::toDumpString(SkString* str) const {
+#ifdef SK_CAN_USE_FLOAT
+ str->printf("[%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f]",
+#ifdef SK_SCALAR_IS_FLOAT
+ fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5],
+ fMat[6], fMat[7], fMat[8]);
+#else
+ SkFixedToFloat(fMat[0]), SkFixedToFloat(fMat[1]), SkFixedToFloat(fMat[2]),
+ SkFixedToFloat(fMat[3]), SkFixedToFloat(fMat[4]), SkFixedToFloat(fMat[5]),
+ SkFractToFloat(fMat[6]), SkFractToFloat(fMat[7]), SkFractToFloat(fMat[8]));
+#endif
+#else // can't use float
+ str->printf("[%x %x %x][%x %x %x][%x %x %x]",
+ fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5],
+ fMat[6], fMat[7], fMat[8]);
+#endif
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_DEBUG
+
+void SkMatrix::UnitTest() {
+#ifdef SK_SUPPORT_UNITTEST
+ SkMatrix mat, inverse, iden1, iden2;
+
+ mat.reset();
+ mat.setTranslate(SK_Scalar1, SK_Scalar1);
+ mat.invert(&inverse);
+ inverse.dump();
+ iden1.setConcat(mat, inverse);
+ iden1.dump();
+
+ mat.setScale(SkIntToScalar(2), SkIntToScalar(2));
+ mat.invert(&inverse);
+ inverse.dump();
+ iden1.setConcat(mat, inverse);
+ iden1.dump();
+
+ mat.setScale(SK_Scalar1/2, SK_Scalar1/2);
+ mat.invert(&inverse);
+ inverse.dump();
+ iden1.setConcat(mat, inverse);
+ iden1.dump();
+ SkASSERT(iden1.isIdentity());
+
+ mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0);
+ mat.postRotate(SkIntToScalar(25));
+
+ SkASSERT(mat.invert(NULL));
+ mat.invert(&inverse);
+
+ iden1.setConcat(mat, inverse);
+ iden2.setConcat(inverse, mat);
+
+ iden1.dump();
+// SkASSERT(iden1.isIdentity());
+ iden2.dump();
+// SkASSERT(iden2.isIdentity());
+
+ // rectStaysRect test
+ {
+ static const struct {
+ SkScalar m00, m01, m10, m11;
+ bool mStaysRect;
+ }
+ gRectStaysRectSamples[] = {
+ { 0, 0, 0, 0, false },
+ { 0, 0, 0, SK_Scalar1, false },
+ { 0, 0, SK_Scalar1, 0, false },
+ { 0, 0, SK_Scalar1, SK_Scalar1, false },
+ { 0, SK_Scalar1, 0, 0, false },
+ { 0, SK_Scalar1, 0, SK_Scalar1, false },
+ { 0, SK_Scalar1, SK_Scalar1, 0, true },
+ { 0, SK_Scalar1, SK_Scalar1, SK_Scalar1, false },
+ { SK_Scalar1, 0, 0, 0, false },
+ { SK_Scalar1, 0, 0, SK_Scalar1, true },
+ { SK_Scalar1, 0, SK_Scalar1, 0, false },
+ { SK_Scalar1, 0, SK_Scalar1, SK_Scalar1, false },
+ { SK_Scalar1, SK_Scalar1, 0, 0, false },
+ { SK_Scalar1, SK_Scalar1, 0, SK_Scalar1, false },
+ { SK_Scalar1, SK_Scalar1, SK_Scalar1, 0, false },
+ { SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, false }
+ };
+
+ for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) {
+ SkMatrix m;
+
+ m.reset();
+ m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00);
+ m.set(SkMatrix::kMSkewX, gRectStaysRectSamples[i].m01);
+ m.set(SkMatrix::kMSkewY, gRectStaysRectSamples[i].m10);
+ m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11);
+ SkASSERT(m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect);
+ }
+ }
+#endif
+}
+
+#endif