aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/compute
diff options
context:
space:
mode:
authorGravatar Allan MacKinnon <allanmac@google.com>2018-06-20 08:29:07 -0700
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-06-20 16:03:28 +0000
commit879c98913c360b01f63588685c01ac06e83be54d (patch)
treebf91e5e6ded3d97936936678b72c6499502f0462 /src/compute
parenta27f2694f0af467f496e6697bc0c4edd4966a3e0 (diff)
Overdue reorg of source tree to support multiple platforms & devices.
Bug: skia: Change-Id: I1248a529a932ed5ef32952a1bb7eca56ee1c5f25 Reviewed-on: https://skia-review.googlesource.com/136170 Reviewed-by: Mike Klein <mtklein@google.com> Commit-Queue: Mike Klein <mtklein@google.com>
Diffstat (limited to 'src/compute')
-rw-r--r--src/compute/skc/Makefile79
-rw-r--r--src/compute/skc/cl_20/extent.c787
-rw-r--r--src/compute/skc/cl_20/extent.h390
-rw-r--r--src/compute/skc/cl_20/ring_cl_svm_fine.cpp89
-rw-r--r--src/compute/skc/cl_20/ring_cl_svm_fine.h46
-rw-r--r--src/compute/skc/common.h2
-rw-r--r--src/compute/skc/main.c20
-rw-r--r--src/compute/skc/make_all.bat15
-rw-r--r--src/compute/skc/platforms/cl_12/allocator_device_cl.c (renamed from src/compute/skc/allocator_device_cl.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/allocator_device_cl.h (renamed from src/compute/skc/allocator_device_cl.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/atomic_cl.h (renamed from src/compute/skc/atomic_cl.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/block_pool_cl.h (renamed from src/compute/skc/block_pool_cl.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/block_pool_cl_12.h (renamed from src/compute/skc/block_pool_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/composition_cl_12.c (renamed from src/compute/skc/composition_cl_12.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/composition_cl_12.h (renamed from src/compute/skc/composition_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/config_cl.h (renamed from src/compute/skc/config_cl.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/cq_pool_cl.c (renamed from src/compute/skc/cq_pool_cl.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/cq_pool_cl.h (renamed from src/compute/skc/cq_pool_cl.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/device_cl_12.h (renamed from src/compute/skc/device_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/export_cl_12.h (renamed from src/compute/skc/export_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/extent_cl_12.c (renamed from src/compute/skc/extent_cl_12.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/extent_cl_12.h (renamed from src/compute/skc/extent_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/extent_cl_12_unified.c (renamed from src/compute/skc/extent_cl_12_unified.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/gl/interop.c (renamed from src/compute/skc/interop.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/gl/interop.h (renamed from src/compute/skc/interop.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/handle_pool_cl_12.c (renamed from src/compute/skc/handle_pool_cl_12.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/handle_pool_cl_12.h (renamed from src/compute/skc/handle_pool_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/block_pool_init.cl (renamed from src/compute/skc/block_pool_init.cl)128
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/devices/avx2/device_cl_12_avx2.h (renamed from src/compute/skc/device_cl_12_avx2.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/devices/gen9/device_cl_12.c (renamed from src/compute/skc/device_cl_12_gen9.c)84
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/devices/gen9/device_cl_12.h (renamed from src/compute/skc/device_cl_12_gen9.h)10
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/devices/gen9/inl/make_all.bat15
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/devices/gen9/inl/make_inl_cl.bat (renamed from src/compute/skc/make_inl_cl.bat)21
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/fills_expand.cl (renamed from src/compute/skc/fills_expand.cl)618
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/paths_copy.cl (renamed from src/compute/skc/paths_copy.cl)1086
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/paths_reclaim.cl (renamed from src/compute/skc/paths_reclaim.cl)780
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/place.cl (renamed from src/compute/skc/place.cl)1742
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/prefix.cl (renamed from src/compute/skc/prefix.cl)2083
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/rasterize.cl (renamed from src/compute/skc/rasterize.cl)6733
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/rasters_alloc.cl (renamed from src/compute/skc/rasters_alloc.cl)288
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/rasters_reclaim.cl (renamed from src/compute/skc/rasters_reclaim.cl)884
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/render.cl (renamed from src/compute/skc/render.cl)4330
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/segment_ttck.cl (renamed from src/compute/skc/segment_ttck.cl)261
-rw-r--r--src/compute/skc/platforms/cl_12/kernels/segment_ttrk.cl (renamed from src/compute/skc/segment_ttrk.cl)790
-rw-r--r--src/compute/skc/platforms/cl_12/path_builder_cl_12.c (renamed from src/compute/skc/path_builder_cl_12.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/path_builder_cl_12.h (renamed from src/compute/skc/path_builder_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/raster_builder_cl_12.c (renamed from src/compute/skc/raster_builder_cl_12.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/raster_builder_cl_12.h (renamed from src/compute/skc/raster_builder_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/runtime_cl.c (renamed from src/compute/skc/runtime_cl.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/runtime_cl.h (renamed from src/compute/skc/runtime_cl.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/runtime_cl_12.c (renamed from src/compute/skc/runtime_cl_12.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/runtime_cl_12.h (renamed from src/compute/skc/runtime_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/styling_cl_12.c (renamed from src/compute/skc/styling_cl_12.c)0
-rw-r--r--src/compute/skc/platforms/cl_12/styling_cl_12.h (renamed from src/compute/skc/styling_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/surface_cl_12.h (renamed from src/compute/skc/surface_cl_12.h)0
-rw-r--r--src/compute/skc/platforms/cl_12/surface_cl_12_buffer.c (renamed from src/compute/skc/surface_cl_12_buffer.c)0
-rw-r--r--src/compute/skc/types.h34
57 files changed, 9965 insertions, 11350 deletions
diff --git a/src/compute/skc/Makefile b/src/compute/skc/Makefile
deleted file mode 100644
index e6516e3fd1..0000000000
--- a/src/compute/skc/Makefile
+++ /dev/null
@@ -1,79 +0,0 @@
-#
-# Copyright 2016 Google Inc.
-#
-# Use of this source code is governed by a BSD-style license that can
-# be found in the LICENSE file.
-#
-
-SRC = block_pool_init.cl paths_copy.cl fills_expand.cl rasterize.cl raster_alloc.cl prefix.cl place.cl render.cl
-
-PRE = $(SRC:%.cl=%.pre.cl)
-
-IR_GEN9 = $(PRE:%.cl=%.ir)
-
-$(info PRE : $(PRE))
-$(info IR_GEN9 : $(IR_GEN9))
-
-#
-#
-#
-
-OPENCL_STD = -cl-std=CL1.2
-OPENCL_PRE = __OPENCL_C_VERSION__=120
-
-# OPENCL_STD = -cl-std=CL2.0
-# OPENCL_PRE = __OPENCL_C_VERSION__=200
-
-#
-#
-#
-
-TARGETS = $(PRE) $(IR_GEN9)
-
-#
-#
-#
-
-IOC = ioc64
-
-IOC_IR_OPTS_OPT = $(OPENCL_STD) -cl-single-precision-constant -cl-denorms-are-zero -cl-mad-enable \
- -cl-no-signed-zeros -cl-fast-relaxed-math -cl-kernel-arg-info
-
-IOC_IR_OPTS_DBG = $(OPENCL_STD) -cl-kernel-arg-info -g
-
-IOC_IR_OPTS = $(IOC_IR_OPTS_OPT)
-
-#
-#
-#
-
-PRE_DEPS = $(wildcard *.h)
-
-#
-#
-#
-
-all: $(TARGETS)
-
-
-clean:
- -rm -f $(TARGETS) $(wildcard *.pre.bin.inl) $(wildcard *.pre.src.inl) $(wildcard *.gen) $(wildcard *.TMP)
-
-#
-# PREPROCESS
-#
-
-$(PRE): %.pre.cl: %.cl $(PRE_DEPS)
- cl -I . -I "%INTELOCLSDKROOT%\include" -D $(OPENCL_PRE) -EP $< -P -Fi"$@"
- clang-format -i $@
- dos2unix $@
- xxd -i $@ $(basename $@).src.inl
-
-#
-# GEN9 -- supports OpenCL 2.0 and can emit SPIR-V / SPIR-V TEXT but cannot load it via clCreateProgramWithIL()
-#
-
-$(IR_GEN9): %.ir: %.cl
- touch $@
- $(IOC) -cmd=build -bo="$(IOC_IR_OPTS)" -device=gpu -input=$< -ir=$@ -asm
- xxd -i $@ $(basename $@).bin.inl
diff --git a/src/compute/skc/cl_20/extent.c b/src/compute/skc/cl_20/extent.c
deleted file mode 100644
index 4c073e8b69..0000000000
--- a/src/compute/skc/cl_20/extent.c
+++ /dev/null
@@ -1,787 +0,0 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-#include <string.h>
-
-// #include "extent.h"
-
-//
-// EXTENT TYPES
-//
-// Classification of operations on allocated GPU memory
-//
-// h = host
-// d = device
-//
-// c = append using non-atomic incremented count
-// x = append using atomically incremented index
-// p = allocated from pool of indices
-// g = gathered by pull kernel
-// s = size is available
-//
-// w1 = write once
-// wN = write many
-//
-// r1 = read once
-// rN = read many
-//
-// rw = read/write many
-//
-// host<>device memory model
-// +--------------------+--------------------+
-// extent type | split | shared | examples
-// ---------------------+--------------------+--------------------+--------------------
-// | | |
-// extent_atomic | device+mapped | device+mapped | atomically op'd device extent + read-only host snapshot
-// | | |
-// extent_dxrw | device | device | ttsk_array, ttpk_array, ttck_array, *_offsets
-// extent_hcw1_dr1 | mapped | mapped | command_queue, buffer
-// extent_hcrw | host | host | queue
-// | | |
-// ---------------------+--------------------+--------------------+--------------------
-// | | |
-// extent_hcw1_drN | memcpy'd | mapped | stack_transforms, stack_stroke_props
-// extent_hgw1_drN | scatter/gather | mapped | layer_props
-// | | |
-// block_pool_dprw | device | device | ttsb_pool, ttpb_pool
-// block_pool_hp_drw | device | device | raster_pool
-// | | |
-// ---------------------+--------------------+--------------------+--------------------
-// | | |
-// block_pool_hp_drw | block_pool_hp_drw | block_pool_hp_drw | path_block_pool
-// staging buffer | extent_hw_dr | -- |
-// | | |
-//
-
-//
-// HIGH-LEVEL EXTENTS ARE BUILT FROM SIMPLER STRUCTURES
-//
-
-//
-// COUNTERS FOR POOLS -- TYPICALLY ATOMIC WHEN ON DEVICE
-//
-
-union skc_ring
-{
- skc_uint2 u32v2;
-
- skc_uint u32a2[2];
-
- struct {
- skc_uint reads; // number of reads
- skc_uint writes; // number of writes
- };
-};
-
-//
-// POOL OF INDICES TO BLOCKS
-//
-
-struct skc_pool_h
-{
- skc_uint * indices;
-};
-
-struct skc_pool_d
-{
- cl_mem * indices; // FIXME -- READ POOL INDICES THROUGH CONSTANT CACHE?
-};
-
-//
-// LOW-LEVEL EXTENTS -- SIZES ARE STORED ELSEWHERE
-//
-
-struct skc_extent_hrw
-{
- void * hrw; // host pointer to host extent -- read/write
-};
-
-struct skc_extent_drw
-{
- cl_mem drw; // device pointer to device extent -- read/write
-};
-
-struct skc_extent_hw_dr
-{
- void * hw; // host pointer to shared extent -- write-only + write-combined
- cl_mem dr; // device pointer to shared extent -- read-only
-};
-
-//
-//
-//
-
-#if 0
-static
-void *
-skc_runtime_svm_alloc(struct skc_runtime_cl * const runtime_cl, size_t const size)
-{
- return clSVMAlloc(runtime_cl->context,
- CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER,
- size,
- 0);
-}
-
-static
-void *
-skc_runtime_svm_atomic_alloc(struct skc_runtime_cl * const runtime_cl, size_t const size) // WE DON'T NEED THIS HERE
-{
- return clSVMAlloc(runtime_cl->context,
- CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS,
- size,
- 0);
-}
-
-static
-void
-skc_runtime_svm_free(struct skc_runtime_cl * const runtime_cl, void * const buffer)
-{
- clSVMFree(runtime_cl->context,buffer);
-}
-#endif
-
-//
-//
-//
-
-void
-skc_command_queue_fill_device(struct skc_command_queue * const cq,
- cl_mem buffer,
- void const * const pattern,
- size_t const pattern_size,
- size_t const size);
-
-void *
-skc_command_queue_map_wi(struct skc_command_queue * const cq,
- cl_mem buffer);
-
-void
-skc_command_queue_unmap(struct skc_command_queue * const cq,
- cl_mem buffer,
- void * const mapped);
-
-void
-skc_command_queue_read(struct skc_command_queue * const cq,
- cl_mem buffer,
- void * const ptr);
-
-//
-//
-//
-
-struct skc_extent_hrw *
-skc_extent_hrw_alloc(struct skc_allocator * const allocator,
- size_t const size)
-{
- struct skc_extent_hrw * extent;
-
- extent = skc_allocator_alloc_host(allocator,sizeof(*extent));
- extent->hrw = skc_allocator_alloc_host(allocator,size);
-
- return extent;
-}
-
-
-
-void
-skc_extent_hrw_free(struct skc_allocator * const allocator,
- struct skc_extent_hrw * const extent)
-{
- skc_allocator_free_host(allocator,extent->hrw);
- skc_allocator_free_host(allocator,extent);
-}
-
-//
-//
-//
-
-struct skc_extent_drw *
-skc_extent_drw_alloc(struct skc_allocator * const allocator,
- size_t const size)
-{
- struct skc_extent_drw * extent;
-
- extent = skc_allocator_alloc_host (allocator,sizeof(*extent));
- extent->drw = skc_allocator_alloc_device(allocator,size);
-
- return extent;
-}
-
-void
-skc_extent_drw_free(struct skc_allocator * const allocator,
- struct skc_extent_drw * const extent)
-{
- skc_allocator_free_device(allocator,extent->drw);
- skc_allocator_free_host (allocator,extent);
-}
-
-void
-skc_extent_drw_fill(struct skc_command_queue * const cq,
- struct skc_extent_drw * const extent,
- void const * const pattern,
- size_t const pattern_size,
- size_t const size)
-{
- skc_command_queue_fill_device(cq,extent->drw,pattern,pattern_size,size);
-}
-
-//
-// WRITE-COMBINED / WRITE-INVALIDATE
-//
-
-struct skc_extent_hw_dr *
-skc_extent_hw_dr_alloc(struct skc_allocator * const allocator,
- size_t const size)
-{
- struct skc_extent_hw_dr * extent;
-
- extent = skc_allocator_alloc_host(allocator,sizeof(*extent));
- extent->hw = NULL;
- extent->dr = skc_allocator_alloc_device_wc(allocator,size); // write-combined mem
-
- return extent;
-}
-
-void
-skc_extent_hw_dr_free(struct skc_allocator * const allocator,
- struct skc_extent_hw_dr * const extent)
-{
- skc_allocator_free_device(allocator,extent->dr);
- skc_allocator_free_host (allocator,extent);
-}
-
-void
-skc_extent_hw_dr_map(struct skc_command_queue * const cq,
- struct skc_extent_hw_dr * const extent)
-{
- extent->hw = skc_command_queue_map_wi(cq,extent->dr);
-}
-
-void
-skc_extent_hw_dr_unmap(struct skc_command_queue * const cq,
- struct skc_extent_hw_dr * const extent)
-{
- skc_command_queue_unmap(cq,extent->dr,extent->hw);
-}
-
-void
-skc_extent_hw_dr_memcpy(struct skc_extent_hw_dr * const extent,
- void const * SKC_RESTRICT const src,
- size_t const offset,
- size_t const size)
-{
- void * SKC_RESTRICT const dst = (char *)extent->hw + offset;
-
- memcpy(dst,src,size);
-}
-//
-// SNAPSHOT
-//
-
-struct skc_extent_hr_drw
-{
- void * hr; // host pointer to shared extent -- readable snapshot
- cl_mem drw; // device pointer to shared extent -- read/write
-};
-
-struct skc_extent_hr_drw *
-skc_extent_hr_drw_alloc(struct skc_allocator * const allocator,
- size_t const size)
-{
- struct skc_extent_hr_drw * extent;
-
- extent = skc_allocator_alloc_host (allocator,sizeof(*extent));
- extent->hr = skc_allocator_alloc_host (allocator,size);
- extent->drw = skc_allocator_alloc_device(allocator,size);
-
- return extent;
-}
-
-void
-skc_extent_hr_drw_free(struct skc_allocator * const allocator,
- struct skc_extent_hr_drw * const extent)
-{
- skc_allocator_free_host (allocator,extent->hr);
- skc_allocator_free_device(allocator,extent->drw);
- skc_allocator_free_host (allocator,extent);
-}
-
-void
-skc_extent_hr_drw_snap(struct skc_command_queue * const cq,
- struct skc_extent_hr_drw * const extent,
- size_t const size)
-{
- skc_command_queue_read(cq,extent->drw,extent->hr);
-}
-
-void
-skc_extent_hr_drw_fill(struct skc_command_queue * const cq,
- struct skc_extent_hr_drw * const extent,
- void const * const pattern,
- size_t const pattern_size,
- size_t const size)
-{
- skc_command_queue_fill_device(cq,extent->drw,pattern,pattern_size,size);
-}
-
-//
-//
-//
-
-struct skc_extent_atomic
-{
- struct skc_extent_hr_drw * hr_drw;
- size_t size; // typically a very small extent
-};
-
-//
-//
-//
-
-struct skc_extent_atomic *
-skc_extent_atomic_alloc(struct skc_allocator * const allocator,
- size_t const size)
-{
- struct skc_extent_atomic * extent;
-
- extent = skc_allocator_alloc_host(allocator,sizeof(*extent));
- extent->hr_drw = skc_extent_hr_drw_alloc(allocator,size);
- extent->size = size;
-
- return extent;
-}
-
-void
-skc_extent_atomic_free(struct skc_allocator * const allocator,
- struct skc_extent_atomic * const extent)
-{
- skc_extent_hr_drw_free (allocator,extent->hr_drw);
- skc_allocator_free_host(allocator,extent);
-}
-
-void
-skc_extent_atomic_snap(struct skc_command_queue * const cq,
- struct skc_extent_atomic const * const extent)
-{
- skc_extent_hr_drw_snap(cq,extent->hr_drw,extent->size);
-}
-
-void
-skc_extent_atomic_zero(struct skc_command_queue * const cq,
- struct skc_extent_atomic const * const extent)
-{
- skc_uint const zero = 0;
-
- skc_extent_hr_drw_fill(cq,extent->hr_drw,&zero,sizeof(zero),extent->size);
-}
-
-//
-//
-//
-
-struct skc_extent_dxrw
-{
- struct skc_extent_drw * drw;
-
- size_t elem_size;
- skc_uint elem_count;
-
-#if 0 // SKC_EXTENT_ATOMIC_IS_IGNORED
- struct skc_extent_atomic * atomic;
- size_t atomic_offset;
-#endif
-};
-
-//
-//
-//
-
-struct skc_extent_dxrw *
-skc_extent_dxrw_alloc(struct skc_allocator * const allocator,
- size_t const elem_size,
- skc_uint const elem_count,
- struct skc_extent_atomic * const atomic,
- size_t const atomic_offset)
-{
- struct skc_extent_dxrw * extent;
-
- extent = skc_allocator_alloc_host(allocator,sizeof(*extent));
- extent->drw = skc_extent_drw_alloc(allocator,elem_size * elem_count);
-
- extent->elem_size = elem_size;
- extent->elem_count = elem_count;
-
- //
- // note that passing in the atomic and its member has no real use at
- // this point since the current programming style requires passing
- // in the atomic extent -- which may have multiple members -- to the
- // compute kernel
- //
-#if 0 // SKC_EXTENT_ATOMIC_IS_IGNORED
- extent->atomic = atomic;
- extent->atomic_offset = atomic_offset;
-#endif
-
- return extent;
-}
-
-void
-skc_extent_dxrw_free(struct skc_allocator * const allocator,
- struct skc_extent_dxrw * const extent)
-{
- skc_extent_drw_free (allocator,extent->drw);
- skc_allocator_free_host(allocator,extent);
-}
-
-//
-//
-//
-
-struct skc_extent_hcrw
-{
- struct skc_extent_hrw * hrw;
- size_t elem_size;
- skc_uint elem_count;
- skc_uint counter;
-};
-
-//
-//
-//
-
-struct skc_extent_hcrw *
-skc_extent_hcrw_alloc(struct skc_allocator * const allocator,
- size_t const elem_size,
- skc_uint const elem_count)
-{
- struct skc_extent_hcrw * extent;
-
- extent = skc_allocator_alloc_host(allocator,sizeof(*extent));
- extent->hrw = skc_extent_hrw_alloc(allocator,elem_size * elem_count);
- extent->elem_size = elem_size;
- extent->elem_count = elem_count;
- extent->counter = 0;
-
- return extent;
-}
-
-void
-skc_extent_hcrw_free(struct skc_allocator * const allocator,
- struct skc_extent_hcrw * const extent)
-{
- skc_extent_hrw_free (allocator,extent->hrw);
- skc_allocator_free_host(allocator,extent);
-}
-
-void
-skc_extent_hcrw_reset(struct skc_extent_hcrw * const extent)
-{
- extent->counter = 0;
-}
-
-skc_bool
-skc_extent_hcrw_is_full(struct skc_extent_hcrw const * const extent)
-{
- return (extent->counter == extent->elem_count);
-}
-
-//
-//
-//
-
-struct skc_extent_hcw1_dr1
-{
- struct skc_extent_hw_dr * hw_dr; // mapped memory
- size_t elem_size;
- skc_uint elem_count;
- skc_uint counter;
-};
-
-//
-//
-//
-
-struct skc_extent_hcw1_dr1 *
-skc_extent_hcw1_dr1_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count)
-{
- struct skc_extent_hcw1_dr1 * extent;
-
- extent = skc_allocator_alloc_host(allocator,sizeof(*extent));
- extent->hw_dr = skc_extent_hw_dr_alloc(allocator,elem_size * elem_count);
- extent->elem_size = elem_size;
- extent->elem_count = elem_count;
- extent->counter = 0;
-
- return extent;
-}
-
-void
-skc_extent_hcw1_dr1_free(struct skc_allocator * const allocator,
- struct skc_extent_hcw1_dr1 * const extent)
-{
- skc_extent_hw_dr_free (allocator,extent->hw_dr);
- skc_allocator_free_host(allocator,extent);
-}
-
-void
-skc_extent_hcw1_dr1_map(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_dr1 * const extent)
-{
- skc_extent_hw_dr_map(cq,extent->hw_dr);
-}
-
-void
-skc_extent_hcw1_dr1_unmap(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_dr1 * const extent)
-{
- skc_extent_hw_dr_unmap(cq,extent->hw_dr);
-}
-
-void
-skc_extent_hcw1_dr1_reset(struct skc_extent_hcw1_dr1 * const extent)
-{
- extent->counter = 0;
-}
-
-skc_bool
-skc_extent_hcw1_dr1_is_full(struct skc_extent_hcw1_dr1 const * const extent)
-{
- return (extent->counter == extent->elem_count);
-}
-
-skc_uint
-skc_extent_hcw1_dr1_rem(struct skc_extent_hcw1_dr1 * const extent)
-{
- return extent->elem_count - extent->counter;
-}
-
-void
-skc_extent_hcw1_dr1_append(struct skc_extent_hcw1_dr1 * const extent,
- void const * SKC_RESTRICT const elem_ptr,
- skc_uint const elem_count_clamped)
-{
- skc_extent_hw_dr_memcpy(extent->hw_dr,
- elem_ptr,
- extent->elem_size * extent->counter,
- extent->elem_size * elem_count_clamped);
-}
-
-//
-//
-//
-
-struct skc_extent_hcw1_drN_unified
-{
- struct skc_extent_hw_dr * hw_dr; // mapped memory
- size_t elem_size;
- skc_uint elem_count;
- skc_uint counter;
-};
-
-//
-//
-//
-
-struct skc_extent_hcw1_drN_unified *
-skc_extent_hcw1_drN_unified_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count)
-{
- struct skc_extent_hcw1_drN_unified * extent;
-
- extent = skc_allocator_alloc_host(allocator,sizeof(*extent));
- extent->hw_dr = skc_extent_hw_dr_alloc(allocator,elem_size * elem_count);
- extent->elem_size = elem_size;
- extent->elem_count = elem_count;
- extent->counter = 0;
-
- return extent;
-}
-
-void
-skc_extent_hcw1_drN_unified_free(struct skc_allocator * const allocator,
- struct skc_extent_hcw1_drN_unified * const extent)
-{
- skc_extent_hw_dr_free (allocator,extent->hw_dr);
- skc_allocator_free_host(allocator,extent);
-}
-
-void
-skc_extent_hcw1_drN_unified_map(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_drN_unified * const extent)
-{
- skc_extent_hw_dr_map(cq,extent->hw_dr);
-}
-
-
-void
-skc_extent_hcw1_drN_unified_unmap(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_drN_unified * const extent)
-{
- skc_extent_hw_dr_unmap(cq,extent->hw_dr);
-}
-
-void
-skc_extent_hcw1_drN_unified_reset(struct skc_extent_hcw1_drN_unified * const extent)
-{
- extent->counter = 0;
-}
-
-skc_bool
-skc_extent_hcw1_drN_unified_is_full(struct skc_extent_hcw1_drN_unified const * const extent)
-{
- return (extent->counter == extent->elem_count);
-}
-
-
-skc_uint
-skc_extent_hcw1_drN_unified_rem(struct skc_extent_hcw1_drN_unified * const extent)
-{
- return extent->elem_count - extent->counter;
-}
-
-
-void
-skc_extent_hcw1_drN_unified_append(struct skc_extent_hcw1_drN_unified * const extent,
- void const * SKC_RESTRICT const elem_ptr,
- skc_uint const elem_count_clamped)
-{
- skc_extent_hw_dr_memcpy(extent->hw_dr,
- elem_ptr,
- extent->elem_size * extent->counter,
- extent->elem_size * elem_count_clamped);
-}
-
-//
-//
-//
-
-struct skc_id_pool_hp *
-skc_id_pool_hp_alloc(struct skc_allocator * const allocator,
- skc_uint const count)
-{
- return NULL;
-}
-
-void
-skc_id_pool_hp_free(struct skc_allocator * const allocator,
- struct skc_id_pool_hp * const extent)
-{
- ;
-}
-
-void
-skc_id_pool_hp_acquire(struct skc_id_pool_hp * const extent,
- skc_uint * const id)
-{
- ;
-}
-
-void
-skc_id_pool_hp_release_1(struct skc_id_pool_hp * const extent,
- skc_uint const id)
-{
- ;
-}
-
-void
-skc_id_pool_hp_release_n(struct skc_id_pool_hp * const extent,
- skc_uint const * const id,
- skc_uint const count)
-{
- ;
-}
-
-//
-//
-//
-
-struct skc_block_pool_dprw *
-skc_block_pool_dprw_alloc(struct skc_allocator * const allocator,
- union skc_ring * const ring_d,
- skc_uint const block_size,
- skc_uint const block_count)
-{
- return NULL;
-}
-
-void
-skc_block_pool_dprw_free(struct skc_allocator * const allocator,
- struct skc_block_pool_dprw * const extent)
-{
- ;
-}
-
-//
-//
-//
-
-struct skc_extent_hgw1_drN *
-skc_extent_hgw1_drN_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count)
-{
- return NULL;
-}
-
-void
-skc_extent_hgw1_drN_free(struct skc_allocator * const allocator,
- struct skc_extent_hgw1_drN * const extent)
-{
- ;
-}
-
-void
-skc_extent_hgw1_drN_reset(struct skc_extent_hgw1_drN * const extent)
-{
- ;
-}
-
-void
-skc_extent_hgw1_drN_snap(struct skc_command_queue * const cq,
- struct skc_extent_hgw1_drN const * const extent)
-{
- ;
-}
-
-//
-//
-//
-
-#if 0
-
-//
-//
-//
-
-struct skc_block_pool_hp_drw *
-skc_block_pool_hp_drw_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count)
-{
- return NULL;
-}
-
-void
-skc_block_pool_hp_drw_free(struct skc_allocator * const allocator,
- struct skc_block_pool_hp_drw * const extent)
-{
- ;
-}
-
-//
-//
-//
-
-#endif
-
-//
-//
-//
diff --git a/src/compute/skc/cl_20/extent.h b/src/compute/skc/cl_20/extent.h
deleted file mode 100644
index 2993968a50..0000000000
--- a/src/compute/skc/cl_20/extent.h
+++ /dev/null
@@ -1,390 +0,0 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-#pragma once
-
-//
-//
-//
-
-#include "skc.h"
-#include "allocator.h"
-
-//
-// EXTENT TYPES
-//
-// Classification of operations on allocated GPU memory
-//
-// h = host
-// d = device
-//
-// c = append using non-atomic incremented count
-// x = append using atomically incremented index
-// p = allocated from pool of indices
-// g = gathered by pull kernel
-//
-// w1 = write once
-// wN = write many
-//
-// r1 = read once
-// rN = read many
-//
-// rw = read/write many
-//
-// host<>device memory model
-// +--------------------+--------------------+
-// extent type | split | shared | examples
-// ---------------------+--------------------+--------------------+--------------------
-// | | |
-// extent_atomic | device+mapped | device+mapped | atomically op'd device extent + read-only host snapshot
-// | | |
-// extent_dxrw | device | device | ttsk_array, ttpk_array, ttck_array, *_offsets
-// extent_hcw1_dr1 | mapped | mapped | command_queue, buffer
-// extent_hcrw | host | host | queue
-// | | |
-// ---------------------+--------------------+--------------------+--------------------
-// | | |
-// extent_hcw1_drN | memcpy'd | mapped | stack_transforms, stack_stroke_props
-// extent_hgw1_drN | scatter/gather | mapped | layer_props
-// | | |
-// block_pool_dprw | device | device | ttsb_pool, ttpb_pool
-// block_pool_hp_drw | device | device | raster_pool
-// | | |
-// ---------------------+--------------------+--------------------+--------------------
-// | | |
-// block_pool_hp_drw | block_pool_hp_drw | block_pool_hp_drw | path_block_pool
-// staging buffer | extent_hw_dr | -- |
-// | | |
-//
-
-struct skc_extent_hrw;
-struct skc_extent_drw;
-
-struct skc_extent_hrw_drN;
-struct skc_extent_hw1_drN;
-struct skc_extent_hrN_drw;
-
-struct skc_extent_atomic;
-
-struct skc_extent_hcrw;
-struct skc_extent_dxrw;
-
-struct skc_block_pool_dprw;
-
-struct skc_id_pool_hp;
-
-struct skc_extent_hcw1_dr1;
-struct skc_extent_hcw1_drN;
-struct skc_extent_hgw1_drN;
-
-//
-//
-//
-
-void *
-skc_extent_hrw_drN_get_hrw(struct skc_extent_hrw_drN * extent);
-
-void *
-skc_extent_hw1_drN_get_hw1(struct skc_extent_hw1_drN * extent);
-
-//
-//
-//
-
-struct skc_extent_hrw *
-skc_extent_hrw_alloc(struct skc_allocator * const allocator,
- size_t const size);
-
-void
-skc_extent_hrw_free(struct skc_allocator * const allocator,
- struct skc_extent_hrw * const extent);
-
-void *
-skc_extent_hrw_get_hrw(struct skc_extent_hrw * extent);
-
-//
-//
-//
-
-struct skc_extent_drw *
-skc_extent_drw_alloc(struct skc_allocator * const allocator,
- size_t const size);
-
-void
-skc_extent_drw_free(struct skc_allocator * const allocator,
- struct skc_extent_drw * const extent);
-
-void
-skc_extent_drw_fill(struct skc_command_queue * const cq,
- struct skc_extent_drw * const extent,
- void const * const pattern,
- size_t const pattern_size,
- size_t const size);
-
-//
-//
-//
-
-struct skc_extent_hw_dr *
-skc_extent_hw_dr_alloc(struct skc_allocator * const allocator,
- size_t const size);
-
-void
-skc_extent_hw_dr_free(struct skc_allocator * const allocator,
- struct skc_extent_hw_dr * const extent);
-
-void
-skc_extent_hw_dr_map(struct skc_command_queue * const cq,
- struct skc_extent_hw_dr * const extent);
-
-void
-skc_extent_hw_dr_unmap(struct skc_command_queue * const cq,
- struct skc_extent_hw_dr * const extent);
-
-void
-skc_extent_hw_dr_memcpy(struct skc_extent_hw_dr * const extent,
- void const * SKC_RESTRICT const src,
- size_t const offset,
- size_t const size);
-//
-//
-//
-
-struct skc_extent_hr_drw *
-skc_extent_hr_drw_alloc(struct skc_allocator * const allocator,
- size_t const size);
-
-void
-skc_extent_hr_drw_free(struct skc_allocator * const allocator,
- struct skc_extent_hr_drw * const extent);
-
-void
-skc_extent_hr_drw_snap(struct skc_command_queue * const cq,
- struct skc_extent_hr_drw * const extent,
- size_t const size);
-
-void
-skc_extent_hr_drw_fill(struct skc_command_queue * const cq,
- struct skc_extent_hr_drw * const extent,
- void const * const pattern,
- size_t const pattern_size,
- size_t const size);
-
-//
-//
-//
-
-struct skc_extent_atomic *
-skc_extent_atomic_alloc(struct skc_allocator * const allocator,
- size_t const size);
-
-void
-skc_extent_atomic_free(struct skc_allocator * const allocator,
- struct skc_extent_atomic * const extent);
-
-void
-skc_extent_atomic_snap(struct skc_command_queue * const cq,
- struct skc_extent_atomic const * const extent);
-
-void
-skc_extent_atomic_zero(struct skc_command_queue * const cq,
- struct skc_extent_atomic const * const extent);
-
-//
-//
-//
-
-
-struct skc_extent_dxrw *
-skc_extent_dxrw_alloc(struct skc_allocator * const allocator,
- size_t const elem_size,
- skc_uint const elem_count,
- struct skc_extent_atomic * const atomic,
- size_t const atomic_offset);
-
-void
-skc_extent_dxrw_free(struct skc_allocator * const allocator,
- struct skc_extent_dxrw * const extent);
-
-//
-//
-//
-
-struct skc_extent_hcrw *
-skc_extent_hcrw_alloc(struct skc_allocator * const allocator,
- size_t const elem_size,
- skc_uint const elem_count);
-
-void
-skc_extent_hcrw_free(struct skc_allocator * const allocator,
- struct skc_extent_hcrw * const extent);
-
-void
-skc_extent_hcrw_reset(struct skc_extent_hcrw * const extent);
-
-skc_bool
-skc_extent_hcrw_is_full(struct skc_extent_hcrw const * const extent);
-
-//
-//
-//
-
-struct skc_extent_hcw1_dr1 *
-skc_extent_hcw1_dr1_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count);
-
-void
-skc_extent_hcw1_dr1_free(struct skc_allocator * const allocator,
- struct skc_extent_hcw1_dr1 * const extent);
-
-void
-skc_extent_hcw1_dr1_map(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_dr1 * const extent);
-
-void
-skc_extent_hcw1_dr1_unmap(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_dr1 * const extent);
-
-void
-skc_extent_hcw1_dr1_reset(struct skc_extent_hcw1_dr1 * const extent);
-
-skc_bool
-skc_extent_hcw1_dr1_is_full(struct skc_extent_hcw1_dr1 const * const extent);
-
-skc_uint
-skc_extent_hcw1_dr1_rem(struct skc_extent_hcw1_dr1 * const extent);
-
-void
-skc_extent_hcw1_dr1_append(struct skc_extent_hcw1_dr1 * const extent,
- void const * SKC_RESTRICT const elem_ptr,
- skc_uint const elem_count_clamped);
-
-//
-// Note: on a shared memory device this reuses the hcw1_dr1
-// implementation and unmaps the extent instead of copying
-//
-
-struct skc_extent_hcw1_drN_unified *
-skc_extent_hcw1_drN_unified_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count);
-
-void
-skc_extent_hcw1_drN_unified_free(struct skc_allocator * const allocator,
- struct skc_extent_hcw1_drN_unified * const extent);
-
-void
-skc_extent_hcw1_drN_unified_map(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_drN_unified * const extent);
-
-void
-skc_extent_hcw1_drN_unified_unmap(struct skc_command_queue * const cq,
- struct skc_extent_hcw1_drN_unified * const extent);
-
-void
-skc_extent_hcw1_drN_unified_reset(struct skc_extent_hcw1_drN_unified * const extent);
-
-skc_bool
-skc_extent_hcw1_drN_unified_is_full(struct skc_extent_hcw1_drN_unified const * const extent);
-
-skc_uint
-skc_extent_hcw1_drN_unified_rem(struct skc_extent_hcw1_drN_unified * const extent);
-
-void
-skc_extent_hcw1_drN_unified_append(struct skc_extent_hcw1_drN_unified * const extent,
- void const * SKC_RESTRICT const elem_ptr,
- skc_uint const elem_count_clamped);
-//
-//
-//
-
-struct skc_id_pool_hp *
-skc_id_pool_hp_alloc(struct skc_allocator * const allocator,
- skc_uint const count);
-
-void
-skc_id_pool_hp_free(struct skc_allocator * const allocator,
- struct skc_id_pool_hp * const extent);
-
-void
-skc_id_pool_hp_acquire(struct skc_id_pool_hp * const extent,
- skc_uint * const id);
-
-void
-skc_id_pool_hp_release_1(struct skc_id_pool_hp * const extent,
- skc_uint const id);
-
-void
-skc_id_pool_hp_release_n(struct skc_id_pool_hp * const extent,
- skc_uint const * const id,
- skc_uint const count);
-
-//
-//
-//
-
-struct skc_block_pool_dprw *
-skc_block_pool_dprw_alloc(struct skc_allocator * const allocator,
- union skc_ring * const ring_d,
- skc_uint const block_size,
- skc_uint const block_count);
-
-void
-skc_block_pool_dprw_free(struct skc_allocator * const allocator,
- struct skc_block_pool_dprw * const extent);
-
-//
-//
-//
-
-struct skc_extent_hgw1_drN_unified *
-skc_extent_hgw1_drN_unified_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count);
-
-void
-skc_extent_hgw1_drN_unified_free(struct skc_allocator * const allocator,
- struct skc_extent_hgw1_drN_unified * const extent);
-
-void
-skc_extent_hgw1_drN_unified_reset(struct skc_extent_hgw1_drN_unified * const extent);
-
-void
-skc_extent_hgw1_drN_unified_snap(struct skc_command_queue * const cq,
- struct skc_extent_hgw1_drN_unified const * const extent);
-
-//
-//
-//
-
-#if 0
-
-//
-//
-//
-
-struct skc_block_pool_hp_drw *
-skc_block_pool_hp_drw_alloc(struct skc_allocator * const allocator,
- skc_uint const elem_size,
- skc_uint const elem_count);
-
-void
-skc_block_pool_hp_drw_free(struct skc_allocator * const allocator,
- struct skc_block_pool_hp_drw * const extent);
-
-//
-//
-//
-
-#endif
-
-//
-//
-//
-
diff --git a/src/compute/skc/cl_20/ring_cl_svm_fine.cpp b/src/compute/skc/cl_20/ring_cl_svm_fine.cpp
deleted file mode 100644
index 9552c81f2d..0000000000
--- a/src/compute/skc/cl_20/ring_cl_svm_fine.cpp
+++ /dev/null
@@ -1,89 +0,0 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-// Fine-grained shared virtual memory ring
-//
-// There is limited support for C11 atomics in C compilers so
-// implement this module in C++11
-//
-
-extern "C" {
-
-#include "runtime.h"
-#include "ring_cl_svm_fine.h"
-
-}
-
-//
-//
-//
-
-#include <atomic>
-
-//
-//
-//
-
-union skc_ring
-{
- std::atomic<skc_uint> rw[2];
-
- struct {
- std::atomic<skc_uint> reads; // number of reads
- std::atomic<skc_uint> writes; // number of writes
- };
-};
-
-//
-//
-//
-
-union skc_ring *
-skc_ring_cl_svm_fine_alloc(struct skc_runtime_impl * const runtime_impl)
-{
- return (union skc_ring *)
- clSVMAlloc(runtime_impl->context,
- CL_MEM_READ_WRITE | CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS,
- sizeof(union skc_ring),
- 0);
-}
-
-void
-skc_ring_cl_svm_fine_init(union skc_ring * const ring, skc_uint writes)
-{
- ring->reads = ATOMIC_VAR_INIT(0);
- ring->writes = ATOMIC_VAR_INIT(writes);
-}
-
-void
-skc_ring_cl_svm_fine_free(struct skc_runtime_impl * const runtime_impl, union skc_ring * const ring)
-{
- clSVMFree(runtime_impl->context,ring);
-}
-
-//
-//
-//
-
-skc_uint
-skc_ring_cl_svm_fine_read(union skc_ring * const ring, skc_uint const n)
-{
- return atomic_fetch_add_explicit(&ring->reads,n,std::memory_order_relaxed);
-}
-
-skc_uint
-skc_ring_cl_svm_fine_write(union skc_ring * const ring, skc_uint const n)
-{
- return atomic_fetch_add_explicit(&ring->writes,n,std::memory_order_relaxed);
-}
-
-//
-//
-//
-
diff --git a/src/compute/skc/cl_20/ring_cl_svm_fine.h b/src/compute/skc/cl_20/ring_cl_svm_fine.h
deleted file mode 100644
index 65ff9f71f3..0000000000
--- a/src/compute/skc/cl_20/ring_cl_svm_fine.h
+++ /dev/null
@@ -1,46 +0,0 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-// Fine-grained shared virtual memory ring
-//
-
-#include "runtime.h"
-#include "types.h"
-
-//
-//
-//
-
-union skc_ring *
-skc_ring_cl_svm_fine_alloc(struct skc_runtime_impl * const runtime_impl);
-
-void
-skc_ring_cl_svm_fine_free(struct skc_runtime_impl * const runtime_impl, union skc_ring * const ring);
-
-//
-//
-//
-
-void
-skc_ring_cl_svm_fine_init(union skc_ring * const ring, skc_uint writes);
-
-//
-//
-//
-
-skc_uint
-skc_ring_cl_svm_fine_read(union skc_ring * const ring, skc_uint const n);
-
-skc_uint
-skc_ring_cl_svm_fine_write(union skc_ring * const ring, skc_uint const n);
-
-//
-//
-//
-
diff --git a/src/compute/skc/common.h b/src/compute/skc/common.h
index 618ba2242e..5ac42ab2dc 100644
--- a/src/compute/skc/common.h
+++ b/src/compute/skc/common.h
@@ -9,6 +9,8 @@
#ifndef SKC_COMMON_ONCE
#define SKC_COMMON_ONCE
+#include "types.h"
+
//
// structures common to both host and device -- placeholder until
// everything shakes out
diff --git a/src/compute/skc/main.c b/src/compute/skc/main.c
index 8833b0bb1c..8261f4bdf8 100644
--- a/src/compute/skc/main.c
+++ b/src/compute/skc/main.c
@@ -30,7 +30,7 @@
//
#include <CL/opencl.h>
-#include "interop.h"
+#include "platforms/cl_12/gl/interop.h"
//
//
@@ -49,7 +49,7 @@ skc_runtime_cl_12_debug(struct skc_context * const context);
//
//
-static
+static
void
is_render_complete(skc_surface_t surface,
skc_styling_t styling,
@@ -67,9 +67,9 @@ int
main(int argc, char** argv)
{
//
+ //
//
- //
- if (argc <= 1)
+ if (argc <= 1)
{
fprintf(stderr,"-- missing filename\n");
return EXIT_FAILURE; // no filename
@@ -110,7 +110,7 @@ main(int argc, char** argv)
CL_WGL_HDC_KHR, (cl_context_properties)hDC,
0
};
-
+
//
// create context
//
@@ -136,14 +136,14 @@ main(int argc, char** argv)
skc_raster_builder_t raster_builder;
err = skc_raster_builder_create(context,&raster_builder);
-
+
//
// create a composition
//
skc_composition_t composition;
err = skc_composition_create(context,&composition);
-
+
//
// create a styling instance
//
@@ -154,7 +154,7 @@ main(int argc, char** argv)
svg_doc_layer_count(svg_doc),
1000,
2 * 1024 * 1024);
-
+
//
// create a surface
//
@@ -191,7 +191,7 @@ main(int argc, char** argv)
skc_transform_stack_restore(ts,ts_save);
// decode layers -- places rasters
- svg_doc_layers_decode(svg_doc,rasters,composition,styling,true/*is_srgb*/);
+ svg_doc_layers_decode(svg_doc,rasters,composition,styling,true/*is_srgb*/);
// seal the composition
skc_composition_seal(composition);
@@ -244,7 +244,7 @@ main(int argc, char** argv)
// unseal the composition
skc_composition_unseal(composition,true);
}
-
+
//
// dispose of mundane resources
//
diff --git a/src/compute/skc/make_all.bat b/src/compute/skc/make_all.bat
deleted file mode 100644
index 4772cc73b4..0000000000
--- a/src/compute/skc/make_all.bat
+++ /dev/null
@@ -1,15 +0,0 @@
-@ECHO OFF
-
-CMD /C make_inl_cl.bat block_pool_init.cl
-CMD /C make_inl_cl.bat fills_expand.cl
-CMD /C make_inl_cl.bat paths_copy.cl
-CMD /C make_inl_cl.bat rasterize.cl
-CMD /C make_inl_cl.bat segment_ttrk.cl
-CMD /C make_inl_cl.bat rasters_alloc.cl
-CMD /C make_inl_cl.bat prefix.cl
-CMD /C make_inl_cl.bat place.cl
-CMD /C make_inl_cl.bat segment_ttck.cl
-CMD /C make_inl_cl.bat render.cl
-CMD /C make_inl_cl.bat paths_reclaim.cl
-CMD /C make_inl_cl.bat rasters_reclaim.cl
-
diff --git a/src/compute/skc/allocator_device_cl.c b/src/compute/skc/platforms/cl_12/allocator_device_cl.c
index aa44f36e87..aa44f36e87 100644
--- a/src/compute/skc/allocator_device_cl.c
+++ b/src/compute/skc/platforms/cl_12/allocator_device_cl.c
diff --git a/src/compute/skc/allocator_device_cl.h b/src/compute/skc/platforms/cl_12/allocator_device_cl.h
index 67d4e41398..67d4e41398 100644
--- a/src/compute/skc/allocator_device_cl.h
+++ b/src/compute/skc/platforms/cl_12/allocator_device_cl.h
diff --git a/src/compute/skc/atomic_cl.h b/src/compute/skc/platforms/cl_12/atomic_cl.h
index c196c36390..c196c36390 100644
--- a/src/compute/skc/atomic_cl.h
+++ b/src/compute/skc/platforms/cl_12/atomic_cl.h
diff --git a/src/compute/skc/block_pool_cl.h b/src/compute/skc/platforms/cl_12/block_pool_cl.h
index c88370919e..c88370919e 100644
--- a/src/compute/skc/block_pool_cl.h
+++ b/src/compute/skc/platforms/cl_12/block_pool_cl.h
diff --git a/src/compute/skc/block_pool_cl_12.h b/src/compute/skc/platforms/cl_12/block_pool_cl_12.h
index 6fa8a39ca0..6fa8a39ca0 100644
--- a/src/compute/skc/block_pool_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/block_pool_cl_12.h
diff --git a/src/compute/skc/composition_cl_12.c b/src/compute/skc/platforms/cl_12/composition_cl_12.c
index 7853564636..7853564636 100644
--- a/src/compute/skc/composition_cl_12.c
+++ b/src/compute/skc/platforms/cl_12/composition_cl_12.c
diff --git a/src/compute/skc/composition_cl_12.h b/src/compute/skc/platforms/cl_12/composition_cl_12.h
index 4f52090658..4f52090658 100644
--- a/src/compute/skc/composition_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/composition_cl_12.h
diff --git a/src/compute/skc/config_cl.h b/src/compute/skc/platforms/cl_12/config_cl.h
index 0172857b07..0172857b07 100644
--- a/src/compute/skc/config_cl.h
+++ b/src/compute/skc/platforms/cl_12/config_cl.h
diff --git a/src/compute/skc/cq_pool_cl.c b/src/compute/skc/platforms/cl_12/cq_pool_cl.c
index 80cfe34cf8..80cfe34cf8 100644
--- a/src/compute/skc/cq_pool_cl.c
+++ b/src/compute/skc/platforms/cl_12/cq_pool_cl.c
diff --git a/src/compute/skc/cq_pool_cl.h b/src/compute/skc/platforms/cl_12/cq_pool_cl.h
index 0cc73a2f82..0cc73a2f82 100644
--- a/src/compute/skc/cq_pool_cl.h
+++ b/src/compute/skc/platforms/cl_12/cq_pool_cl.h
diff --git a/src/compute/skc/device_cl_12.h b/src/compute/skc/platforms/cl_12/device_cl_12.h
index 637b61ae10..637b61ae10 100644
--- a/src/compute/skc/device_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/device_cl_12.h
diff --git a/src/compute/skc/export_cl_12.h b/src/compute/skc/platforms/cl_12/export_cl_12.h
index e577282791..e577282791 100644
--- a/src/compute/skc/export_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/export_cl_12.h
diff --git a/src/compute/skc/extent_cl_12.c b/src/compute/skc/platforms/cl_12/extent_cl_12.c
index 73676d8063..73676d8063 100644
--- a/src/compute/skc/extent_cl_12.c
+++ b/src/compute/skc/platforms/cl_12/extent_cl_12.c
diff --git a/src/compute/skc/extent_cl_12.h b/src/compute/skc/platforms/cl_12/extent_cl_12.h
index 47ba951bb3..47ba951bb3 100644
--- a/src/compute/skc/extent_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/extent_cl_12.h
diff --git a/src/compute/skc/extent_cl_12_unified.c b/src/compute/skc/platforms/cl_12/extent_cl_12_unified.c
index 69c669ad54..69c669ad54 100644
--- a/src/compute/skc/extent_cl_12_unified.c
+++ b/src/compute/skc/platforms/cl_12/extent_cl_12_unified.c
diff --git a/src/compute/skc/interop.c b/src/compute/skc/platforms/cl_12/gl/interop.c
index 6697bb7e83..6697bb7e83 100644
--- a/src/compute/skc/interop.c
+++ b/src/compute/skc/platforms/cl_12/gl/interop.c
diff --git a/src/compute/skc/interop.h b/src/compute/skc/platforms/cl_12/gl/interop.h
index 112d365764..112d365764 100644
--- a/src/compute/skc/interop.h
+++ b/src/compute/skc/platforms/cl_12/gl/interop.h
diff --git a/src/compute/skc/handle_pool_cl_12.c b/src/compute/skc/platforms/cl_12/handle_pool_cl_12.c
index 65288c3656..65288c3656 100644
--- a/src/compute/skc/handle_pool_cl_12.c
+++ b/src/compute/skc/platforms/cl_12/handle_pool_cl_12.c
diff --git a/src/compute/skc/handle_pool_cl_12.h b/src/compute/skc/platforms/cl_12/handle_pool_cl_12.h
index 4fefae3552..4fefae3552 100644
--- a/src/compute/skc/handle_pool_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/handle_pool_cl_12.h
diff --git a/src/compute/skc/block_pool_init.cl b/src/compute/skc/platforms/cl_12/kernels/block_pool_init.cl
index 023dff44cf..726b0a7907 100644
--- a/src/compute/skc/block_pool_init.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/block_pool_init.cl
@@ -1,64 +1,64 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-
-//
-// BEST TO RUN THESE ON AN OUT-OF-ORDER CQ
-//
-
-__kernel
-SKC_BP_INIT_IDS_KERNEL_ATTRIBS
-void
-skc_kernel_block_pool_init_ids(__global uint * const ids, uint const bp_size)
-{
- uint const gid = get_global_id(0);
-
- //
- // FIXME -- TUNE FOR ARCH -- evaluate if it's much faster to
- // accomplish this with fewer threads and using either IPC and/or
- // vector stores -- it should be on certain architectures!
- //
-
- //
- // initialize pool with sequence
- //
- if (gid < bp_size)
- ids[gid] = gid * SKC_DEVICE_SUBBLOCKS_PER_BLOCK;
-}
-
-//
-//
-//
-
-__kernel
-SKC_BP_INIT_ATOMICS_KERNEL_ATTRIBS
-void
-skc_kernel_block_pool_init_atomics(__global uint * const bp_atomics, uint const bp_size)
-{
- // the version test is to squelch a bug with the Intel OpenCL CPU
- // compiler declaring it supports the cl_intel_subgroups extension
-#if defined(cl_intel_subgroups) || defined (cl_khr_subgroups)
- uint const tid = get_sub_group_local_id();
-#else
- uint const tid = get_local_id(0);
-#endif
-
- //
- // launch two threads and store [ 0, bp_size ]
- //
- bp_atomics[tid] = tid * bp_size;
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "device_cl_12.h"
+
+//
+// BEST TO RUN THESE ON AN OUT-OF-ORDER CQ
+//
+
+__kernel
+SKC_BP_INIT_IDS_KERNEL_ATTRIBS
+void
+skc_kernel_block_pool_init_ids(__global uint * const ids, uint const bp_size)
+{
+ uint const gid = get_global_id(0);
+
+ //
+ // FIXME -- TUNE FOR ARCH -- evaluate if it's much faster to
+ // accomplish this with fewer threads and using either IPC and/or
+ // vector stores -- it should be on certain architectures!
+ //
+
+ //
+ // initialize pool with sequence
+ //
+ if (gid < bp_size)
+ ids[gid] = gid * SKC_DEVICE_SUBBLOCKS_PER_BLOCK;
+}
+
+//
+//
+//
+
+__kernel
+SKC_BP_INIT_ATOMICS_KERNEL_ATTRIBS
+void
+skc_kernel_block_pool_init_atomics(__global uint * const bp_atomics, uint const bp_size)
+{
+ // the version test is to squelch a bug with the Intel OpenCL CPU
+ // compiler declaring it supports the cl_intel_subgroups extension
+#if defined(cl_intel_subgroups) || defined (cl_khr_subgroups)
+ uint const tid = get_sub_group_local_id();
+#else
+ uint const tid = get_local_id(0);
+#endif
+
+ //
+ // launch two threads and store [ 0, bp_size ]
+ //
+ bp_atomics[tid] = tid * bp_size;
+}
+
+//
+//
+//
diff --git a/src/compute/skc/device_cl_12_avx2.h b/src/compute/skc/platforms/cl_12/kernels/devices/avx2/device_cl_12_avx2.h
index e68579c0f7..e68579c0f7 100644
--- a/src/compute/skc/device_cl_12_avx2.h
+++ b/src/compute/skc/platforms/cl_12/kernels/devices/avx2/device_cl_12_avx2.h
diff --git a/src/compute/skc/device_cl_12_gen9.c b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/device_cl_12.c
index 5b4d9d2dd2..aebe8fdc1d 100644
--- a/src/compute/skc/device_cl_12_gen9.c
+++ b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/device_cl_12.c
@@ -11,13 +11,15 @@
#include <assert.h>
#include "common/cl/assert_cl.h"
+
+#include "tile.h"
+#include "raster.h"
#include "macros.h"
#include "config_cl.h"
#include "runtime_cl_12.h"
-#include "raster.h"
-#include "tile.h"
+#include "device_cl_12.h"
#include "hs/cl/hs_cl_launcher.h"
#include "hs/cl/gen9/hs_cl.h"
@@ -36,58 +38,52 @@
#if SKC_KERNEL_SPIRV
-#include "block_pool_init.pre.spv.inl"
-#include "paths_copy.pre.spv.inl"
-#include "fills_expand.pre.spv.inl"
-#include "rasterize.pre.spv.inl"
-#include "segment_ttrk.pre.spv.inl"
-#include "rasters_alloc.pre.spv.inl"
-#include "prefix.pre.spv.inl"
-#include "place.pre.spv.inl"
-#include "segment_ttck.pre.spv.inl"
-#include "render.pre.spv.inl"
-#include "paths_reclaim.pre.spv.inl"
-#include "rasters_reclaim.pre.spv.inl"
+#include "inl/block_pool_init.pre.spv.inl"
+#include "inl/paths_copy.pre.spv.inl"
+#include "inl/fills_expand.pre.spv.inl"
+#include "inl/rasterize.pre.spv.inl"
+#include "inl/segment_ttrk.pre.spv.inl"
+#include "inl/rasters_alloc.pre.spv.inl"
+#include "inl/prefix.pre.spv.inl"
+#include "inl/place.pre.spv.inl"
+#include "inl/segment_ttck.pre.spv.inl"
+#include "inl/render.pre.spv.inl"
+#include "inl/paths_reclaim.pre.spv.inl"
+#include "inl/rasters_reclaim.pre.spv.inl"
#elif SKC_KERNEL_BINARY
-#include "block_pool_init.pre.bin.inl"
-#include "paths_copy.pre.bin.inl"
-#include "fills_expand.pre.bin.inl"
-#include "rasterize.pre.bin.inl"
-#include "segment_ttrk.pre.bin.inl"
-#include "rasters_alloc.pre.bin.inl"
-#include "prefix.pre.bin.inl"
-#include "place.pre.bin.inl"
-#include "segment_ttck.pre.bin.inl"
-#include "render.pre.bin.inl"
-#include "paths_reclaim.pre.bin.inl"
-#include "rasters_reclaim.pre.bin.inl"
+#include "inl/block_pool_init.pre.bin.inl"
+#include "inl/paths_copy.pre.bin.inl"
+#include "inl/fills_expand.pre.bin.inl"
+#include "inl/rasterize.pre.bin.inl"
+#include "inl/segment_ttrk.pre.bin.inl"
+#include "inl/rasters_alloc.pre.bin.inl"
+#include "inl/prefix.pre.bin.inl"
+#include "inl/place.pre.bin.inl"
+#include "inl/segment_ttck.pre.bin.inl"
+#include "inl/render.pre.bin.inl"
+#include "inl/paths_reclaim.pre.bin.inl"
+#include "inl/rasters_reclaim.pre.bin.inl"
#elif SKC_KERNEL_SRC
-#include "block_pool_init.pre.src.inl"
-#include "paths_copy.pre.src.inl"
-#include "fills_expand.pre.src.inl"
-#include "rasterize.pre.src.inl"
-#include "segment_ttrk.pre.src.inl"
-#include "rasters_alloc.pre.src.inl"
-#include "prefix.pre.src.inl"
-#include "place.pre.src.inl"
-#include "segment_ttck.pre.src.inl"
-#include "render.pre.src.inl"
-#include "paths_reclaim.pre.src.inl"
-#include "rasters_reclaim.pre.src.inl"
+#include "inl/block_pool_init.pre.src.inl"
+#include "inl/paths_copy.pre.src.inl"
+#include "inl/fills_expand.pre.src.inl"
+#include "inl/rasterize.pre.src.inl"
+#include "inl/segment_ttrk.pre.src.inl"
+#include "inl/rasters_alloc.pre.src.inl"
+#include "inl/prefix.pre.src.inl"
+#include "inl/place.pre.src.inl"
+#include "inl/segment_ttck.pre.src.inl"
+#include "inl/render.pre.src.inl"
+#include "inl/paths_reclaim.pre.src.inl"
+#include "inl/rasters_reclaim.pre.src.inl"
#endif
//
-//
-//
-
-#include "device_cl_12_gen9.h"
-
-//
// FIXME -- THE CONFIG INITIALIZATION IS ONLY HERE TEMPORARILY
//
diff --git a/src/compute/skc/device_cl_12_gen9.h b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/device_cl_12.h
index dd69a845c2..0cac2261e7 100644
--- a/src/compute/skc/device_cl_12_gen9.h
+++ b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/device_cl_12.h
@@ -6,8 +6,8 @@
*
*/
-#ifndef SKC_ONCE_DEVICE_CL_12_GEN9_H
-#define SKC_ONCE_DEVICE_CL_12_GEN9_H
+#ifndef SKC_ONCE_DEVICE_CL_12_H
+#define SKC_ONCE_DEVICE_CL_12_H
//
// FIXME -- THERE ARE SOME DUPLICATED TYPEDEFS IN THIS FILE
@@ -18,6 +18,12 @@
#include "block.h"
//
+//
+//
+
+#include <hs/cl/gen9/hs_cl_macros.h>
+
+//
// HOW TO SELECT A SUBBLOCK AND BLOCK SIZES:
//
// 1) The subblock size should match the natural SIMT/SIMD width of
diff --git a/src/compute/skc/platforms/cl_12/kernels/devices/gen9/inl/make_all.bat b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/inl/make_all.bat
new file mode 100644
index 0000000000..3631271d9b
--- /dev/null
+++ b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/inl/make_all.bat
@@ -0,0 +1,15 @@
+@ECHO OFF
+
+CMD /C make_inl_cl.bat ..\..\..\block_pool_init.cl
+CMD /C make_inl_cl.bat ..\..\..\fills_expand.cl
+CMD /C make_inl_cl.bat ..\..\..\paths_copy.cl
+CMD /C make_inl_cl.bat ..\..\..\rasterize.cl
+CMD /C make_inl_cl.bat ..\..\..\segment_ttrk.cl
+CMD /C make_inl_cl.bat ..\..\..\rasters_alloc.cl
+CMD /C make_inl_cl.bat ..\..\..\prefix.cl
+CMD /C make_inl_cl.bat ..\..\..\place.cl
+CMD /C make_inl_cl.bat ..\..\..\segment_ttck.cl
+CMD /C make_inl_cl.bat ..\..\..\render.cl
+CMD /C make_inl_cl.bat ..\..\..\paths_reclaim.cl
+CMD /C make_inl_cl.bat ..\..\..\rasters_reclaim.cl
+
diff --git a/src/compute/skc/make_inl_cl.bat b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/inl/make_inl_cl.bat
index 777a5f3bc2..e3b0b37651 100644
--- a/src/compute/skc/make_inl_cl.bat
+++ b/src/compute/skc/platforms/cl_12/kernels/devices/gen9/inl/make_inl_cl.bat
@@ -1,5 +1,9 @@
@ECHO OFF
+::
+:: TARGET OPENCL 1.2
+::
+
SET OPENCL_STD=-cl-std=CL1.2
SET OPENCL_PRE=__OPENCL_C_VERSION__=120
@@ -26,9 +30,8 @@ SET IOC_IR_OPTS=%IOC_IR_OPTS_OPT%
::
::
-SET PRE_DIR=%~p1
-
-CD %PRE_DIR%
+REM SET PRE_DIR=%~p1
+REM CD %PRE_DIR%
SET PRE_CL=%~n1
SET PRE_CL=%PRE_CL%.pre.cl
@@ -43,11 +46,21 @@ SET PRE_BIN_INL=%~n1
SET PRE_BIN_INL=%PRE_BIN_INL%.pre.bin.inl
::
+::
+::
+
+SET DIR_CL12="%INTELOCLSDKROOT%include"
+SET DIR_COMPUTE=..\..\..\..\..\..\..
+SET DIR_SKC=%DIR_COMPUTE%\skc
+SET DIR_PLATFORM=%DIR_SKC%\platforms\cl_12
+SET DIR_DEVICE=..
+
+::
:: *.pre.cl
:: *.pre.src.inl
::
-CMD /C cl -I . -I .. -I "%INTELOCLSDKROOT%\include" -D %OPENCL_PRE% -EP %1 -P -Fi"%PRE_CL%"
+CMD /C cl -I %DIR_CL12% -I %DIR_DEVICE% -I %DIR_PLATFORM% -I %DIR_SKC% -I %DIR_COMPUTE% -D %OPENCL_PRE% -EP %1 -P -Fi"%PRE_CL%"
CMD /C clang-format -style=Mozilla -i %PRE_CL%
CMD /C dos2unix -q %PRE_CL%
CMD /C xxd -i %PRE_CL% %PRE_SRC_INL%
diff --git a/src/compute/skc/fills_expand.cl b/src/compute/skc/platforms/cl_12/kernels/fills_expand.cl
index b6f56794c5..39fee75f3d 100644
--- a/src/compute/skc/fills_expand.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/fills_expand.cl
@@ -1,309 +1,309 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "raster_builder_cl_12.h"
-#include "atomic_cl.h"
-#include "block.h"
-#include "path.h"
-#include "common.h"
-
-//
-//
-//
-
-#define SKC_FILLS_EXPAND_SUBGROUP_SIZE_MASK (SKC_FILLS_EXPAND_SUBGROUP_SIZE - 1)
-
-#define SKC_FILLS_EXPAND_ELEMS_PER_BLOCK (SKC_DEVICE_BLOCK_WORDS / SKC_FILLS_EXPAND_ELEM_WORDS)
-#define SKC_FILLS_EXPAND_ELEMS_PER_SUBBLOCK (SKC_DEVICE_SUBBLOCK_WORDS / SKC_FILLS_EXPAND_ELEM_WORDS)
-
-#define SKC_FILLS_EXPAND_ELEMS_PER_THREAD (SKC_FILLS_EXPAND_ELEMS_PER_BLOCK / SKC_FILLS_EXPAND_SUBGROUP_SIZE)
-
-//
-//
-//
-
-#define SKC_FILLS_EXPAND_X (SKC_DEVICE_BLOCK_WORDS / SKC_FILLS_EXPAND_SUBGROUP_SIZE)
-
-//
-//
-//
-
-#if ( SKC_FILLS_EXPAND_X == 1 )
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_1()
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 0
-
-#elif ( SKC_FILLS_EXPAND_X == 2 )
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_2()
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 1
-
-#elif ( SKC_FILLS_EXPAND_X == 4 )
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_4()
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 3
-
-#elif ( SKC_FILLS_EXPAND_X == 8 )
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_8()
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 7
-
-#elif ( SKC_FILLS_EXPAND_X == 16)
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_16()
-#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 15
-
-#else
-#error "MISSING SKC_FILLS_EXPAND_X"
-#endif
-
-//
-// Fill and rasterize cmds only differ in their first word semantics
-//
-
-union skc_cmd_expand
-{
- union skc_cmd_fill fill;
- union skc_cmd_rasterize rasterize;
-};
-
-//
-//
-//
-
-union skc_path_elem
-{
- skc_uint u32;
- skc_float f32;
-};
-
-//
-// COMPILE-TIME AND RUN-TIME MACROS
-//
-
-#define SKC_ELEM_IN_RANGE(X,I) \
- (skc_bool)SKC_GTE_MACRO(X,(I ) * SKC_FILLS_EXPAND_SUBGROUP_SIZE) && \
- (skc_bool)SKC_LT_MACRO(X,(I+1) * SKC_FILLS_EXPAND_SUBGROUP_SIZE)
-
-#define SKC_ELEM_GTE(X,I) \
- SKC_GTE_MACRO(X,(I+1) * SKC_FILLS_EXPAND_SUBGROUP_SIZE)
-
-//
-// FIXME -- slate these for replacement
-//
-
-#define SKC_BROADCAST(E,S,I) \
- sub_group_broadcast(E##I.u32,S - I * SKC_FILLS_EXPAND_SUBGROUP_SIZE)
-
-#define SKC_BROADCAST_LAST_HELPER(E,I) \
- sub_group_broadcast(E##I.u32,SKC_FILLS_EXPAND_SUBGROUP_SIZE - 1)
-
-#define SKC_BROADCAST_LAST(E,I) \
- SKC_BROADCAST_LAST_HELPER(E,I)
-
-//
-//
-//
-
-void
-skc_cmds_out_append(__global union skc_cmd_rasterize * const cmds_out,
- skc_uint * const out_idx,
- union skc_cmd_expand * const cmd,
- union skc_path_elem const e,
- skc_uint const e_idx)
-{
- //
- // FIXME -- we can append a large number of nodeword indices to a
- // local SMEM queue and flush when full. It may or may not be a
- // performance win on some architectures.
- //
- skc_bool const is_elem = SKC_TAGGED_BLOCK_ID_GET_TAG(e.u32) < SKC_BLOCK_ID_TAG_PATH_NEXT;
- skc_uint const offset = sub_group_scan_inclusive_add(is_elem ? 1 : 0);
-
- cmd->rasterize.nodeword = e_idx;
-
- if (is_elem) {
- cmds_out[*out_idx + offset] = cmd->rasterize;
- }
-
- *out_idx += sub_group_broadcast(offset,SKC_FILLS_EXPAND_SUBGROUP_SIZE-1);
-}
-
-//
-//
-//
-
-__kernel
-SKC_FILLS_EXPAND_KERNEL_ATTRIBS
-void
-skc_kernel_fills_expand(__global union skc_path_elem const * const blocks,
- __global skc_uint volatile * const atomics,
- __global skc_block_id_t const * const map,
- __global union skc_cmd_fill const * const cmds_in,
- __global union skc_cmd_rasterize * const cmds_out)
-{
- //
- // Need to harmonize the way we determine a subgroup's id. In this
- // kernel it's not as important because no local memory is being
- // used. Although the device/mask calc to determine subgroup and
- // lanes is still proper, we might want to make it clearer that
- // we're working with subgroups by using the subgroup API.
- //
- // every subgroup/simd that will work on the block loads the same command
- //
-#if (__OPENCL_VERSION__ < 200)
- skc_uint const cmd_stride = get_num_sub_groups();
-#else
- skc_uint const cmd_stride = get_enqueued_num_sub_groups(); // 2.0 supports non-uniform workgroups
-#endif
- skc_uint cmd_idx = get_group_id(0) * cmd_stride + get_sub_group_id();
-
- // load fill command -- we reuse y component
- union skc_cmd_expand cmd = { .fill = cmds_in[cmd_idx] };
-
- // get the path header block from the map
- skc_block_id_t id = map[cmd.fill.path];
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("expand[%u] = %u\n",cmd_idx,id);
-#endif
-
- //
- // blindly load all of the head elements into registers
- //
- skc_uint head_idx = id * SKC_FILLS_EXPAND_ELEMS_PER_SUBBLOCK + get_sub_group_local_id();
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- union skc_path_elem h##I = blocks[head_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE];
-
- SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
-
- //
- // pick out count.nodes and count.prims from the header
- //
- skc_uint count_nodes, count_prims;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_NODES,I)) { \
- count_nodes = SKC_BROADCAST(h,SKC_PATH_HEAD_OFFSET_NODES,I); \
- } \
- if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_PRIMS,I)) { \
- count_prims = SKC_BROADCAST(h,SKC_PATH_HEAD_OFFSET_PRIMS,I); \
- }
-
- SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
-
- //
- // debug of path head
- //
-#if 0
- skc_uint count_blocks;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_BLOCKS,I)) { \
- count_blocks = SKC_BROADCAST(h,SKC_PATH_HEAD_OFFSET_BLOCKS,I); \
- }
-
- SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
-
- if (get_sub_group_local_id() == 0)
- printf("path header = { %5u, %5u, %5u }\n",
- count_blocks,count_nodes,count_prims);
-#endif
-
- //
- // acquire slots in the expanded cmd extent
- //
- // decrement prim_idx by 1 so we can use inclusive warp scan later
- //
- skc_uint out_idx = 0;
-
- if (get_sub_group_local_id() == 0) {
- out_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_SUBGROUP
- (atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_CMDS,count_prims) - 1;
- }
-
- out_idx = sub_group_broadcast(out_idx,0);
-
- //
- // process ids trailing the path header
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_ELEM_GTE(SKC_PATH_HEAD_OFFSET_IDS,I)) { \
- if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_IDS,I)) { \
- if (get_sub_group_local_id() + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE < SKC_PATH_HEAD_OFFSET_IDS) { \
- h##I.u32 = SKC_TAGGED_BLOCK_ID_INVALID; \
- } \
- } \
- skc_cmds_out_append(cmds_out,&out_idx,&cmd,h##I, \
- head_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE); \
- }
-
- SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
-
- //
- // we're done if it was just the header
- //
- if (count_nodes == 0)
- return;
-
- //
- // otherwise, process the nodes
- //
-
- //
- // get id of next node
- //
- id = SKC_TAGGED_BLOCK_ID_GET_ID(SKC_BROADCAST_LAST(h,SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST));
-
- //
- // the following blocks are nodes
- //
- while (true)
- {
- // get index of each element
- skc_uint node_idx = id * SKC_FILLS_EXPAND_ELEMS_PER_SUBBLOCK + get_sub_group_local_id();
-
- //
- // blindly load all of the node elements into registers
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- union skc_path_elem const n##I = blocks[node_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE];
-
- SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
-
- //
- // append all valid ids
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- skc_cmds_out_append(cmds_out,&out_idx,&cmd,n##I, \
- node_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE);
-
- SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
-
- // any more nodes?
- if (--count_nodes == 0)
- return;
-
- //
- // get id of next node
- //
- id = SKC_TAGGED_BLOCK_ID_GET_ID(SKC_BROADCAST_LAST(n,SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST));
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "block.h"
+#include "path.h"
+#include "common.h"
+#include "atomic_cl.h"
+#include "raster_builder_cl_12.h"
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#define SKC_FILLS_EXPAND_SUBGROUP_SIZE_MASK (SKC_FILLS_EXPAND_SUBGROUP_SIZE - 1)
+
+#define SKC_FILLS_EXPAND_ELEMS_PER_BLOCK (SKC_DEVICE_BLOCK_WORDS / SKC_FILLS_EXPAND_ELEM_WORDS)
+#define SKC_FILLS_EXPAND_ELEMS_PER_SUBBLOCK (SKC_DEVICE_SUBBLOCK_WORDS / SKC_FILLS_EXPAND_ELEM_WORDS)
+
+#define SKC_FILLS_EXPAND_ELEMS_PER_THREAD (SKC_FILLS_EXPAND_ELEMS_PER_BLOCK / SKC_FILLS_EXPAND_SUBGROUP_SIZE)
+
+//
+//
+//
+
+#define SKC_FILLS_EXPAND_X (SKC_DEVICE_BLOCK_WORDS / SKC_FILLS_EXPAND_SUBGROUP_SIZE)
+
+//
+//
+//
+
+#if ( SKC_FILLS_EXPAND_X == 1 )
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_1()
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 0
+
+#elif ( SKC_FILLS_EXPAND_X == 2 )
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_2()
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 1
+
+#elif ( SKC_FILLS_EXPAND_X == 4 )
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_4()
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 3
+
+#elif ( SKC_FILLS_EXPAND_X == 8 )
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_8()
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 7
+
+#elif ( SKC_FILLS_EXPAND_X == 16)
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND() SKC_EXPAND_16()
+#define SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST 15
+
+#else
+#error "MISSING SKC_FILLS_EXPAND_X"
+#endif
+
+//
+// Fill and rasterize cmds only differ in their first word semantics
+//
+
+union skc_cmd_expand
+{
+ union skc_cmd_fill fill;
+ union skc_cmd_rasterize rasterize;
+};
+
+//
+//
+//
+
+union skc_path_elem
+{
+ skc_uint u32;
+ skc_float f32;
+};
+
+//
+// COMPILE-TIME AND RUN-TIME MACROS
+//
+
+#define SKC_ELEM_IN_RANGE(X,I) \
+ (skc_bool)SKC_GTE_MACRO(X,(I ) * SKC_FILLS_EXPAND_SUBGROUP_SIZE) && \
+ (skc_bool)SKC_LT_MACRO(X,(I+1) * SKC_FILLS_EXPAND_SUBGROUP_SIZE)
+
+#define SKC_ELEM_GTE(X,I) \
+ SKC_GTE_MACRO(X,(I+1) * SKC_FILLS_EXPAND_SUBGROUP_SIZE)
+
+//
+// FIXME -- slate these for replacement
+//
+
+#define SKC_BROADCAST(E,S,I) \
+ sub_group_broadcast(E##I.u32,S - I * SKC_FILLS_EXPAND_SUBGROUP_SIZE)
+
+#define SKC_BROADCAST_LAST_HELPER(E,I) \
+ sub_group_broadcast(E##I.u32,SKC_FILLS_EXPAND_SUBGROUP_SIZE - 1)
+
+#define SKC_BROADCAST_LAST(E,I) \
+ SKC_BROADCAST_LAST_HELPER(E,I)
+
+//
+//
+//
+
+void
+skc_cmds_out_append(__global union skc_cmd_rasterize * const cmds_out,
+ skc_uint * const out_idx,
+ union skc_cmd_expand * const cmd,
+ union skc_path_elem const e,
+ skc_uint const e_idx)
+{
+ //
+ // FIXME -- we can append a large number of nodeword indices to a
+ // local SMEM queue and flush when full. It may or may not be a
+ // performance win on some architectures.
+ //
+ skc_bool const is_elem = SKC_TAGGED_BLOCK_ID_GET_TAG(e.u32) < SKC_BLOCK_ID_TAG_PATH_NEXT;
+ skc_uint const offset = sub_group_scan_inclusive_add(is_elem ? 1 : 0);
+
+ cmd->rasterize.nodeword = e_idx;
+
+ if (is_elem) {
+ cmds_out[*out_idx + offset] = cmd->rasterize;
+ }
+
+ *out_idx += sub_group_broadcast(offset,SKC_FILLS_EXPAND_SUBGROUP_SIZE-1);
+}
+
+//
+//
+//
+
+__kernel
+SKC_FILLS_EXPAND_KERNEL_ATTRIBS
+void
+skc_kernel_fills_expand(__global union skc_path_elem const * const blocks,
+ __global skc_uint volatile * const atomics,
+ __global skc_block_id_t const * const map,
+ __global union skc_cmd_fill const * const cmds_in,
+ __global union skc_cmd_rasterize * const cmds_out)
+{
+ //
+ // Need to harmonize the way we determine a subgroup's id. In this
+ // kernel it's not as important because no local memory is being
+ // used. Although the device/mask calc to determine subgroup and
+ // lanes is still proper, we might want to make it clearer that
+ // we're working with subgroups by using the subgroup API.
+ //
+ // every subgroup/simd that will work on the block loads the same command
+ //
+#if (__OPENCL_VERSION__ < 200)
+ skc_uint const cmd_stride = get_num_sub_groups();
+#else
+ skc_uint const cmd_stride = get_enqueued_num_sub_groups(); // 2.0 supports non-uniform workgroups
+#endif
+ skc_uint cmd_idx = get_group_id(0) * cmd_stride + get_sub_group_id();
+
+ // load fill command -- we reuse y component
+ union skc_cmd_expand cmd = { .fill = cmds_in[cmd_idx] };
+
+ // get the path header block from the map
+ skc_block_id_t id = map[cmd.fill.path];
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("expand[%u] = %u\n",cmd_idx,id);
+#endif
+
+ //
+ // blindly load all of the head elements into registers
+ //
+ skc_uint head_idx = id * SKC_FILLS_EXPAND_ELEMS_PER_SUBBLOCK + get_sub_group_local_id();
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ union skc_path_elem h##I = blocks[head_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE];
+
+ SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
+
+ //
+ // pick out count.nodes and count.prims from the header
+ //
+ skc_uint count_nodes, count_prims;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_NODES,I)) { \
+ count_nodes = SKC_BROADCAST(h,SKC_PATH_HEAD_OFFSET_NODES,I); \
+ } \
+ if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_PRIMS,I)) { \
+ count_prims = SKC_BROADCAST(h,SKC_PATH_HEAD_OFFSET_PRIMS,I); \
+ }
+
+ SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
+
+ //
+ // debug of path head
+ //
+#if 0
+ skc_uint count_blocks;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_BLOCKS,I)) { \
+ count_blocks = SKC_BROADCAST(h,SKC_PATH_HEAD_OFFSET_BLOCKS,I); \
+ }
+
+ SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
+
+ if (get_sub_group_local_id() == 0)
+ printf("path header = { %5u, %5u, %5u }\n",
+ count_blocks,count_nodes,count_prims);
+#endif
+
+ //
+ // acquire slots in the expanded cmd extent
+ //
+ // decrement prim_idx by 1 so we can use inclusive warp scan later
+ //
+ skc_uint out_idx = 0;
+
+ if (get_sub_group_local_id() == 0) {
+ out_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_SUBGROUP
+ (atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_CMDS,count_prims) - 1;
+ }
+
+ out_idx = sub_group_broadcast(out_idx,0);
+
+ //
+ // process ids trailing the path header
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_ELEM_GTE(SKC_PATH_HEAD_OFFSET_IDS,I)) { \
+ if (SKC_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_IDS,I)) { \
+ if (get_sub_group_local_id() + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE < SKC_PATH_HEAD_OFFSET_IDS) { \
+ h##I.u32 = SKC_TAGGED_BLOCK_ID_INVALID; \
+ } \
+ } \
+ skc_cmds_out_append(cmds_out,&out_idx,&cmd,h##I, \
+ head_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE); \
+ }
+
+ SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
+
+ //
+ // we're done if it was just the header
+ //
+ if (count_nodes == 0)
+ return;
+
+ //
+ // otherwise, process the nodes
+ //
+
+ //
+ // get id of next node
+ //
+ id = SKC_TAGGED_BLOCK_ID_GET_ID(SKC_BROADCAST_LAST(h,SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST));
+
+ //
+ // the following blocks are nodes
+ //
+ while (true)
+ {
+ // get index of each element
+ skc_uint node_idx = id * SKC_FILLS_EXPAND_ELEMS_PER_SUBBLOCK + get_sub_group_local_id();
+
+ //
+ // blindly load all of the node elements into registers
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ union skc_path_elem const n##I = blocks[node_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE];
+
+ SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
+
+ //
+ // append all valid ids
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ skc_cmds_out_append(cmds_out,&out_idx,&cmd,n##I, \
+ node_idx + I * SKC_FILLS_EXPAND_SUBGROUP_SIZE);
+
+ SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND();
+
+ // any more nodes?
+ if (--count_nodes == 0)
+ return;
+
+ //
+ // get id of next node
+ //
+ id = SKC_TAGGED_BLOCK_ID_GET_ID(SKC_BROADCAST_LAST(n,SKC_FILLS_EXPAND_PATH_BLOCK_EXPAND_I_LAST));
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/paths_copy.cl b/src/compute/skc/platforms/cl_12/kernels/paths_copy.cl
index 06cc393c75..302ea14af2 100644
--- a/src/compute/skc/paths_copy.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/paths_copy.cl
@@ -1,543 +1,543 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "path_builder_cl_12.h"
-#include "path.h"
-#include "block_pool_cl.h"
-
-//
-//
-//
-
-#if 0
-
-//
-// SIMD AVX2
-//
-
-#define SKC_PATHS_COPY_WORDS_PER_ELEM 8
-#define SKC_PATHS_COPY_SUBGROUP_SIZE 1
-#define SKC_PATHS_COPY_KERNEL_ATTRIBUTES
-
-typedef skc_uint8 skc_paths_copy_elem;
-typedef skc_uint8 skc_pb_idx_v;
-
-#define SKC_PATHS_COPY_ELEM_EXPAND() SKC_EXPAND_8()
-
-#define SKC_IS_NOT_PATH_HEAD(sg,I) ((sg) + I >= SKC_PATH_HEAD_WORDS)
-
-#endif
-
-//
-//
-//
-
-#define SKC_PATHS_COPY_SUBGROUP_SIZE_MASK (SKC_PATHS_COPY_SUBGROUP_SIZE - 1)
-#define SKC_PATHS_COPY_ELEMS_PER_BLOCK (SKC_DEVICE_BLOCK_WORDS / SKC_PATHS_COPY_ELEM_WORDS)
-#define SKC_PATHS_COPY_ELEMS_PER_SUBBLOCK (SKC_DEVICE_SUBBLOCK_WORDS / SKC_PATHS_COPY_ELEM_WORDS)
-#define SKC_PATHS_COPY_ELEMS_PER_THREAD (SKC_PATHS_COPY_ELEMS_PER_BLOCK / SKC_PATHS_COPY_SUBGROUP_SIZE)
-
-// FIXME -- use SUBGROUP terminology everywhere
-#define SKC_PATHS_COPY_SUBGROUP_WORDS (SKC_PATHS_COPY_SUBGROUP_SIZE * SKC_PATHS_COPY_ELEM_WORDS)
-
-//
-//
-//
-
-#define SKC_PATHS_COPY_ELEMS_BEFORE_HEADER \
- (SKC_PATHS_COPY_SUBGROUP_SIZE * ((SKC_PATH_HEAD_WORDS / SKC_PATHS_COPY_ELEM_WORDS) / SKC_PATHS_COPY_SUBGROUP_WORDS))
-
-#define SKC_PATHS_COPY_ELEMS_INCLUDING_HEADER \
- (SKC_PATHS_COPY_SUBGROUP_SIZE * ((SKC_PATH_HEAD_WORDS + SKC_PATHS_COPY_SUBGROUP_WORDS - 1) / SKC_PATHS_COPY_SUBGROUP_WORDS))
-
-// #define SKC_PATHS_COPY_HEAD_ELEMS ((SKC_PATH_HEAD_WORDS + SKC_PATHS_COPY_ELEM_WORDS - 1) / SKC_PATHS_COPY_ELEM_WORDS)
-
-//
-//
-//
-
-//
-// BIT-FIELD EXTRACT/INSERT ARE NOT AVAILABLE IN OPENCL
-//
-
-#define SKC_CMD_PATHS_COPY_ONE_BITS (SKC_TAGGED_BLOCK_ID_BITS_TAG + SKC_DEVICE_SUBBLOCK_WORDS_LOG2)
-
-#define SKC_CMD_PATHS_COPY_ONE_MASK SKC_BITS_TO_MASK(SKC_CMD_PATHS_COPY_ONE_BITS)
-
-#define SKC_CMD_PATHS_COPY_ONE (1u << SKC_CMD_PATHS_COPY_ONE_BITS)
-
-#define SKC_CMD_PATHS_COPY_GET_TAG(ti) SKC_TAGGED_BLOCK_ID_GET_TAG(ti)
-
-#define SKC_CMD_PATHS_COPY_GET_ROLLING(ti) ((ti) >> SKC_CMD_PATHS_COPY_ONE_BITS)
-
-#define SKC_CMD_PATHS_COPY_UPDATE_ROLLING(ti,b) (((ti) & SKC_CMD_PATHS_COPY_ONE_MASK) | ((b) << SKC_TAGGED_BLOCK_ID_BITS_TAG))
-
-//
-//
-//
-
-skc_uint
-skc_sub_group_local_id()
-{
-#if SKC_PATHS_COPY_SUBGROUP_SIZE > 1
- return get_sub_group_local_id();
-#else
- return 0;
-#endif
-}
-
-//
-// convert an atomic read counter offset to a block id
-//
-
-skc_block_id_t
-skc_bp_off_to_id(__global skc_block_id_t const * const bp_ids,
- skc_uint const bp_idx_mask,
- skc_uint const bp_reads,
- skc_uint const bp_off)
-{
- skc_uint const bp_idx = (bp_reads + bp_off) & bp_idx_mask;
-
- return bp_ids[bp_idx];
-}
-
-//
-//
-//
-
-void
-skc_copy_segs(__global skc_paths_copy_elem * const bp_elems, // to
- skc_uint const bp_elems_idx,
- __global skc_paths_copy_elem const * const pb_elems, // from
- skc_uint const pb_elems_idx)
-{
- for (skc_uint ii=0; ii<SKC_PATHS_COPY_ELEMS_PER_BLOCK; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
- {
- (bp_elems+bp_elems_idx)[ii] = (pb_elems+pb_elems_idx)[ii];
- }
-
-#if 0
- //
- // NOTE THIS IS PRINTING 8 ROWS
- //
- printf("%5u : (%8u) : { { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",
- (skc_uint)get_global_id(0),pb_elems_idx,
- as_float((pb_elems+pb_elems_idx)[0*SKC_PATHS_COPY_SUBGROUP_SIZE]),
- as_float((pb_elems+pb_elems_idx)[1*SKC_PATHS_COPY_SUBGROUP_SIZE]),
- as_float((pb_elems+pb_elems_idx)[2*SKC_PATHS_COPY_SUBGROUP_SIZE]),
- as_float((pb_elems+pb_elems_idx)[3*SKC_PATHS_COPY_SUBGROUP_SIZE]));
- printf("%5u : (%8u) : { { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",
- (skc_uint)get_global_id(0),pb_elems_idx,
- as_float((pb_elems+pb_elems_idx)[4*SKC_PATHS_COPY_SUBGROUP_SIZE]),
- as_float((pb_elems+pb_elems_idx)[5*SKC_PATHS_COPY_SUBGROUP_SIZE]),
- as_float((pb_elems+pb_elems_idx)[6*SKC_PATHS_COPY_SUBGROUP_SIZE]),
- as_float((pb_elems+pb_elems_idx)[7*SKC_PATHS_COPY_SUBGROUP_SIZE]));
-#endif
-}
-
-//
-//
-//
-
-void
-skc_copy_node(__global skc_paths_copy_elem * const bp_elems, // to
- skc_uint const bp_elems_idx,
- __global skc_block_id_t const * const bp_ids,
- skc_uint const bp_reads,
- skc_uint const bp_idx_mask,
- __global skc_paths_copy_elem const * const pb_elems, // from
- skc_uint const pb_elems_idx,
- skc_uint const pb_rolling)
-{
- //
- // remap block id tags bp_elems the host-side rolling counter pb_elems a
- // device-side block pool id
- //
- for (skc_uint ii=0; ii<SKC_PATHS_COPY_ELEMS_PER_BLOCK; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
- {
- // load block_id_tag words
- skc_paths_copy_elem elem = (pb_elems + pb_elems_idx)[ii];
-
- // calculate ahead of time -- if elem was invalid then bp_idx is definitely invalid
- skc_pb_idx_v const bp_idx = (bp_reads + SKC_CMD_PATHS_COPY_GET_ROLLING(elem - pb_rolling)) & bp_idx_mask;
-
- // FIXME ^^^^^ THE IDX PROBABLY DOESN'T NEED TO BE SHIFTED TWICE AND WE CAN SAVE A FEW INSTRUCTIONS
-
- //
- // FIXME -- SIMD can be fully parallelized since a bp_ids[] load
- // will _always_ be safe as long as we don't use the loaded
- // value! So... fix UPDATE_ROLLING to be SIMD-friendly instead
- // of iterating over the vector components.
- //
-
- // only convert if original elem is not invalid
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (elem C != SKC_TAGGED_BLOCK_ID_INVALID) { \
- skc_block_id_t const b = bp_ids[bp_idx C]; \
- elem C = SKC_CMD_PATHS_COPY_UPDATE_ROLLING(elem C,b); \
- }
-
- // printf("%2u: < %8X, %8X, %8X >\n",ii,bp_idx,b,elem C);
-
- SKC_PATHS_COPY_ELEM_EXPAND();
-
- // store the elem back
- (bp_elems+bp_elems_idx)[ii] = elem;
- }
-}
-
-//
-//
-//
-
-void
-skc_host_map_update(__global skc_uint * const host_map,
- skc_uint const block,
- skc_paths_copy_elem const elem)
-{
- //
- // write first elem to map -- FIXME -- this is a little nasty
- // because it relies on the the host handle always being the first
- // word in the path header.
- //
- // OTOH, this is not unreasonable. The alternative is to have a
- // separate kernel initializing the map.
- //
-#if SKC_PATHS_COPY_SUBGROUP_SIZE > 1
- if (get_sub_group_local_id() == SKC_PATH_HEAD_OFFSET_HANDLE)
-#endif
- {
-#if SKC_PATHS_COPY_ELEM_WORDS == 1
- host_map[elem] = block;
-#if 0
- printf("[%u] = %u\n",elem,block);
-#endif
-#else
- host_map[elem.SKC_CONCAT(s,SKC_PATH_HEAD_OFFSET_HANDLE)] = block;
-#endif
- }
-}
-
-//
-//
-//
-
-void
-skc_copy_head(__global skc_uint * const host_map,
- skc_uint const block,
- __global skc_paths_copy_elem * const bp_elems, // to
- skc_uint const bp_elems_idx,
- __global skc_block_id_t const * const bp_ids,
- skc_uint const bp_reads,
- skc_uint const bp_idx_mask,
- __global skc_paths_copy_elem const * const pb_elems, // from
- skc_uint const pb_elems_idx,
- skc_uint const pb_rolling)
-{
- //
- // if there are more path header words than there are
- // threads-per-block then we can just copy the initial header words
- //
-#if ( SKC_PATHS_COPY_ELEMS_BEFORE_HEADER > 0 )
- for (skc_uint ii=0; ii<SKC_PATHS_COPY_ELEMS_BEFORE_HEADER; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
- {
- skc_paths_copy_elem const elem = (pb_elems+pb_elems_idx)[ii];
-
- (bp_elems+bp_elems_idx)[ii] = elem;
-
- if (ii == 0) {
- skc_host_map_update(host_map,block,elem);
- }
- }
-#endif
-
- //
- // this is similar to copy node but the first H words of the path
- // header are not modified and simply copied
- //
- for (skc_uint ii=SKC_PATHS_COPY_ELEMS_BEFORE_HEADER; ii<SKC_PATHS_COPY_ELEMS_INCLUDING_HEADER; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
- {
- skc_paths_copy_elem elem = (pb_elems+pb_elems_idx)[ii];
-
-#if ( SKC_PATHS_COPY_ELEMS_BEFORE_HEADER == 0 )
- if (ii == 0) {
- skc_host_map_update(host_map,block,elem);
- }
-#endif
- // calculate ahead of time -- if elem was invalid then bp_idx is definitely invalid
- skc_pb_idx_v const bp_idx = (bp_reads + SKC_CMD_PATHS_COPY_GET_ROLLING(elem - pb_rolling)) & bp_idx_mask;
-
- //
- // FIXME -- SIMD can be fully parallelized since a bp_ids[] load
- // will _always_ be safe as long as we don't use the loaded
- // value! So... fix UPDATE_ROLLING to be SIMD-friendly instead
- // of iterating over the vector components.
- //
-
- // FIXME ^^^^^ THE IDX PROBABLY DOESN'T NEED TO BE SHIFTED TWICE AND WE CAN SAVE A FEW INSTRUCTIONS
-
- // FIXME -- MIX MIX MIX MIX / SELECT
-
- // only convert if original elem is not invalid
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (SKC_IS_NOT_PATH_HEAD(ii,I) && (elem C != SKC_TAGGED_BLOCK_ID_INVALID)) { \
- skc_block_id_t const b = bp_ids[bp_idx C]; \
- elem C = SKC_CMD_PATHS_COPY_UPDATE_ROLLING(elem C,b); \
- }
-
- // printf("%2u: ( %8X, %8X, %8X )\n",ii,bp_idx,b,elem C);
-
- SKC_PATHS_COPY_ELEM_EXPAND();
-
- // store the elem back
- (bp_elems+bp_elems_idx)[ii] = elem;
- }
-
- //
- // the remaining words are treated like a node
- //
- for (skc_uint ii=SKC_PATHS_COPY_ELEMS_INCLUDING_HEADER; ii<SKC_PATHS_COPY_ELEMS_PER_BLOCK; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
- {
- // load block_id_tag words
- skc_paths_copy_elem elem = (pb_elems+pb_elems_idx)[ii];
-
- // calculate ahead of time
- skc_pb_idx_v const bp_idx = (bp_reads + SKC_CMD_PATHS_COPY_GET_ROLLING(elem - pb_rolling)) & bp_idx_mask;
-
- //
- // FIXME -- SIMD can be fully parallelized since a bp_ids[] load
- // will _always_ be safe as long as we don't use the loaded
- // value! So... fix UPDATE_ROLLING to be SIMD-friendly instead
- // of iterating over the vector components.
- //
-
- // FIXME ^^^^^ THE IDX PROBABLY DOESN'T NEED TO BE SHIFTED TWICE AND WE CAN SAVE A FEW INSTRUCTIONS
-
- // only convert if original elem is not invalid
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (elem C != SKC_TAGGED_BLOCK_ID_INVALID) { \
- skc_block_id_t const b = bp_ids[bp_idx C]; \
- elem C = SKC_CMD_PATHS_COPY_UPDATE_ROLLING(elem C,b); \
- }
-
- // printf("%2u: [ %8X, %8X, %8X ]\n",ii,bp_idx,b,elem C);
-
- SKC_PATHS_COPY_ELEM_EXPAND();
-
- // store the elem
- (bp_elems+bp_elems_idx)[ii] = elem;
- }
-}
-
-//
-// FIXME -- pack some of these constant integer args in a vec or struct
-//
-
-__kernel
-SKC_PATHS_COPY_KERNEL_ATTRIBS
-void
-skc_kernel_paths_copy
-(__global skc_uint * const host_map,
-
- __global skc_block_id_t const * const bp_ids,
- __global skc_paths_copy_elem * const bp_elems,
- skc_uint const bp_idx_mask, // pow2 modulo mask for block pool ring
-
- __global skc_uint const * const bp_alloc, // block pool ring base
- skc_uint const bp_alloc_idx,// which subbuf
-
- __global union skc_tagged_block_id const * const pb_cmds,
- __global skc_paths_copy_elem const * const pb_elems,
-
- skc_uint const pb_size, // # of commands/blocks in buffer
- skc_uint const pb_rolling, // shifted rolling counter base
-
- skc_uint const pb_prev_from,
- skc_uint const pb_prev_span,
- skc_uint const pb_curr_from)
-{
- //
- // THERE ARE 3 TYPES OF PATH COPYING COMMANDS:
- //
- // - HEAD
- // - NODE
- // - SEGS
- //
- // THESE ARE SUBGROUP ORIENTED KERNELS
- //
- // A SUBGROUP CAN OPERATE ON [1,N] BLOCKS
- //
-
- //
- // It's likely that peak bandwidth is achievable with a single
- // workgroup.
- //
- // So let's keep the grids modestly sized and for simplicity and
- // portability, let's assume that a single workgroup can perform all
- // steps in the copy.
- //
- // Launch as large of a workgroup as possiblex
- //
- // 1. ATOMICALLY ALLOCATE BLOCKS BP_ELEMS POOL
- // 2. CONVERT COMMANDS IN PB_ELEMS BLOCK OFFSETS
- // 3. FOR EACH COMMAND:
- // - HEAD: SAVED HEAD ID PB_ELEMS MAP. CONVERT AND COPY H INDICES.
- // - NODE: CONVERT AND COPY B INDICES
- // - SEGS: BULK COPY
- //
- // B : number of words in block -- always pow2
- // W : intelligently/arbitrarily chosen factor of B -- always pow2
- //
-
- //
- // There are several approaches to processing the commands:
- //
- // 1. B threads are responsible for one block. All threads broadcast
- // load a single command word. Workgroup size must be a facpb_elemsr of
- // B.
- //
- // 2. W threads process an entire block. W will typically be the
- // device's subgroup/warp/wave width. W threads broadcast load a
- // single command word.
- //
- // 3. W threads process W blocks. W threads load W command words and
- // process W blocks.
- //
- // Clearly (1) has low I/O intensity but will achieve high
- // parallelism by activating the most possible threads. The downside
- // of this kind of approach is that the kernel will occupy even a
- // large GPU with low intensity work and reduce opportunities for
- // concurrent kernel execution (of other kernels).
- //
- // See Vasily Volkov's CUDA presentation describing these tradeoffs.
- //
- // Note that there are many other approaches. For example, similar
- // pb_elems (1) but each thread loads a pow2 vector of block data.
- //
-
- // load the copied atomic read "base" from gmem
- skc_uint const bp_reads = bp_alloc[bp_alloc_idx];
- // will always be less than 2^32
- skc_uint const gid = get_global_id(0);
- // every subgroup/simd that will work on the block loads the same command
- skc_uint const sg_idx = gid / SKC_PATHS_COPY_SUBGROUP_SIZE;
- // path builder data can be spread across two spans
- skc_uint pb_idx = sg_idx + ((sg_idx < pb_prev_span) ? pb_prev_from : pb_curr_from);
-
- // no need pb_elems make this branchless
- if (pb_idx >= pb_size)
- pb_idx -= pb_size;
-
- // broadcast load the command
- union skc_tagged_block_id const pb_cmd = pb_cmds[pb_idx];
-
- // what do we want pb_elems do with this block?
- skc_cmd_paths_copy_tag const tag = SKC_CMD_PATHS_COPY_GET_TAG(pb_cmd.u32);
-
- // compute offset from rolling base to get index into block pool ring allocation
- skc_uint const bp_off = SKC_CMD_PATHS_COPY_GET_ROLLING(pb_cmd.u32 - pb_rolling);
-
- // convert the pb_cmd's offset counter pb_elems a block id
- skc_block_id_t const block = skc_bp_off_to_id(bp_ids,bp_idx_mask,bp_reads,bp_off);
-
-#if 0
- if (get_sub_group_local_id() == 0) {
- printf("bp_off/reads = %u / %u\n",bp_off,bp_reads);
- printf("< %8u >\n",block);
- }
-#endif
-
- // FIXME -- could make this 0 for SIMD, gid&mask or get_sub_group_local_id()
- skc_uint const tid = gid & SKC_PATHS_COPY_SUBGROUP_SIZE_MASK;
-
- // calculate bp_elems (to) / pb_elems (from)
- skc_uint const bp_elems_idx = block * SKC_PATHS_COPY_ELEMS_PER_SUBBLOCK + tid;
- skc_uint const pb_elems_idx = pb_idx * SKC_PATHS_COPY_ELEMS_PER_BLOCK + tid;
-
- if (tag == SKC_CMD_PATHS_COPY_TAG_SEGS)
- {
-#if 0
- if (tid == 0)
- printf("%3u, segs\n",bp_off);
-#endif
- skc_copy_segs(bp_elems,
- bp_elems_idx,
- pb_elems,
- pb_elems_idx);
- }
- else if (tag == SKC_CMD_PATHS_COPY_TAG_NODE)
- {
-#if 0
- if (tid == 0)
- printf("%3u, NODE\n",bp_off);
-#endif
- skc_copy_node(bp_elems, // to
- bp_elems_idx,
- bp_ids,
- bp_reads,
- bp_idx_mask,
- pb_elems, // from
- pb_elems_idx,
- pb_rolling);
- }
- else // ( tag == SKC_CMD_PATHS_COPY_TAG_HEAD)
- {
-#if 0
- if (tid == 0)
- printf("%3u, HEAD\n",bp_off);
-#endif
- skc_copy_head(host_map,
- block,
- bp_elems, // to
- bp_elems_idx,
- bp_ids,
- bp_reads,
- bp_idx_mask,
- pb_elems, // from
- pb_elems_idx,
- pb_rolling);
- }
-}
-
-//
-//
-//
-
-__kernel
-SKC_PATHS_ALLOC_KERNEL_ATTRIBS
-void
-skc_kernel_paths_alloc(__global skc_uint volatile * const bp_atomics,
- __global skc_uint * const bp_alloc,
- skc_uint const bp_alloc_idx,
- skc_uint const pb_cmd_count)
-{
- //
- // allocate blocks in block pool
- //
- skc_uint const reads = atomic_add(bp_atomics+SKC_BP_ATOMIC_OFFSET_READS,pb_cmd_count);
-
- // store in slot
- bp_alloc[bp_alloc_idx] = reads;
-
-#if 0
- printf("pc: %8u + %u\n",reads,pb_cmd_count);
-#endif
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "path.h"
+#include "block_pool_cl.h"
+#include "path_builder_cl_12.h"
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#if 0
+
+//
+// SIMD AVX2
+//
+
+#define SKC_PATHS_COPY_WORDS_PER_ELEM 8
+#define SKC_PATHS_COPY_SUBGROUP_SIZE 1
+#define SKC_PATHS_COPY_KERNEL_ATTRIBUTES
+
+typedef skc_uint8 skc_paths_copy_elem;
+typedef skc_uint8 skc_pb_idx_v;
+
+#define SKC_PATHS_COPY_ELEM_EXPAND() SKC_EXPAND_8()
+
+#define SKC_IS_NOT_PATH_HEAD(sg,I) ((sg) + I >= SKC_PATH_HEAD_WORDS)
+
+#endif
+
+//
+//
+//
+
+#define SKC_PATHS_COPY_SUBGROUP_SIZE_MASK (SKC_PATHS_COPY_SUBGROUP_SIZE - 1)
+#define SKC_PATHS_COPY_ELEMS_PER_BLOCK (SKC_DEVICE_BLOCK_WORDS / SKC_PATHS_COPY_ELEM_WORDS)
+#define SKC_PATHS_COPY_ELEMS_PER_SUBBLOCK (SKC_DEVICE_SUBBLOCK_WORDS / SKC_PATHS_COPY_ELEM_WORDS)
+#define SKC_PATHS_COPY_ELEMS_PER_THREAD (SKC_PATHS_COPY_ELEMS_PER_BLOCK / SKC_PATHS_COPY_SUBGROUP_SIZE)
+
+// FIXME -- use SUBGROUP terminology everywhere
+#define SKC_PATHS_COPY_SUBGROUP_WORDS (SKC_PATHS_COPY_SUBGROUP_SIZE * SKC_PATHS_COPY_ELEM_WORDS)
+
+//
+//
+//
+
+#define SKC_PATHS_COPY_ELEMS_BEFORE_HEADER \
+ (SKC_PATHS_COPY_SUBGROUP_SIZE * ((SKC_PATH_HEAD_WORDS / SKC_PATHS_COPY_ELEM_WORDS) / SKC_PATHS_COPY_SUBGROUP_WORDS))
+
+#define SKC_PATHS_COPY_ELEMS_INCLUDING_HEADER \
+ (SKC_PATHS_COPY_SUBGROUP_SIZE * ((SKC_PATH_HEAD_WORDS + SKC_PATHS_COPY_SUBGROUP_WORDS - 1) / SKC_PATHS_COPY_SUBGROUP_WORDS))
+
+// #define SKC_PATHS_COPY_HEAD_ELEMS ((SKC_PATH_HEAD_WORDS + SKC_PATHS_COPY_ELEM_WORDS - 1) / SKC_PATHS_COPY_ELEM_WORDS)
+
+//
+//
+//
+
+//
+// BIT-FIELD EXTRACT/INSERT ARE NOT AVAILABLE IN OPENCL
+//
+
+#define SKC_CMD_PATHS_COPY_ONE_BITS (SKC_TAGGED_BLOCK_ID_BITS_TAG + SKC_DEVICE_SUBBLOCK_WORDS_LOG2)
+
+#define SKC_CMD_PATHS_COPY_ONE_MASK SKC_BITS_TO_MASK(SKC_CMD_PATHS_COPY_ONE_BITS)
+
+#define SKC_CMD_PATHS_COPY_ONE (1u << SKC_CMD_PATHS_COPY_ONE_BITS)
+
+#define SKC_CMD_PATHS_COPY_GET_TAG(ti) SKC_TAGGED_BLOCK_ID_GET_TAG(ti)
+
+#define SKC_CMD_PATHS_COPY_GET_ROLLING(ti) ((ti) >> SKC_CMD_PATHS_COPY_ONE_BITS)
+
+#define SKC_CMD_PATHS_COPY_UPDATE_ROLLING(ti,b) (((ti) & SKC_CMD_PATHS_COPY_ONE_MASK) | ((b) << SKC_TAGGED_BLOCK_ID_BITS_TAG))
+
+//
+//
+//
+
+skc_uint
+skc_sub_group_local_id()
+{
+#if SKC_PATHS_COPY_SUBGROUP_SIZE > 1
+ return get_sub_group_local_id();
+#else
+ return 0;
+#endif
+}
+
+//
+// convert an atomic read counter offset to a block id
+//
+
+skc_block_id_t
+skc_bp_off_to_id(__global skc_block_id_t const * const bp_ids,
+ skc_uint const bp_idx_mask,
+ skc_uint const bp_reads,
+ skc_uint const bp_off)
+{
+ skc_uint const bp_idx = (bp_reads + bp_off) & bp_idx_mask;
+
+ return bp_ids[bp_idx];
+}
+
+//
+//
+//
+
+void
+skc_copy_segs(__global skc_paths_copy_elem * const bp_elems, // to
+ skc_uint const bp_elems_idx,
+ __global skc_paths_copy_elem const * const pb_elems, // from
+ skc_uint const pb_elems_idx)
+{
+ for (skc_uint ii=0; ii<SKC_PATHS_COPY_ELEMS_PER_BLOCK; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
+ {
+ (bp_elems+bp_elems_idx)[ii] = (pb_elems+pb_elems_idx)[ii];
+ }
+
+#if 0
+ //
+ // NOTE THIS IS PRINTING 8 ROWS
+ //
+ printf("%5u : (%8u) : { { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",
+ (skc_uint)get_global_id(0),pb_elems_idx,
+ as_float((pb_elems+pb_elems_idx)[0*SKC_PATHS_COPY_SUBGROUP_SIZE]),
+ as_float((pb_elems+pb_elems_idx)[1*SKC_PATHS_COPY_SUBGROUP_SIZE]),
+ as_float((pb_elems+pb_elems_idx)[2*SKC_PATHS_COPY_SUBGROUP_SIZE]),
+ as_float((pb_elems+pb_elems_idx)[3*SKC_PATHS_COPY_SUBGROUP_SIZE]));
+ printf("%5u : (%8u) : { { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",
+ (skc_uint)get_global_id(0),pb_elems_idx,
+ as_float((pb_elems+pb_elems_idx)[4*SKC_PATHS_COPY_SUBGROUP_SIZE]),
+ as_float((pb_elems+pb_elems_idx)[5*SKC_PATHS_COPY_SUBGROUP_SIZE]),
+ as_float((pb_elems+pb_elems_idx)[6*SKC_PATHS_COPY_SUBGROUP_SIZE]),
+ as_float((pb_elems+pb_elems_idx)[7*SKC_PATHS_COPY_SUBGROUP_SIZE]));
+#endif
+}
+
+//
+//
+//
+
+void
+skc_copy_node(__global skc_paths_copy_elem * const bp_elems, // to
+ skc_uint const bp_elems_idx,
+ __global skc_block_id_t const * const bp_ids,
+ skc_uint const bp_reads,
+ skc_uint const bp_idx_mask,
+ __global skc_paths_copy_elem const * const pb_elems, // from
+ skc_uint const pb_elems_idx,
+ skc_uint const pb_rolling)
+{
+ //
+ // remap block id tags bp_elems the host-side rolling counter pb_elems a
+ // device-side block pool id
+ //
+ for (skc_uint ii=0; ii<SKC_PATHS_COPY_ELEMS_PER_BLOCK; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
+ {
+ // load block_id_tag words
+ skc_paths_copy_elem elem = (pb_elems + pb_elems_idx)[ii];
+
+ // calculate ahead of time -- if elem was invalid then bp_idx is definitely invalid
+ skc_pb_idx_v const bp_idx = (bp_reads + SKC_CMD_PATHS_COPY_GET_ROLLING(elem - pb_rolling)) & bp_idx_mask;
+
+ // FIXME ^^^^^ THE IDX PROBABLY DOESN'T NEED TO BE SHIFTED TWICE AND WE CAN SAVE A FEW INSTRUCTIONS
+
+ //
+ // FIXME -- SIMD can be fully parallelized since a bp_ids[] load
+ // will _always_ be safe as long as we don't use the loaded
+ // value! So... fix UPDATE_ROLLING to be SIMD-friendly instead
+ // of iterating over the vector components.
+ //
+
+ // only convert if original elem is not invalid
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (elem C != SKC_TAGGED_BLOCK_ID_INVALID) { \
+ skc_block_id_t const b = bp_ids[bp_idx C]; \
+ elem C = SKC_CMD_PATHS_COPY_UPDATE_ROLLING(elem C,b); \
+ }
+
+ // printf("%2u: < %8X, %8X, %8X >\n",ii,bp_idx,b,elem C);
+
+ SKC_PATHS_COPY_ELEM_EXPAND();
+
+ // store the elem back
+ (bp_elems+bp_elems_idx)[ii] = elem;
+ }
+}
+
+//
+//
+//
+
+void
+skc_host_map_update(__global skc_uint * const host_map,
+ skc_uint const block,
+ skc_paths_copy_elem const elem)
+{
+ //
+ // write first elem to map -- FIXME -- this is a little nasty
+ // because it relies on the the host handle always being the first
+ // word in the path header.
+ //
+ // OTOH, this is not unreasonable. The alternative is to have a
+ // separate kernel initializing the map.
+ //
+#if SKC_PATHS_COPY_SUBGROUP_SIZE > 1
+ if (get_sub_group_local_id() == SKC_PATH_HEAD_OFFSET_HANDLE)
+#endif
+ {
+#if SKC_PATHS_COPY_ELEM_WORDS == 1
+ host_map[elem] = block;
+#if 0
+ printf("[%u] = %u\n",elem,block);
+#endif
+#else
+ host_map[elem.SKC_CONCAT(s,SKC_PATH_HEAD_OFFSET_HANDLE)] = block;
+#endif
+ }
+}
+
+//
+//
+//
+
+void
+skc_copy_head(__global skc_uint * const host_map,
+ skc_uint const block,
+ __global skc_paths_copy_elem * const bp_elems, // to
+ skc_uint const bp_elems_idx,
+ __global skc_block_id_t const * const bp_ids,
+ skc_uint const bp_reads,
+ skc_uint const bp_idx_mask,
+ __global skc_paths_copy_elem const * const pb_elems, // from
+ skc_uint const pb_elems_idx,
+ skc_uint const pb_rolling)
+{
+ //
+ // if there are more path header words than there are
+ // threads-per-block then we can just copy the initial header words
+ //
+#if ( SKC_PATHS_COPY_ELEMS_BEFORE_HEADER > 0 )
+ for (skc_uint ii=0; ii<SKC_PATHS_COPY_ELEMS_BEFORE_HEADER; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
+ {
+ skc_paths_copy_elem const elem = (pb_elems+pb_elems_idx)[ii];
+
+ (bp_elems+bp_elems_idx)[ii] = elem;
+
+ if (ii == 0) {
+ skc_host_map_update(host_map,block,elem);
+ }
+ }
+#endif
+
+ //
+ // this is similar to copy node but the first H words of the path
+ // header are not modified and simply copied
+ //
+ for (skc_uint ii=SKC_PATHS_COPY_ELEMS_BEFORE_HEADER; ii<SKC_PATHS_COPY_ELEMS_INCLUDING_HEADER; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
+ {
+ skc_paths_copy_elem elem = (pb_elems+pb_elems_idx)[ii];
+
+#if ( SKC_PATHS_COPY_ELEMS_BEFORE_HEADER == 0 )
+ if (ii == 0) {
+ skc_host_map_update(host_map,block,elem);
+ }
+#endif
+ // calculate ahead of time -- if elem was invalid then bp_idx is definitely invalid
+ skc_pb_idx_v const bp_idx = (bp_reads + SKC_CMD_PATHS_COPY_GET_ROLLING(elem - pb_rolling)) & bp_idx_mask;
+
+ //
+ // FIXME -- SIMD can be fully parallelized since a bp_ids[] load
+ // will _always_ be safe as long as we don't use the loaded
+ // value! So... fix UPDATE_ROLLING to be SIMD-friendly instead
+ // of iterating over the vector components.
+ //
+
+ // FIXME ^^^^^ THE IDX PROBABLY DOESN'T NEED TO BE SHIFTED TWICE AND WE CAN SAVE A FEW INSTRUCTIONS
+
+ // FIXME -- MIX MIX MIX MIX / SELECT
+
+ // only convert if original elem is not invalid
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (SKC_IS_NOT_PATH_HEAD(ii,I) && (elem C != SKC_TAGGED_BLOCK_ID_INVALID)) { \
+ skc_block_id_t const b = bp_ids[bp_idx C]; \
+ elem C = SKC_CMD_PATHS_COPY_UPDATE_ROLLING(elem C,b); \
+ }
+
+ // printf("%2u: ( %8X, %8X, %8X )\n",ii,bp_idx,b,elem C);
+
+ SKC_PATHS_COPY_ELEM_EXPAND();
+
+ // store the elem back
+ (bp_elems+bp_elems_idx)[ii] = elem;
+ }
+
+ //
+ // the remaining words are treated like a node
+ //
+ for (skc_uint ii=SKC_PATHS_COPY_ELEMS_INCLUDING_HEADER; ii<SKC_PATHS_COPY_ELEMS_PER_BLOCK; ii+=SKC_PATHS_COPY_SUBGROUP_SIZE)
+ {
+ // load block_id_tag words
+ skc_paths_copy_elem elem = (pb_elems+pb_elems_idx)[ii];
+
+ // calculate ahead of time
+ skc_pb_idx_v const bp_idx = (bp_reads + SKC_CMD_PATHS_COPY_GET_ROLLING(elem - pb_rolling)) & bp_idx_mask;
+
+ //
+ // FIXME -- SIMD can be fully parallelized since a bp_ids[] load
+ // will _always_ be safe as long as we don't use the loaded
+ // value! So... fix UPDATE_ROLLING to be SIMD-friendly instead
+ // of iterating over the vector components.
+ //
+
+ // FIXME ^^^^^ THE IDX PROBABLY DOESN'T NEED TO BE SHIFTED TWICE AND WE CAN SAVE A FEW INSTRUCTIONS
+
+ // only convert if original elem is not invalid
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (elem C != SKC_TAGGED_BLOCK_ID_INVALID) { \
+ skc_block_id_t const b = bp_ids[bp_idx C]; \
+ elem C = SKC_CMD_PATHS_COPY_UPDATE_ROLLING(elem C,b); \
+ }
+
+ // printf("%2u: [ %8X, %8X, %8X ]\n",ii,bp_idx,b,elem C);
+
+ SKC_PATHS_COPY_ELEM_EXPAND();
+
+ // store the elem
+ (bp_elems+bp_elems_idx)[ii] = elem;
+ }
+}
+
+//
+// FIXME -- pack some of these constant integer args in a vec or struct
+//
+
+__kernel
+SKC_PATHS_COPY_KERNEL_ATTRIBS
+void
+skc_kernel_paths_copy
+(__global skc_uint * const host_map,
+
+ __global skc_block_id_t const * const bp_ids,
+ __global skc_paths_copy_elem * const bp_elems,
+ skc_uint const bp_idx_mask, // pow2 modulo mask for block pool ring
+
+ __global skc_uint const * const bp_alloc, // block pool ring base
+ skc_uint const bp_alloc_idx,// which subbuf
+
+ __global union skc_tagged_block_id const * const pb_cmds,
+ __global skc_paths_copy_elem const * const pb_elems,
+
+ skc_uint const pb_size, // # of commands/blocks in buffer
+ skc_uint const pb_rolling, // shifted rolling counter base
+
+ skc_uint const pb_prev_from,
+ skc_uint const pb_prev_span,
+ skc_uint const pb_curr_from)
+{
+ //
+ // THERE ARE 3 TYPES OF PATH COPYING COMMANDS:
+ //
+ // - HEAD
+ // - NODE
+ // - SEGS
+ //
+ // THESE ARE SUBGROUP ORIENTED KERNELS
+ //
+ // A SUBGROUP CAN OPERATE ON [1,N] BLOCKS
+ //
+
+ //
+ // It's likely that peak bandwidth is achievable with a single
+ // workgroup.
+ //
+ // So let's keep the grids modestly sized and for simplicity and
+ // portability, let's assume that a single workgroup can perform all
+ // steps in the copy.
+ //
+ // Launch as large of a workgroup as possiblex
+ //
+ // 1. ATOMICALLY ALLOCATE BLOCKS BP_ELEMS POOL
+ // 2. CONVERT COMMANDS IN PB_ELEMS BLOCK OFFSETS
+ // 3. FOR EACH COMMAND:
+ // - HEAD: SAVED HEAD ID PB_ELEMS MAP. CONVERT AND COPY H INDICES.
+ // - NODE: CONVERT AND COPY B INDICES
+ // - SEGS: BULK COPY
+ //
+ // B : number of words in block -- always pow2
+ // W : intelligently/arbitrarily chosen factor of B -- always pow2
+ //
+
+ //
+ // There are several approaches to processing the commands:
+ //
+ // 1. B threads are responsible for one block. All threads broadcast
+ // load a single command word. Workgroup size must be a facpb_elemsr of
+ // B.
+ //
+ // 2. W threads process an entire block. W will typically be the
+ // device's subgroup/warp/wave width. W threads broadcast load a
+ // single command word.
+ //
+ // 3. W threads process W blocks. W threads load W command words and
+ // process W blocks.
+ //
+ // Clearly (1) has low I/O intensity but will achieve high
+ // parallelism by activating the most possible threads. The downside
+ // of this kind of approach is that the kernel will occupy even a
+ // large GPU with low intensity work and reduce opportunities for
+ // concurrent kernel execution (of other kernels).
+ //
+ // See Vasily Volkov's CUDA presentation describing these tradeoffs.
+ //
+ // Note that there are many other approaches. For example, similar
+ // pb_elems (1) but each thread loads a pow2 vector of block data.
+ //
+
+ // load the copied atomic read "base" from gmem
+ skc_uint const bp_reads = bp_alloc[bp_alloc_idx];
+ // will always be less than 2^32
+ skc_uint const gid = get_global_id(0);
+ // every subgroup/simd that will work on the block loads the same command
+ skc_uint const sg_idx = gid / SKC_PATHS_COPY_SUBGROUP_SIZE;
+ // path builder data can be spread across two spans
+ skc_uint pb_idx = sg_idx + ((sg_idx < pb_prev_span) ? pb_prev_from : pb_curr_from);
+
+ // no need pb_elems make this branchless
+ if (pb_idx >= pb_size)
+ pb_idx -= pb_size;
+
+ // broadcast load the command
+ union skc_tagged_block_id const pb_cmd = pb_cmds[pb_idx];
+
+ // what do we want pb_elems do with this block?
+ skc_cmd_paths_copy_tag const tag = SKC_CMD_PATHS_COPY_GET_TAG(pb_cmd.u32);
+
+ // compute offset from rolling base to get index into block pool ring allocation
+ skc_uint const bp_off = SKC_CMD_PATHS_COPY_GET_ROLLING(pb_cmd.u32 - pb_rolling);
+
+ // convert the pb_cmd's offset counter pb_elems a block id
+ skc_block_id_t const block = skc_bp_off_to_id(bp_ids,bp_idx_mask,bp_reads,bp_off);
+
+#if 0
+ if (get_sub_group_local_id() == 0) {
+ printf("bp_off/reads = %u / %u\n",bp_off,bp_reads);
+ printf("< %8u >\n",block);
+ }
+#endif
+
+ // FIXME -- could make this 0 for SIMD, gid&mask or get_sub_group_local_id()
+ skc_uint const tid = gid & SKC_PATHS_COPY_SUBGROUP_SIZE_MASK;
+
+ // calculate bp_elems (to) / pb_elems (from)
+ skc_uint const bp_elems_idx = block * SKC_PATHS_COPY_ELEMS_PER_SUBBLOCK + tid;
+ skc_uint const pb_elems_idx = pb_idx * SKC_PATHS_COPY_ELEMS_PER_BLOCK + tid;
+
+ if (tag == SKC_CMD_PATHS_COPY_TAG_SEGS)
+ {
+#if 0
+ if (tid == 0)
+ printf("%3u, segs\n",bp_off);
+#endif
+ skc_copy_segs(bp_elems,
+ bp_elems_idx,
+ pb_elems,
+ pb_elems_idx);
+ }
+ else if (tag == SKC_CMD_PATHS_COPY_TAG_NODE)
+ {
+#if 0
+ if (tid == 0)
+ printf("%3u, NODE\n",bp_off);
+#endif
+ skc_copy_node(bp_elems, // to
+ bp_elems_idx,
+ bp_ids,
+ bp_reads,
+ bp_idx_mask,
+ pb_elems, // from
+ pb_elems_idx,
+ pb_rolling);
+ }
+ else // ( tag == SKC_CMD_PATHS_COPY_TAG_HEAD)
+ {
+#if 0
+ if (tid == 0)
+ printf("%3u, HEAD\n",bp_off);
+#endif
+ skc_copy_head(host_map,
+ block,
+ bp_elems, // to
+ bp_elems_idx,
+ bp_ids,
+ bp_reads,
+ bp_idx_mask,
+ pb_elems, // from
+ pb_elems_idx,
+ pb_rolling);
+ }
+}
+
+//
+//
+//
+
+__kernel
+SKC_PATHS_ALLOC_KERNEL_ATTRIBS
+void
+skc_kernel_paths_alloc(__global skc_uint volatile * const bp_atomics,
+ __global skc_uint * const bp_alloc,
+ skc_uint const bp_alloc_idx,
+ skc_uint const pb_cmd_count)
+{
+ //
+ // allocate blocks in block pool
+ //
+ skc_uint const reads = atomic_add(bp_atomics+SKC_BP_ATOMIC_OFFSET_READS,pb_cmd_count);
+
+ // store in slot
+ bp_alloc[bp_alloc_idx] = reads;
+
+#if 0
+ printf("pc: %8u + %u\n",reads,pb_cmd_count);
+#endif
+}
+
+//
+//
+//
diff --git a/src/compute/skc/paths_reclaim.cl b/src/compute/skc/platforms/cl_12/kernels/paths_reclaim.cl
index 563160613c..2aee5dac17 100644
--- a/src/compute/skc/paths_reclaim.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/paths_reclaim.cl
@@ -1,390 +1,390 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-// FIXME -- a pre-allocation step could load the path header quads and
-// total up the number of blocks in the workgroup or subgroup
-// minimizing the number of later atomics adds.
-//
-
-#include "device_cl_12_gen9.h"
-#include "block_pool_cl.h"
-#include "atomic_cl.h"
-#include "block.h"
-#include "path.h"
-#include "common.h"
-
-//
-//
-//
-
-#define SKC_PATHS_RECLAIM_SUBGROUP_SIZE_MASK (SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
-
-#define SKC_PATHS_RECLAIM_SUBGROUP_ELEMS (SKC_PATHS_RECLAIM_SUBGROUP_SIZE * SKC_PATHS_RECLAIM_LOCAL_ELEMS)
-
-#define SKC_PATHS_RECLAIM_X (SKC_DEVICE_BLOCK_WORDS / SKC_PATHS_RECLAIM_SUBGROUP_ELEMS)
-
-//
-//
-//
-
-#if ( SKC_PATHS_RECLAIM_X == 1 )
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_1()
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 0
-
-#elif ( SKC_PATHS_RECLAIM_X == 2 )
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_2()
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 1
-
-#elif ( SKC_PATHS_RECLAIM_X == 4 )
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_4()
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 3
-
-#elif ( SKC_PATHS_RECLAIM_X == 8 )
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_8()
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 7
-
-#elif ( SKC_PATHS_RECLAIM_X == 16)
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_16()
-#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 15
-
-#else
-#error "MISSING SKC_PATHS_RECLAIM_X"
-#endif
-
-//
-// FIXME -- slate these for replacement
-//
-
-#define SKC_BROADCAST(E,S,I) \
- sub_group_broadcast(E,S - I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE)
-
-#define SKC_BROADCAST_LAST_HELPER(E,I) \
- sub_group_broadcast(E,SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
-
-#define SKC_BROADCAST_LAST(E,I) \
- SKC_BROADCAST_LAST_HELPER(E,I)
-
-//
-// COMPILE-TIME PREDICATES
-//
-
-#define SKC_PATHS_RECLAIM_ELEM_GTE(X,I) \
- SKC_GTE_MACRO(X,(I+1) * SKC_PATHS_RECLAIM_SUBGROUP_SIZE)
-
-#define SKC_PATHS_RECLAIM_ELEM_IN_RANGE(X,I) \
- (skc_bool)SKC_GTE_MACRO(X, I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE) && \
- (skc_bool)SKC_LT_MACRO(X,(I+1) * SKC_PATHS_RECLAIM_SUBGROUP_SIZE)
-
-#define SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I) \
- SKC_PATHS_RECLAIM_ELEM_GTE(SKC_PATH_HEAD_WORDS,I)
-
-#define SKC_PATHS_RECLAIM_PARTIALLY_HEADER(I) \
- SKC_PATHS_RECLAIM_ELEM_IN_RANGE(SKC_PATH_HEAD_WORDS,I)
-
-//
-// RUN-TIME PREDICATES
-//
-
-#define SKC_PATHS_RECLAIM_IS_HEADER(I) \
- (get_sub_group_local_id() + I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE < SKC_PATH_HEAD_WORDS)
-
-//
-// FIXME -- THIS BITFIELD SCAN APPROACH CAN BE PARAMETERIZED FOR ALL
-// POSSIBLE PRACTICAL POWER-OF-TWO SUBGROUP AND SUBBLOCKS-PER-BLOCK
-// COMBOS (NOT NECESSARILY POW2)
-//
-// FOR WIDER SUBGROUPS WITH BIG BLOCKS, WE WILL WANT TO USE A VECTOR
-// UINT TYPE INSTEAD OF A ULONG.
-//
-
-#define SKC_PATHS_RECLAIM_PACKED_COUNT_BITS SKC_PATHS_RECLAIM_SUBGROUP_SIZE_LOG2
-#define SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE skc_uint
-
-//
-//
-//
-
-#define SKC_PATHS_RECLAIM_PACKED_COUNT_MASK SKC_BITS_TO_MASK(SKC_PATHS_RECLAIM_PACKED_COUNT_BITS)
-
-#define SKC_PATHS_RECLAIM_PACKED_COUNT_IS_BLOCK(E,I) \
- (((E) & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) \
- ? 0 : (1u << SKC_PATHS_RECLAIM_PACKED_COUNT_BITS * I))
-
-#define SKC_PATHS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(S,C) \
- S = sub_group_scan_exclusive_add(C)
-
-#define SKC_PATHS_RECLAIM_PACKED_COUNT_GET(C,I) \
- (((C) >> (SKC_PATHS_RECLAIM_PACKED_COUNT_BITS * I)) & SKC_PATHS_RECLAIM_PACKED_COUNT_MASK)
-
-//
-//
-//
-
-struct skc_reclaim
-{
- skc_path_h aN[SKC_RECLAIM_ARRAY_SIZE];
-};
-
-__kernel
-SKC_PATHS_RECLAIM_KERNEL_ATTRIBS
-void
-skc_kernel_paths_reclaim(__global skc_block_id_t * const bp_ids, // block pool ids ring
- __global skc_uint * const bp_elems, // block pool blocks
- __global skc_uint volatile * const bp_atomics, // read/write atomics
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const map, // path host-to-device map
- struct skc_reclaim const reclaim) // array of host path ids
-{
-#if (__OPENCL_VERSION__ < 200)
- skc_uint const reclaim_stride = get_num_sub_groups();
-#else
- skc_uint const reclaim_stride = get_enqueued_num_sub_groups(); // 2.0 supports non-uniform workgroups
-#endif
- skc_uint reclaim_idx = get_group_id(0) * reclaim_stride + get_sub_group_id();
-
-#if 0
- //
- // NOTE -- FOR NOW, THIS KERNEL ALWAYS LAUNCHES FIXED SIZE GRIDS BUT
- // WE MIGHT WANT TO HAVE THE GRID LIMIT ITSELF TO A FRACTIONAL
- // MULTIPROCESSOR IN ORDER TO MINIMIZE THE IMPACT OF A LARGE
- // RECLAMATION JOB ON THE REST OF THE PIPELINE.
- //
- for (; reclaim_idx < SKC_RECLAIM_ARRAY_SIZE; reclaim_idx+=reclaim_stride)
-#endif
- {
- // get host path id
- skc_path_h const path = reclaim.aN[reclaim_idx];
-
- // get the path header block from the map
- skc_block_id_t id = map[path];
-
- //
- // blindly load all of the head elements into registers
- //
- skc_uint const head_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- skc_uint h##I = bp_elems[head_idx + I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE];
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- //
- // pick out count.nodes and count.prims from the header
- //
- skc_uint count_blocks, count_nodes;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (SKC_PATHS_RECLAIM_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_BLOCKS,I)) { \
- count_blocks = SKC_BROADCAST(h##I,SKC_PATH_HEAD_OFFSET_BLOCKS,I); \
- } \
- if (SKC_PATHS_RECLAIM_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_NODES,I)) { \
- count_nodes = SKC_BROADCAST(h##I,SKC_PATH_HEAD_OFFSET_NODES,I); \
- }
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
-#if 0
- if (get_sub_group_local_id() == 0) {
- printf("reclaim paths: %9u / %5u / %5u\n",path,count_blocks,count_nodes);
- }
-#endif
-
- //
- // acquire a span in the block pool ids ring for reclaimed ids
- //
- // FIXME count_blocks and atomic add can be done in same lane
- //
- skc_uint bp_ids_base = 0;
-
- if (get_sub_group_local_id() == 0) {
- bp_ids_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_SUBGROUP(bp_atomics+SKC_BP_ATOMIC_OFFSET_WRITES,count_blocks);
-
-#if 0
- printf("paths: bp_ids_base = %u\n",bp_ids_base);
-#endif
- }
-
- bp_ids_base = sub_group_broadcast(bp_ids_base,0);
-
- //
- // shift away the tagged block id's tag
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
- h##I = h##I >> SKC_TAGGED_BLOCK_ID_BITS_TAG; \
- }
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- //
- // swap current id with next
- //
- if (get_sub_group_local_id() == SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
- {
- skc_block_id_t const next = SKC_CONCAT(h,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST);
-
- SKC_CONCAT(h,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
-
- id = next;
- }
-
- //
- // - we'll skip subgroups that are entirely header
- //
- // - but we need to mark any header elements that partially fill
- // a subgroup as invalid tagged block ids
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
- if (SKC_PATHS_RECLAIM_PARTIALLY_HEADER(I)) { \
- if (SKC_PATHS_RECLAIM_IS_HEADER(I)) { \
- h##I = SKC_TAGGED_BLOCK_ID_INVALID; \
- } \
- } \
- }
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- {
- //
- // count reclaimable blocks in each lane
- //
- SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
- packed_count |= SKC_PATHS_RECLAIM_PACKED_COUNT_IS_BLOCK(h##I,I); \
- }
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- //
- // scan to find index of each block
- //
- SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
-
- SKC_PATHS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
-
- //
- // store blocks back to ring
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
- skc_uint const index = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
- skc_uint const count = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
- skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
- if (count > 0) { \
- bp_ids[bp_ids_idx] = h##I; \
- } \
- skc_uint const total = index + count; \
- bp_ids_base += sub_group_broadcast(total,SKC_PATHS_RECLAIM_SUBGROUP_SIZE-1); \
- }
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- // printf("P %7u ! %u\n",bp_ids_idx,h##I);
- }
-
- //
- // we're done if it was just the header
- //
- if (count_nodes == 0)
- return;
-
- //
- // otherwise, walk the nodes
- //
- do {
- // id of next block is in last lane
- id = sub_group_broadcast(id,SKC_PATHS_RECLAIM_SUBGROUP_SIZE-1);
-
- // get index of each element
- skc_uint const node_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
-
- //
- // blindly load all of the node elements into registers
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- skc_uint n##I = bp_elems[node_idx + I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE];
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- //
- // shift away the tagged block id's tag
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- n##I = n##I >> SKC_TAGGED_BLOCK_ID_BITS_TAG;
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- //
- // swap current id with next
- //
- if (get_sub_group_local_id() == SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
- {
- skc_block_id_t const next = SKC_CONCAT(n,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST);
-
- SKC_CONCAT(n,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
-
- id = next;
- }
-
- //
- // count reclaimable blocks in each lane
- //
- SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- packed_count |= SKC_PATHS_RECLAIM_PACKED_COUNT_IS_BLOCK(n##I,I);
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- //
- // scan to find index of each block
- //
- SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
-
- SKC_PATHS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
-
- //
- // store blocks back to ring
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) { \
- skc_uint const index = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
- skc_uint const count = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
- skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
- if (count > 0) { \
- bp_ids[bp_ids_idx] = n##I; \
- } \
- skc_uint const total = index + count; \
- bp_ids_base += sub_group_broadcast(total,SKC_PATHS_RECLAIM_SUBGROUP_SIZE-1); \
- }
-
- SKC_PATHS_RECLAIM_BLOCK_EXPAND();
-
- // printf("P %7u ! %u\n",bp_ids_idx,n##I);
-
- // any more nodes?
- } while (--count_nodes > 0);
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+// FIXME -- a pre-allocation step could load the path header quads and
+// total up the number of blocks in the workgroup or subgroup
+// minimizing the number of later atomics adds.
+//
+
+#include "block.h"
+#include "path.h"
+#include "common.h"
+#include "atomic_cl.h"
+#include "block_pool_cl.h"
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#define SKC_PATHS_RECLAIM_SUBGROUP_SIZE_MASK (SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
+
+#define SKC_PATHS_RECLAIM_SUBGROUP_ELEMS (SKC_PATHS_RECLAIM_SUBGROUP_SIZE * SKC_PATHS_RECLAIM_LOCAL_ELEMS)
+
+#define SKC_PATHS_RECLAIM_X (SKC_DEVICE_BLOCK_WORDS / SKC_PATHS_RECLAIM_SUBGROUP_ELEMS)
+
+//
+//
+//
+
+#if ( SKC_PATHS_RECLAIM_X == 1 )
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_1()
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 0
+
+#elif ( SKC_PATHS_RECLAIM_X == 2 )
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_2()
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 1
+
+#elif ( SKC_PATHS_RECLAIM_X == 4 )
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_4()
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 3
+
+#elif ( SKC_PATHS_RECLAIM_X == 8 )
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_8()
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 7
+
+#elif ( SKC_PATHS_RECLAIM_X == 16)
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_16()
+#define SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST 15
+
+#else
+#error "MISSING SKC_PATHS_RECLAIM_X"
+#endif
+
+//
+// FIXME -- slate these for replacement
+//
+
+#define SKC_BROADCAST(E,S,I) \
+ sub_group_broadcast(E,S - I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE)
+
+#define SKC_BROADCAST_LAST_HELPER(E,I) \
+ sub_group_broadcast(E,SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
+
+#define SKC_BROADCAST_LAST(E,I) \
+ SKC_BROADCAST_LAST_HELPER(E,I)
+
+//
+// COMPILE-TIME PREDICATES
+//
+
+#define SKC_PATHS_RECLAIM_ELEM_GTE(X,I) \
+ SKC_GTE_MACRO(X,(I+1) * SKC_PATHS_RECLAIM_SUBGROUP_SIZE)
+
+#define SKC_PATHS_RECLAIM_ELEM_IN_RANGE(X,I) \
+ (skc_bool)SKC_GTE_MACRO(X, I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE) && \
+ (skc_bool)SKC_LT_MACRO(X,(I+1) * SKC_PATHS_RECLAIM_SUBGROUP_SIZE)
+
+#define SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I) \
+ SKC_PATHS_RECLAIM_ELEM_GTE(SKC_PATH_HEAD_WORDS,I)
+
+#define SKC_PATHS_RECLAIM_PARTIALLY_HEADER(I) \
+ SKC_PATHS_RECLAIM_ELEM_IN_RANGE(SKC_PATH_HEAD_WORDS,I)
+
+//
+// RUN-TIME PREDICATES
+//
+
+#define SKC_PATHS_RECLAIM_IS_HEADER(I) \
+ (get_sub_group_local_id() + I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE < SKC_PATH_HEAD_WORDS)
+
+//
+// FIXME -- THIS BITFIELD SCAN APPROACH CAN BE PARAMETERIZED FOR ALL
+// POSSIBLE PRACTICAL POWER-OF-TWO SUBGROUP AND SUBBLOCKS-PER-BLOCK
+// COMBOS (NOT NECESSARILY POW2)
+//
+// FOR WIDER SUBGROUPS WITH BIG BLOCKS, WE WILL WANT TO USE A VECTOR
+// UINT TYPE INSTEAD OF A ULONG.
+//
+
+#define SKC_PATHS_RECLAIM_PACKED_COUNT_BITS SKC_PATHS_RECLAIM_SUBGROUP_SIZE_LOG2
+#define SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE skc_uint
+
+//
+//
+//
+
+#define SKC_PATHS_RECLAIM_PACKED_COUNT_MASK SKC_BITS_TO_MASK(SKC_PATHS_RECLAIM_PACKED_COUNT_BITS)
+
+#define SKC_PATHS_RECLAIM_PACKED_COUNT_IS_BLOCK(E,I) \
+ (((E) & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) \
+ ? 0 : (1u << SKC_PATHS_RECLAIM_PACKED_COUNT_BITS * I))
+
+#define SKC_PATHS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(S,C) \
+ S = sub_group_scan_exclusive_add(C)
+
+#define SKC_PATHS_RECLAIM_PACKED_COUNT_GET(C,I) \
+ (((C) >> (SKC_PATHS_RECLAIM_PACKED_COUNT_BITS * I)) & SKC_PATHS_RECLAIM_PACKED_COUNT_MASK)
+
+//
+//
+//
+
+struct skc_reclaim
+{
+ skc_path_h aN[SKC_RECLAIM_ARRAY_SIZE];
+};
+
+__kernel
+SKC_PATHS_RECLAIM_KERNEL_ATTRIBS
+void
+skc_kernel_paths_reclaim(__global skc_block_id_t * const bp_ids, // block pool ids ring
+ __global skc_uint * const bp_elems, // block pool blocks
+ __global skc_uint volatile * const bp_atomics, // read/write atomics
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const map, // path host-to-device map
+ struct skc_reclaim const reclaim) // array of host path ids
+{
+#if (__OPENCL_VERSION__ < 200)
+ skc_uint const reclaim_stride = get_num_sub_groups();
+#else
+ skc_uint const reclaim_stride = get_enqueued_num_sub_groups(); // 2.0 supports non-uniform workgroups
+#endif
+ skc_uint reclaim_idx = get_group_id(0) * reclaim_stride + get_sub_group_id();
+
+#if 0
+ //
+ // NOTE -- FOR NOW, THIS KERNEL ALWAYS LAUNCHES FIXED SIZE GRIDS BUT
+ // WE MIGHT WANT TO HAVE THE GRID LIMIT ITSELF TO A FRACTIONAL
+ // MULTIPROCESSOR IN ORDER TO MINIMIZE THE IMPACT OF A LARGE
+ // RECLAMATION JOB ON THE REST OF THE PIPELINE.
+ //
+ for (; reclaim_idx < SKC_RECLAIM_ARRAY_SIZE; reclaim_idx+=reclaim_stride)
+#endif
+ {
+ // get host path id
+ skc_path_h const path = reclaim.aN[reclaim_idx];
+
+ // get the path header block from the map
+ skc_block_id_t id = map[path];
+
+ //
+ // blindly load all of the head elements into registers
+ //
+ skc_uint const head_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ skc_uint h##I = bp_elems[head_idx + I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE];
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // pick out count.nodes and count.prims from the header
+ //
+ skc_uint count_blocks, count_nodes;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (SKC_PATHS_RECLAIM_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_BLOCKS,I)) { \
+ count_blocks = SKC_BROADCAST(h##I,SKC_PATH_HEAD_OFFSET_BLOCKS,I); \
+ } \
+ if (SKC_PATHS_RECLAIM_ELEM_IN_RANGE(SKC_PATH_HEAD_OFFSET_NODES,I)) { \
+ count_nodes = SKC_BROADCAST(h##I,SKC_PATH_HEAD_OFFSET_NODES,I); \
+ }
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+#if 0
+ if (get_sub_group_local_id() == 0) {
+ printf("reclaim paths: %9u / %5u / %5u\n",path,count_blocks,count_nodes);
+ }
+#endif
+
+ //
+ // acquire a span in the block pool ids ring for reclaimed ids
+ //
+ // FIXME count_blocks and atomic add can be done in same lane
+ //
+ skc_uint bp_ids_base = 0;
+
+ if (get_sub_group_local_id() == 0) {
+ bp_ids_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_SUBGROUP(bp_atomics+SKC_BP_ATOMIC_OFFSET_WRITES,count_blocks);
+
+#if 0
+ printf("paths: bp_ids_base = %u\n",bp_ids_base);
+#endif
+ }
+
+ bp_ids_base = sub_group_broadcast(bp_ids_base,0);
+
+ //
+ // shift away the tagged block id's tag
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ h##I = h##I >> SKC_TAGGED_BLOCK_ID_BITS_TAG; \
+ }
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // swap current id with next
+ //
+ if (get_sub_group_local_id() == SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
+ {
+ skc_block_id_t const next = SKC_CONCAT(h,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST);
+
+ SKC_CONCAT(h,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
+
+ id = next;
+ }
+
+ //
+ // - we'll skip subgroups that are entirely header
+ //
+ // - but we need to mark any header elements that partially fill
+ // a subgroup as invalid tagged block ids
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ if (SKC_PATHS_RECLAIM_PARTIALLY_HEADER(I)) { \
+ if (SKC_PATHS_RECLAIM_IS_HEADER(I)) { \
+ h##I = SKC_TAGGED_BLOCK_ID_INVALID; \
+ } \
+ } \
+ }
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ {
+ //
+ // count reclaimable blocks in each lane
+ //
+ SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ packed_count |= SKC_PATHS_RECLAIM_PACKED_COUNT_IS_BLOCK(h##I,I); \
+ }
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // scan to find index of each block
+ //
+ SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
+
+ SKC_PATHS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
+
+ //
+ // store blocks back to ring
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PATHS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ skc_uint const index = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
+ skc_uint const count = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
+ skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
+ if (count > 0) { \
+ bp_ids[bp_ids_idx] = h##I; \
+ } \
+ skc_uint const total = index + count; \
+ bp_ids_base += sub_group_broadcast(total,SKC_PATHS_RECLAIM_SUBGROUP_SIZE-1); \
+ }
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ // printf("P %7u ! %u\n",bp_ids_idx,h##I);
+ }
+
+ //
+ // we're done if it was just the header
+ //
+ if (count_nodes == 0)
+ return;
+
+ //
+ // otherwise, walk the nodes
+ //
+ do {
+ // id of next block is in last lane
+ id = sub_group_broadcast(id,SKC_PATHS_RECLAIM_SUBGROUP_SIZE-1);
+
+ // get index of each element
+ skc_uint const node_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
+
+ //
+ // blindly load all of the node elements into registers
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ skc_uint n##I = bp_elems[node_idx + I * SKC_PATHS_RECLAIM_SUBGROUP_SIZE];
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // shift away the tagged block id's tag
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ n##I = n##I >> SKC_TAGGED_BLOCK_ID_BITS_TAG;
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // swap current id with next
+ //
+ if (get_sub_group_local_id() == SKC_PATHS_RECLAIM_SUBGROUP_SIZE - 1)
+ {
+ skc_block_id_t const next = SKC_CONCAT(n,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST);
+
+ SKC_CONCAT(n,SKC_PATHS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
+
+ id = next;
+ }
+
+ //
+ // count reclaimable blocks in each lane
+ //
+ SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ packed_count |= SKC_PATHS_RECLAIM_PACKED_COUNT_IS_BLOCK(n##I,I);
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // scan to find index of each block
+ //
+ SKC_PATHS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
+
+ SKC_PATHS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
+
+ //
+ // store blocks back to ring
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) { \
+ skc_uint const index = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
+ skc_uint const count = SKC_PATHS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
+ skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
+ if (count > 0) { \
+ bp_ids[bp_ids_idx] = n##I; \
+ } \
+ skc_uint const total = index + count; \
+ bp_ids_base += sub_group_broadcast(total,SKC_PATHS_RECLAIM_SUBGROUP_SIZE-1); \
+ }
+
+ SKC_PATHS_RECLAIM_BLOCK_EXPAND();
+
+ // printf("P %7u ! %u\n",bp_ids_idx,n##I);
+
+ // any more nodes?
+ } while (--count_nodes > 0);
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/place.cl b/src/compute/skc/platforms/cl_12/kernels/place.cl
index 00f16f7843..92fa0a243d 100644
--- a/src/compute/skc/place.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/place.cl
@@ -1,871 +1,871 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "common.h"
-#include "atomic_cl.h"
-#include "raster.h"
-#include "tile.h"
-
-//
-//
-//
-
-#define SKC_PLACE_SUBGROUP_MASK (SKC_PLACE_SUBGROUP_SIZE - 1)
-#define SKC_PLACE_SUBGROUP_LAST (SKC_PLACE_SUBGROUP_SIZE - 1)
-
-//
-//
-//
-
-#define SKC_PLACE_SMEM_COUNT_TTSK SKC_MAX_MACRO(SKC_RASTER_NODE_MAX_TTSK,SKC_PLACE_SUBGROUP_SIZE)
-#define SKC_PLACE_SMEM_COUNT_TTPK SKC_RASTER_NODE_MAX_TTPK
-
-//
-//
-//
-
-#define SKC_PLACE_X (SKC_DEVICE_BLOCK_DWORDS / SKC_PLACE_SUBGROUP_SIZE)
-
-//
-//
-//
-
-#if ( SKC_PLACE_X == 1 )
-#define SKC_PLACE_EXPAND() SKC_EXPAND_1()
-#define SKC_PLACE_EXPAND_I_LAST 0
-
-#elif ( SKC_PLACE_X == 2 )
-#define SKC_PLACE_EXPAND() SKC_EXPAND_2()
-#define SKC_PLACE_EXPAND_I_LAST 1
-
-#elif ( SKC_PLACE_X == 4 )
-#define SKC_PLACE_EXPAND() SKC_EXPAND_4()
-#define SKC_PLACE_EXPAND_I_LAST 3
-
-#elif ( SKC_PLACE_X == 8 )
-#define SKC_PLACE_EXPAND() SKC_EXPAND_8()
-#define SKC_PLACE_EXPAND_I_LAST 7
-
-#elif ( SKC_PLACE_X == 16)
-#define SKC_PLACE_EXPAND() SKC_EXPAND_16()
-#define SKC_PLACE_EXPAND_I_LAST 15
-#endif
-
-//
-// PREFIX STORES THE 64-BIT KEYS WITH TWO 32-BIT SUBGROUP-WIDE
-// COALESCED WRITES. LO FIRST, FOLLOWED BY HI.
-//
-// THIS SLIGHTLY COMPLICATES LOADING BY THE PLACE KERNEL IF THE
-// KERNELS USE DIFFERENT SUBGROUP SIZES.
-//
-// THE BENEFIT IS THAT THE RASTER RECLAIM KERNEL ONLY HAS TO LOAD THE
-// LO WORD OF THE KEY SINCE IT CONTAINS THE BLOCK ID.
-//
-// NOTE: AT THIS POINT, ONLY INTEL'S HD GRAPHICS ARCHITECTURE UNDER
-// OPENCL SUPPORTS SELECTING A SUBGROUP SIZE (8/16/32). VULKAN MAY
-// ONLY SUPPORT A SUBGROUP SIZE OF 16.
-//
-
-#if ( SKC_PREFIX_SUBGROUP_SIZE == SKC_PLACE_SUBGROUP_SIZE )
-
-#define SKC_PLACE_STRIDE_H(L) (L)
-#define SKC_PLACE_STRIDE_V_LO(I) (I * 2 * SKC_PLACE_SUBGROUP_SIZE)
-#define SKC_PLACE_STRIDE_V_HI(I) (SKC_PLACE_STRIDE_V_LO(I) + SKC_PLACE_SUBGROUP_SIZE)
-
-#elif ( SKC_PREFIX_SUBGROUP_SIZE > SKC_PLACE_SUBGROUP_SIZE ) // same as above when ratio equals 1
-
-#define SKC_PLACE_SUBGROUP_RATIO (SKC_PREFIX_SUBGROUP_SIZE / SKC_PLACE_SUBGROUP_SIZE)
-#define SKC_PLACE_SUBGROUP_RATIO_MASK (SKC_PLACE_SUBGROUP_RATIO - 1)
-#define SKC_PLACE_SUBGROUP_RATIO_SCALE(I) ((I / SKC_PLACE_SUBGROUP_RATIO) * 2 * SKC_PLACE_SUBGROUP_RATIO + (I & SKC_PLACE_SUBGROUP_RATIO_MASK))
-
-#define SKC_PLACE_STRIDE_H(L) (L)
-#define SKC_PLACE_STRIDE_V_LO(I) (SKC_PLACE_SUBGROUP_RATIO_SCALE(I) * SKC_PLACE_SUBGROUP_SIZE)
-#define SKC_PLACE_STRIDE_V_HI(I) (SKC_PLACE_STRIDE_V_LO(I) + SKC_PLACE_SUBGROUP_RATIO * SKC_PLACE_SUBGROUP_SIZE)
-
-#elif ( SKC_PREFIX_SUBGROUP_SIZE < SKC_PLACE_SUBGROUP_SIZE ) // same as above when ratio equals 1
-
-#define SKC_PLACE_SUBGROUP_RATIO (SKC_PLACE_SUBGROUP_SIZE / SKC_PREFIX_SUBGROUP_SIZE)
-#define SKC_PLACE_SUBGROUP_RATIO_MASK (SKC_PLACE_SUBGROUP_SIZE / SKC_PLACE_SUBGROUP_RATIO - 1) // equal to prefix subgroup mask
-
-#define SKC_PLACE_STRIDE_H(L) (((L) & ~SKC_PLACE_SUBGROUP_RATIO_MASK) * 2 + ((L) & SKC_PLACE_SUBGROUP_RATIO_MASK))
-#define SKC_PLACE_STRIDE_V_LO(I) (I * 2 * SKC_PLACE_SUBGROUP_SIZE)
-#define SKC_PLACE_STRIDE_V_HI(I) (SKC_PLACE_STRIDE_V_LO(I) + SKC_PLACE_SUBGROUP_SIZE / SKC_PLACE_SUBGROUP_RATIO)
-
-#endif
-
-//
-// A COARSE COMPILE-TIME GUARD -- WILL ONLY MATTER WHEN SUBGROUP SIZE
-// IS EQUAL TO THE RASTER HEADER SIZE (CURRENTLY 8)
-//
-
-#define SKC_PLACE_IS_ALL_HEADER_ROW(i) (((i)+1) * SKC_PLACE_SUBGROUP_SIZE <= SKC_RASTER_HEAD_DWORDS)
-
-#define SKC_PLACE_IS_NOT_HEADER_ROW(i) ( (i) * SKC_PLACE_SUBGROUP_SIZE >= SKC_RASTER_HEAD_DWORDS)
-
-#define SKC_PLACE_IS_TRAILING_ROW(i) (((i)+1) * SKC_PLACE_SUBGROUP_SIZE == SKC_DEVICE_BLOCK_DWORDS)
-
-#define SKC_PLACE_IS_HEADER_ROW_KEY(i) ((i) * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() - SKC_RASTER_HEAD_DWORDS < (k))
-
-
-//
-// Note: HEADER_LESS_THAN purposefully wraps unsigned integer to ~UINT_MAX
-//
-#define SKC_PLACE_HEADER_LESS_THAN(i,k) ((i) * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() - SKC_RASTER_HEAD_DWORDS < (k))
-#define SKC_PLACE_NODE_LESS_THAN(i,k) ((i) * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() < (k))
-
-//
-// TTSK v2:
-//
-// 0 63
-// | TTSB ID | PREFIX | SPAN | X | Y |
-// +---------+--------+---------+-----+-----+
-// | 27 | 1 (=0) | 12 (=0) | 12 | 12 |
-//
-//
-// TTPK v2:
-//
-// 0 63
-// | TTPB ID | PREFIX | SPAN | X | Y |
-// +---------+--------+------+-----+-----+
-// | 27 | 1 (=1) | 12 | 12 | 12 |
-//
-//
-
-//
-// TTCK (32-BIT COMPARE) v1:
-//
-// 0 63
-// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
-// +----------------------+--------+--------+-------+-----+-----+
-// | 30 | 1 | 1 | 18 | 7 | 7 |
-//
-//
-// TTCK (32-BIT COMPARE) v2:
-//
-// 0 63
-// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
-// +----------------------+--------+--------+-------+-----+-----+
-// | 30 | 1 | 1 | 15 | 9 | 8 |
-//
-//
-// TTCK (64-BIT COMPARE) -- achieves 4K x 4K with an 8x16 tile:
-//
-// 0 63
-// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
-// +----------------------+--------+--------+-------+-----+-----+
-// | 27 | 1 | 1 | 18 | 9 | 8 |
-//
-
-union skc_subgroup_smem
-{
- skc_uint scratch[SKC_PLACE_SUBGROUP_SIZE]; // will only use SKC_PLACE_SUBGROUP_SIZE
-
- struct {
- struct {
- skc_ttsk_lo_t sk[SKC_PLACE_SMEM_COUNT_TTSK];
- skc_ttpk_lo_t pk[SKC_PLACE_SMEM_COUNT_TTPK];
- } lo;
-
- struct {
- skc_ttsk_hi_t sk[SKC_PLACE_SMEM_COUNT_TTSK];
- skc_ttpk_hi_t pk[SKC_PLACE_SMEM_COUNT_TTPK];
- } hi;
-
- // skc_uint span[SKC_PLACE_SMEM_COUNT_TTPK];
- };
-
-};
-
-//
-// scatter scan max
-//
-static
-skc_int_v_t
-skc_scatter_scan_max(__local union skc_subgroup_smem volatile * const smem,
- skc_int_v_t const iss,
- skc_int_v_t const ess)
-{
- //
- // prefix sums determine which lanes we're going to work on next
- //
- skc_pred_v_t const is_scratch_store = (iss > 0) && (ess < SKC_PLACE_SUBGROUP_SIZE);
- skc_int_v_t const scratch_idx = max(ess,0);
-
- //
- // SIMT
- //
-
- //
- // zero the volatile smem scratchpad using vector syntax
- //
- smem->scratch[get_sub_group_local_id()] = ( 0 );
-
- //
- // store source lane at starting lane
- //
- if (is_scratch_store) {
- smem->scratch[scratch_idx] = get_sub_group_local_id();
- }
-
- //
- // propagate lanes to right using max scan
- //
- skc_int_v_t const scratch = smem->scratch[get_sub_group_local_id()];
- skc_int_v_t const source = sub_group_scan_inclusive_max(scratch);
-
- return source;
-}
-
-//
-//
-//
-
-static
-skc_bool
-skc_xk_clip(union skc_tile_clip const * const tile_clip,
- skc_ttxk_t * const xk)
-{
- //
- // clip the sk and pk keys
- //
- // if fully clipped then return false
- //
- // alternatively -- we can expand all these keys in place
- //
- // alternatively -- keep sk and pk keys segregated because sk
- // represents the vast majority of keys and are easier to process.
- // don't mess with the fastpath!
- //
- return false;
-}
-
-//
-//
-//
-
-static
-skc_ttck_t
-skc_sk_to_ck(__local union skc_subgroup_smem volatile * const smem,
- union skc_cmd_place const * const cmd,
- skc_uint const sk_idx)
-{
- skc_uint const lo = smem->lo.sk[sk_idx]; // assumes prefix bit is 0
- skc_uint const hi = smem->hi.sk[sk_idx];
-
- skc_ttck_t ck;
-
- ck.lo = lo | (cmd->layer_id << SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE); // FIXME -- preshift the layer id
-
- // FIXME -- x and y should already be clipped and shifted
- skc_uint const x = (cmd->tx + SKC_BFE(hi,SKC_TTXK_HI_BITS_X,SKC_TTXK_HI_OFFSET_X)) << SKC_TTCK_HI_OFFSET_X;
- skc_uint const y = (cmd->ty + SKC_BFE(hi,SKC_TTXK_HI_BITS_Y,SKC_TTXK_HI_OFFSET_Y)) << SKC_TTCK_HI_OFFSET_Y;
-
- ck.hi = (cmd->layer_id >> SKC_TTCK_HI_SHR_LAYER) | x | y;
-
- return ck;
-}
-
-static
-skc_ttck_t
-skc_pk_to_ck(__local union skc_subgroup_smem volatile * const smem,
- union skc_cmd_place const * const cmd,
- skc_uint const pk_idx,
- skc_uint const dx)
-{
- skc_uint const lo = smem->lo.pk[pk_idx] & SKC_TTXK_LO_MASK_ID_PREFIX; // assumes prefix bit is 1
- skc_uint const hi = smem->hi.pk[pk_idx];
-
- skc_ttck_t ck;
-
- ck.lo = lo | (cmd->layer_id << SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE); // FIXME -- preshift the layer id
-
- // FIXME -- x and y should already be clipped and shifted
- skc_uint const x = (cmd->tx + dx + SKC_BFE(hi,SKC_TTXK_HI_BITS_X,SKC_TTXK_HI_OFFSET_X)) << SKC_TTCK_HI_OFFSET_X;
- skc_uint const y = (cmd->ty + SKC_BFE(hi,SKC_TTXK_HI_BITS_Y,SKC_TTXK_HI_OFFSET_Y)) << SKC_TTCK_HI_OFFSET_Y;
-
- ck.hi = (cmd->layer_id >> SKC_TTCK_HI_SHR_LAYER) | x | y;
-
- return ck;
-}
-
-//
-//
-//
-
-static
-void
-skc_ttsk_flush(__global SKC_ATOMIC_UINT volatile * const place_atomics,
- __global skc_ttck_t * const ck_extent,
- __local union skc_subgroup_smem volatile * const smem,
- union skc_cmd_place const * const cmd,
- skc_uint const sk)
-{
- //
- // Pretty sure you can never ever have an sk count equal to 0
- //
- skc_uint ck_base = 0;
-
- // last lane performs the block pool allocation with an atomic increment
- if (get_sub_group_local_id() == 0) {
- ck_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(place_atomics,sk);
- }
-
- // broadcast base to all lanes
- ck_base = sub_group_broadcast(ck_base,0);
-
- // convert sk keys to ck keys
- for (skc_uint ii=get_sub_group_local_id(); ii<sk; ii+=SKC_PLACE_SUBGROUP_SIZE)
- {
- ck_extent[ck_base+ii] = skc_sk_to_ck(smem,cmd,ii);
- }
-}
-
-//
-//
-//
-
-static
-skc_int
-skc_ttpk_get_span(__local union skc_subgroup_smem volatile * const smem,
- skc_uint const idx)
-{
- skc_uint const lo = smem->lo.pk[idx];
- skc_uint const hi = smem->hi.pk[idx];
-
- skc_uint const span_lo = lo >> SKC_TTXK_LO_OFFSET_SPAN;
- skc_uint const span_hi = (hi & SKC_BITS_TO_MASK(SKC_TTXK_HI_BITS_SPAN)) << SKC_TTXK_LO_BITS_SPAN;
-
- return (span_lo | span_hi) + 1;
-}
-
-//
-//
-//
-
-static
-void
-skc_ttpk_flush(__global SKC_ATOMIC_UINT volatile * const place_atomics,
- __global skc_ttck_t * const ck_extent,
- __local union skc_subgroup_smem volatile * const smem,
- union skc_cmd_place const * const cmd,
- skc_uint const pk)
-{
- // bail out if pk queue is empty
- if (pk == 0)
- return;
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("%u\n",pk);
-#endif
-
- //
- // FIXME -- this nested loop iterates over the queue processing a
- // subgroup of 64-bit keys at a time. This is probably not the most
- // efficient approach so investigate how to store and iterate over a
- // wider than subgroup (node-sized) queue of keys.
- //
-
- // round up so we work with full subgroups
- skc_uint const pk_ru = (pk + SKC_PLACE_SUBGROUP_SIZE - 1) & ~SKC_PLACE_SUBGROUP_MASK;
- skc_uint ii = 0;
-
- // nested loop that expands all ttpk keys
-#if (SKC_PLACE_SMEM_COUNT_TTPK > SKC_PLACE_SUBGROUP_SIZE)
- for (; ii<pk_ru; ii+=SKC_PLACE_SUBGROUP_SIZE)
-#endif
- {
- skc_uint idx = ii + get_sub_group_local_id();
- skc_int span = 0;
-
- // how many tiles does this ttpk span?
- if (idx < pk)
- span = skc_ttpk_get_span(smem,idx);
-
- // we need inclusive, exclusive and total
- skc_int iss = sub_group_scan_inclusive_add(span);
- skc_int ess = iss - span;
- skc_int rem = sub_group_broadcast(iss,SKC_PLACE_SUBGROUP_SIZE-1);
-
- // printf("%u : %u\n",span,iss);
- // continue;
-
- // atomically allocate space for the pk keys
- skc_uint ck_base = 0;
-
- // last lane performs the block pool allocation with an atomic increment
- if (get_sub_group_local_id() == 0) {
- ck_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(place_atomics,rem);
- }
-
- // broadcast atomically allocated extent base to all lanes
- skc_uint ck_idx = sub_group_broadcast(ck_base,0) + get_sub_group_local_id();
-
- //
- // FIXME -- this loop would probably be faster if the ttpk keys
- // were held in registers and accessed with shuffles instead of
- // SMEM loads
- //
-
- //
- // loop until there are no more expanded pk keys
- //
- while (true)
- {
- skc_int const source = skc_scatter_scan_max(smem,iss,ess);
- skc_int const dx = get_sub_group_local_id() - intel_sub_group_shuffle(ess,source);
-
- // store valid ck keys to gmem
- if (get_sub_group_local_id() < rem) {
- ck_extent[ck_idx] = skc_pk_to_ck(smem,cmd,ii+source,dx);
- }
-
- // decrement remainder
- rem -= SKC_PLACE_SUBGROUP_SIZE;
-
- if (rem <= 0)
- break;
-
- // increment/decrement indices
- ck_idx += SKC_PLACE_SUBGROUP_SIZE;
- iss -= SKC_PLACE_SUBGROUP_SIZE;
- ess -= SKC_PLACE_SUBGROUP_SIZE;
- }
- }
-}
-
-//
-//
-//
-
-static
-skc_uint
-skc_ballot(skc_uint * const xk, skc_uint const is_xk)
-{
-#if 0
- //
- // FIXME -- when available, this should use the idiom:
- //
- // ballot() + lane_mask_less_than_or_equal + popcount()
- //
- // Supported by:
- //
- // - Vulkan 1.1 / SPIR-V 1.3
- // - CUDA
- // - AVX2 (SSE*?)
- //
-#else
- //
- // otherwise, emulate with an inclusive scan (yuk)
- //
- skc_uint const prefix = sub_group_scan_inclusive_add(is_xk);
-
- skc_uint const xk_idx = *xk + prefix - is_xk;
-
- *xk += sub_group_broadcast(prefix,SKC_PLACE_SUBGROUP_LAST);
-
-#if 0
- printf("< %3u >\n",xk_idx);
-#endif
-
- return xk_idx;
-#endif
-}
-
-//
-//
-//
-__kernel
-SKC_PLACE_KERNEL_ATTRIBS
-void
-skc_kernel_place(__global skc_bp_elem_t * const bp_elems,
- __global SKC_ATOMIC_UINT volatile * const place_atomics,
- __global skc_ttck_t * const ck_extent,
- __global union skc_cmd_place const * const cmds,
- __global skc_block_id_t * const map,
- skc_uint4 const clip,
- skc_uint const count)
-{
- //
- // declare shared memory block
- //
-#if ( SKC_PLACE_WORKGROUP_SUBGROUPS == 1 )
- __local union skc_subgroup_smem volatile smem[1];
-#else
- __local union skc_subgroup_smem volatile smem_wg[SKC_PLACE_WORKGROUP_SUBGROUPS];
- __local union skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
-#endif
-
- //
- // This is a subgroup-centric kernel
- //
- // Which subgroup in the grid is this?
- //
- // TAKE NOTE: the Intel GEN compiler appears to be recognizing
- // get_group_id(0) as a uniform but the alternative calculation used
- // when there are multiple subgroups per workgroup is not
- // cooperating and driving spillage elsewhere.
- //
- // Test the raster's translated bounds against the composition's
- // tile clip
- //
- // There are 3 cases:
- //
- // - the raster is completely clipped -> return
- // - the raster is partially clipped -> all keys must clipped
- // - the raster is not clipped -> no keys are tested
- //
- //
- // There are at least 4 implementations of place and we want to
- // special-case them as much as possible so that, at the least, the
- // fastpath remains fast.
- //
- // - implement NO CLIP + NO TRANSLATION fastpath -- CAN ATOMICALLY ALLOCATE SK+PK KEYS IN ONE STEP
- //
- // - implement CLIPPED + NO TRANSLATION path
- //
- // - implement NO CLIP + TRANSLATION path
- //
- // - implement CLIPPED + TRANSLATION path
- //
- //
- // FIXME/OPTIMIZATION: split scan accumulator into a triple-bin
- // 12:12:8 integer where:
- //
- // 12: ttsk
- // 12: ttpk
- // 8: /dev/null -- clipped or invalid key
- //
- // Three kinds of nodes in a raster's list:
- //
- // - the head node
- // - an internal node
- // - the final node
- //
-
-#if ( SKC_PLACE_WORKGROUP_SUBGROUPS == 1 )
- skc_uint const cmd_idx = get_group_id(0);
-#else
- skc_uint const cmd_idx = get_group_id(0) * SKC_PLACE_WORKGROUP_SUBGROUPS + get_sub_group_id();
-#endif
-
- // load command
- union skc_cmd_place const cmd = cmds[cmd_idx];
-
- // get the raster header from the raster host id -- scalar
- skc_block_id_t id = map[cmd.raster_h];
-
- //
- // load all of the head block ttxk keys into registers
- //
- // FIXME -- this pattern lends itself to using the higher
- // performance Intel GEN block load instructions
- //
- skc_uint const head_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_PLACE_STRIDE_H(get_sub_group_local_id());
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- union skc_raster_node_elem const h##I = { \
- .u32v2 = { bp_elems[head_id + SKC_PLACE_STRIDE_V_LO(I)], \
- bp_elems[head_id + SKC_PLACE_STRIDE_V_HI(I)] } \
- };
-
- SKC_PLACE_EXPAND();
-
- //
- // load raster header counts -- we only need the "nodes" and "keys"
- // words but the keys we loaded are doublewords.
- //
- // FIXME -- this can be made portable with compile-time macro expansion
- //
- skc_uint nodes = sub_group_broadcast(h0.u32v2.lo,1); // SKC_RASTER_HEAD_OFFSET_COUNTS_NODES
- skc_uint keys = sub_group_broadcast(h0.u32v2.hi,1); // SKC_RASTER_HEAD_OFFSET_COUNTS_KEYS
-
- //
- //
- //
-#if 0
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- printf("%5u : %6u : %3u : %08X . %08X - %08X\n", \
- nodes,keys, \
- I*SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id(), \
- h##I.u32v2.hi,h##I.u32v2.lo, \
- h##I.u32v2.lo & SKC_TTXK_LO_MASK_PREFIX);
-
- SKC_PLACE_EXPAND();
-#endif
-
- //
-#if 0
- if (get_sub_group_local_id() == 0) {
- printf("place: %u / %u / %u\n",head_id,nodes,keys);
- }
-#endif
-
- {
- //
- // classify every key in the header
- //
- // keys: 0 is not a key / 1 is a key
- // skpk: 0 is sk / 1 is pk
- //
- skc_uint bits_keys = 0;
- skc_uint bits_skpk = 0;
-
- //
- // calculate bits_keys
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
- skc_uint const idx = I * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() - SKC_RASTER_HEAD_DWORDS; \
- if (idx < keys) { \
- bits_keys |= (1u << I); \
- } \
- if (SKC_PLACE_IS_TRAILING_ROW(I)) { \
- if (keys > SKC_RASTER_HEAD_COUNT_KEYS) { \
- if (get_sub_group_local_id() == SKC_PLACE_SUBGROUP_LAST) { \
- bits_keys &= ~(1u << I); \
- } \
- } \
- } \
- }
-
- SKC_PLACE_EXPAND();
-
- //
- // blindly calculate bits_skpk
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
- bits_skpk |= (h##I.xk.lo & SKC_TTXK_LO_MASK_PREFIX) >> (SKC_TTXK_LO_OFFSET_PREFIX - I); \
- }
-
- SKC_PLACE_EXPAND();
-
-#if 0
- printf("%2X : %2X\n",bits_keys,bits_skpk);
-#endif
-
- //
- // next pointer is last element of last row. save it now because
- // this might be recognized as a subgroup-uniform/scalar.
- //
- id = sub_group_broadcast(SKC_CONCAT(h,SKC_PLACE_EXPAND_I_LAST).next.node,SKC_PLACE_SUBGROUP_LAST);
-
- //
- // append SK keys first
- //
- skc_uint const bits_sk = bits_keys & ~bits_skpk;
- skc_uint sk = 0;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
- skc_uint is_sk = (bits_sk >> I) & 1; \
- skc_uint sk_idx = skc_ballot(&sk,is_sk); \
- if (is_sk) { \
- smem->lo.sk[sk_idx] = h##I.xk.lo; \
- smem->hi.sk[sk_idx] = h##I.xk.hi; \
- } \
- }
-
- SKC_PLACE_EXPAND();
-
- //
- // append PK keys next
- //
- skc_uint const bits_pk = bits_keys & bits_skpk;
- skc_uint pk = 0;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
- skc_uint is_pk = (bits_pk >> I) & 1; \
- skc_uint pk_idx = skc_ballot(&pk,is_pk); \
- if (is_pk) { \
- smem->lo.pk[pk_idx] = h##I.xk.lo; \
- smem->hi.pk[pk_idx] = h##I.xk.hi; \
- } \
- }
-
- SKC_PLACE_EXPAND();
-
-#if 0
- printf("%2u * %2u\n",sk,pk);
-#endif
- //
- // flush the keys
- //
- skc_ttsk_flush(place_atomics,ck_extent,smem,&cmd,sk);
- skc_ttpk_flush(place_atomics,ck_extent,smem,&cmd,pk);
- }
-
- //
- // we're done if there was only a head node
- //
- if (nodes == 0)
- return;
-
- //
- // decrement keys
- //
- keys -= SKC_RASTER_HEAD_COUNT_KEYS;
-
- //
- // otherwise, append keys in trailing nodes to smem
- //
- while (true)
- {
- //
- // load all of the node block ttxk keys into registers
- //
- // FIXME -- this pattern lends itself to using the higher
- // performance Intel GEN block load instructions
- //
- skc_uint const node_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_PLACE_STRIDE_H(get_sub_group_local_id());
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- union skc_raster_node_elem const n##I = { \
- .u32v2 = { bp_elems[node_id + SKC_PLACE_STRIDE_V_LO(I)], \
- bp_elems[node_id + SKC_PLACE_STRIDE_V_HI(I)] } \
- };
-
- SKC_PLACE_EXPAND();
-
-#if 0
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- printf("%5u : %6u : %3u : %08X . %08X - %08X\n", \
- nodes,keys, \
- I*SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id(), \
- n##I.u32v2.hi,n##I.u32v2.lo, \
- n##I.u32v2.lo & SKC_TTXK_LO_MASK_PREFIX);
-
- SKC_PLACE_EXPAND();
-#endif
-
- //
- // classify every key in the header
- //
- // keys: 0 is not a key / 1 is a key
- // skpk: 0 is sk / 1 is pk
- //
- skc_uint bits_keys = 0;
- skc_uint bits_skpk = 0;
-
- //
- // calculate bits_keys
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) { \
- skc_uint const idx = I * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id(); \
- if (idx < keys) { \
- bits_keys |= (1u << I); \
- } \
- if (SKC_PLACE_IS_TRAILING_ROW(I)) { \
- if (keys > SKC_RASTER_NODE_COUNT_KEYS) { \
- if (get_sub_group_local_id() == SKC_PLACE_SUBGROUP_LAST) { \
- bits_keys &= ~(1u << I); \
- } \
- } \
- } \
- }
-
- SKC_PLACE_EXPAND();
-
- //
- // blindly calculate bits_skpk
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) { \
- bits_skpk |= (n##I.xk.lo & SKC_TTXK_LO_MASK_PREFIX) >> (SKC_TTXK_LO_OFFSET_PREFIX - I); \
- }
-
- SKC_PLACE_EXPAND();
-
-#if 0
- printf("%2X : %2X\n",bits_keys,bits_skpk);
-#endif
-
- //
- // next pointer is last element of last row. save it now because
- // this might be recognized as a subgroup-uniform/scalar.
- //
- id = sub_group_broadcast(SKC_CONCAT(n,SKC_PLACE_EXPAND_I_LAST).next.node,SKC_PLACE_SUBGROUP_LAST);
-
- //
- // append SK keys first
- //
- skc_uint const bits_sk = bits_keys & ~bits_skpk;
- skc_uint sk = 0;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) { \
- skc_uint is_sk = (bits_sk >> I) & 1; \
- skc_uint sk_idx = skc_ballot(&sk,is_sk); \
- if (is_sk) { \
- smem->lo.sk[sk_idx] = n##I.xk.lo; \
- smem->hi.sk[sk_idx] = n##I.xk.hi; \
- } \
- }
-
- SKC_PLACE_EXPAND();
-
- //
- // append PK keys next
- //
- skc_uint const bits_pk = bits_keys & bits_skpk;
- skc_uint pk = 0;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) { \
- skc_uint is_pk = (bits_pk >> I) & 1; \
- skc_uint pk_idx = skc_ballot(&pk,is_pk); \
- if (is_pk) { \
- smem->lo.pk[pk_idx] = n##I.xk.lo; \
- smem->hi.pk[pk_idx] = n##I.xk.hi; \
- } \
- }
-
- SKC_PLACE_EXPAND();
-
-#if 0
- printf("%2u * %2u\n",sk,pk);
-#endif
- //
- // if total for either the sk or pk queue reaches the
- // highwater mark then flush it to the extent
- //
- skc_ttsk_flush(place_atomics,ck_extent,smem,&cmd,sk);
- skc_ttpk_flush(place_atomics,ck_extent,smem,&cmd,pk);
-
- //
- // if this was the last node then we're done
- //
- if (--nodes == 0)
- return;
-
- //
- // otherwise decrement keys
- //
- keys -= SKC_RASTER_NODE_COUNT_KEYS;
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "tile.h"
+#include "common.h"
+#include "raster.h"
+#include "atomic_cl.h"
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#define SKC_PLACE_SUBGROUP_MASK (SKC_PLACE_SUBGROUP_SIZE - 1)
+#define SKC_PLACE_SUBGROUP_LAST (SKC_PLACE_SUBGROUP_SIZE - 1)
+
+//
+//
+//
+
+#define SKC_PLACE_SMEM_COUNT_TTSK SKC_MAX_MACRO(SKC_RASTER_NODE_MAX_TTSK,SKC_PLACE_SUBGROUP_SIZE)
+#define SKC_PLACE_SMEM_COUNT_TTPK SKC_RASTER_NODE_MAX_TTPK
+
+//
+//
+//
+
+#define SKC_PLACE_X (SKC_DEVICE_BLOCK_DWORDS / SKC_PLACE_SUBGROUP_SIZE)
+
+//
+//
+//
+
+#if ( SKC_PLACE_X == 1 )
+#define SKC_PLACE_EXPAND() SKC_EXPAND_1()
+#define SKC_PLACE_EXPAND_I_LAST 0
+
+#elif ( SKC_PLACE_X == 2 )
+#define SKC_PLACE_EXPAND() SKC_EXPAND_2()
+#define SKC_PLACE_EXPAND_I_LAST 1
+
+#elif ( SKC_PLACE_X == 4 )
+#define SKC_PLACE_EXPAND() SKC_EXPAND_4()
+#define SKC_PLACE_EXPAND_I_LAST 3
+
+#elif ( SKC_PLACE_X == 8 )
+#define SKC_PLACE_EXPAND() SKC_EXPAND_8()
+#define SKC_PLACE_EXPAND_I_LAST 7
+
+#elif ( SKC_PLACE_X == 16)
+#define SKC_PLACE_EXPAND() SKC_EXPAND_16()
+#define SKC_PLACE_EXPAND_I_LAST 15
+#endif
+
+//
+// PREFIX STORES THE 64-BIT KEYS WITH TWO 32-BIT SUBGROUP-WIDE
+// COALESCED WRITES. LO FIRST, FOLLOWED BY HI.
+//
+// THIS SLIGHTLY COMPLICATES LOADING BY THE PLACE KERNEL IF THE
+// KERNELS USE DIFFERENT SUBGROUP SIZES.
+//
+// THE BENEFIT IS THAT THE RASTER RECLAIM KERNEL ONLY HAS TO LOAD THE
+// LO WORD OF THE KEY SINCE IT CONTAINS THE BLOCK ID.
+//
+// NOTE: AT THIS POINT, ONLY INTEL'S HD GRAPHICS ARCHITECTURE UNDER
+// OPENCL SUPPORTS SELECTING A SUBGROUP SIZE (8/16/32). VULKAN MAY
+// ONLY SUPPORT A SUBGROUP SIZE OF 16.
+//
+
+#if ( SKC_PREFIX_SUBGROUP_SIZE == SKC_PLACE_SUBGROUP_SIZE )
+
+#define SKC_PLACE_STRIDE_H(L) (L)
+#define SKC_PLACE_STRIDE_V_LO(I) (I * 2 * SKC_PLACE_SUBGROUP_SIZE)
+#define SKC_PLACE_STRIDE_V_HI(I) (SKC_PLACE_STRIDE_V_LO(I) + SKC_PLACE_SUBGROUP_SIZE)
+
+#elif ( SKC_PREFIX_SUBGROUP_SIZE > SKC_PLACE_SUBGROUP_SIZE ) // same as above when ratio equals 1
+
+#define SKC_PLACE_SUBGROUP_RATIO (SKC_PREFIX_SUBGROUP_SIZE / SKC_PLACE_SUBGROUP_SIZE)
+#define SKC_PLACE_SUBGROUP_RATIO_MASK (SKC_PLACE_SUBGROUP_RATIO - 1)
+#define SKC_PLACE_SUBGROUP_RATIO_SCALE(I) ((I / SKC_PLACE_SUBGROUP_RATIO) * 2 * SKC_PLACE_SUBGROUP_RATIO + (I & SKC_PLACE_SUBGROUP_RATIO_MASK))
+
+#define SKC_PLACE_STRIDE_H(L) (L)
+#define SKC_PLACE_STRIDE_V_LO(I) (SKC_PLACE_SUBGROUP_RATIO_SCALE(I) * SKC_PLACE_SUBGROUP_SIZE)
+#define SKC_PLACE_STRIDE_V_HI(I) (SKC_PLACE_STRIDE_V_LO(I) + SKC_PLACE_SUBGROUP_RATIO * SKC_PLACE_SUBGROUP_SIZE)
+
+#elif ( SKC_PREFIX_SUBGROUP_SIZE < SKC_PLACE_SUBGROUP_SIZE ) // same as above when ratio equals 1
+
+#define SKC_PLACE_SUBGROUP_RATIO (SKC_PLACE_SUBGROUP_SIZE / SKC_PREFIX_SUBGROUP_SIZE)
+#define SKC_PLACE_SUBGROUP_RATIO_MASK (SKC_PLACE_SUBGROUP_SIZE / SKC_PLACE_SUBGROUP_RATIO - 1) // equal to prefix subgroup mask
+
+#define SKC_PLACE_STRIDE_H(L) (((L) & ~SKC_PLACE_SUBGROUP_RATIO_MASK) * 2 + ((L) & SKC_PLACE_SUBGROUP_RATIO_MASK))
+#define SKC_PLACE_STRIDE_V_LO(I) (I * 2 * SKC_PLACE_SUBGROUP_SIZE)
+#define SKC_PLACE_STRIDE_V_HI(I) (SKC_PLACE_STRIDE_V_LO(I) + SKC_PLACE_SUBGROUP_SIZE / SKC_PLACE_SUBGROUP_RATIO)
+
+#endif
+
+//
+// A COARSE COMPILE-TIME GUARD -- WILL ONLY MATTER WHEN SUBGROUP SIZE
+// IS EQUAL TO THE RASTER HEADER SIZE (CURRENTLY 8)
+//
+
+#define SKC_PLACE_IS_ALL_HEADER_ROW(i) (((i)+1) * SKC_PLACE_SUBGROUP_SIZE <= SKC_RASTER_HEAD_DWORDS)
+
+#define SKC_PLACE_IS_NOT_HEADER_ROW(i) ( (i) * SKC_PLACE_SUBGROUP_SIZE >= SKC_RASTER_HEAD_DWORDS)
+
+#define SKC_PLACE_IS_TRAILING_ROW(i) (((i)+1) * SKC_PLACE_SUBGROUP_SIZE == SKC_DEVICE_BLOCK_DWORDS)
+
+#define SKC_PLACE_IS_HEADER_ROW_KEY(i) ((i) * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() - SKC_RASTER_HEAD_DWORDS < (k))
+
+
+//
+// Note: HEADER_LESS_THAN purposefully wraps unsigned integer to ~UINT_MAX
+//
+#define SKC_PLACE_HEADER_LESS_THAN(i,k) ((i) * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() - SKC_RASTER_HEAD_DWORDS < (k))
+#define SKC_PLACE_NODE_LESS_THAN(i,k) ((i) * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() < (k))
+
+//
+// TTSK v2:
+//
+// 0 63
+// | TTSB ID | PREFIX | SPAN | X | Y |
+// +---------+--------+---------+-----+-----+
+// | 27 | 1 (=0) | 12 (=0) | 12 | 12 |
+//
+//
+// TTPK v2:
+//
+// 0 63
+// | TTPB ID | PREFIX | SPAN | X | Y |
+// +---------+--------+------+-----+-----+
+// | 27 | 1 (=1) | 12 | 12 | 12 |
+//
+//
+
+//
+// TTCK (32-BIT COMPARE) v1:
+//
+// 0 63
+// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
+// +----------------------+--------+--------+-------+-----+-----+
+// | 30 | 1 | 1 | 18 | 7 | 7 |
+//
+//
+// TTCK (32-BIT COMPARE) v2:
+//
+// 0 63
+// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
+// +----------------------+--------+--------+-------+-----+-----+
+// | 30 | 1 | 1 | 15 | 9 | 8 |
+//
+//
+// TTCK (64-BIT COMPARE) -- achieves 4K x 4K with an 8x16 tile:
+//
+// 0 63
+// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
+// +----------------------+--------+--------+-------+-----+-----+
+// | 27 | 1 | 1 | 18 | 9 | 8 |
+//
+
+union skc_subgroup_smem
+{
+ skc_uint scratch[SKC_PLACE_SUBGROUP_SIZE]; // will only use SKC_PLACE_SUBGROUP_SIZE
+
+ struct {
+ struct {
+ skc_ttsk_lo_t sk[SKC_PLACE_SMEM_COUNT_TTSK];
+ skc_ttpk_lo_t pk[SKC_PLACE_SMEM_COUNT_TTPK];
+ } lo;
+
+ struct {
+ skc_ttsk_hi_t sk[SKC_PLACE_SMEM_COUNT_TTSK];
+ skc_ttpk_hi_t pk[SKC_PLACE_SMEM_COUNT_TTPK];
+ } hi;
+
+ // skc_uint span[SKC_PLACE_SMEM_COUNT_TTPK];
+ };
+
+};
+
+//
+// scatter scan max
+//
+static
+skc_int_v_t
+skc_scatter_scan_max(__local union skc_subgroup_smem volatile * const smem,
+ skc_int_v_t const iss,
+ skc_int_v_t const ess)
+{
+ //
+ // prefix sums determine which lanes we're going to work on next
+ //
+ skc_pred_v_t const is_scratch_store = (iss > 0) && (ess < SKC_PLACE_SUBGROUP_SIZE);
+ skc_int_v_t const scratch_idx = max(ess,0);
+
+ //
+ // SIMT
+ //
+
+ //
+ // zero the volatile smem scratchpad using vector syntax
+ //
+ smem->scratch[get_sub_group_local_id()] = ( 0 );
+
+ //
+ // store source lane at starting lane
+ //
+ if (is_scratch_store) {
+ smem->scratch[scratch_idx] = get_sub_group_local_id();
+ }
+
+ //
+ // propagate lanes to right using max scan
+ //
+ skc_int_v_t const scratch = smem->scratch[get_sub_group_local_id()];
+ skc_int_v_t const source = sub_group_scan_inclusive_max(scratch);
+
+ return source;
+}
+
+//
+//
+//
+
+static
+skc_bool
+skc_xk_clip(union skc_tile_clip const * const tile_clip,
+ skc_ttxk_t * const xk)
+{
+ //
+ // clip the sk and pk keys
+ //
+ // if fully clipped then return false
+ //
+ // alternatively -- we can expand all these keys in place
+ //
+ // alternatively -- keep sk and pk keys segregated because sk
+ // represents the vast majority of keys and are easier to process.
+ // don't mess with the fastpath!
+ //
+ return false;
+}
+
+//
+//
+//
+
+static
+skc_ttck_t
+skc_sk_to_ck(__local union skc_subgroup_smem volatile * const smem,
+ union skc_cmd_place const * const cmd,
+ skc_uint const sk_idx)
+{
+ skc_uint const lo = smem->lo.sk[sk_idx]; // assumes prefix bit is 0
+ skc_uint const hi = smem->hi.sk[sk_idx];
+
+ skc_ttck_t ck;
+
+ ck.lo = lo | (cmd->layer_id << SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE); // FIXME -- preshift the layer id
+
+ // FIXME -- x and y should already be clipped and shifted
+ skc_uint const x = (cmd->tx + SKC_BFE(hi,SKC_TTXK_HI_BITS_X,SKC_TTXK_HI_OFFSET_X)) << SKC_TTCK_HI_OFFSET_X;
+ skc_uint const y = (cmd->ty + SKC_BFE(hi,SKC_TTXK_HI_BITS_Y,SKC_TTXK_HI_OFFSET_Y)) << SKC_TTCK_HI_OFFSET_Y;
+
+ ck.hi = (cmd->layer_id >> SKC_TTCK_HI_SHR_LAYER) | x | y;
+
+ return ck;
+}
+
+static
+skc_ttck_t
+skc_pk_to_ck(__local union skc_subgroup_smem volatile * const smem,
+ union skc_cmd_place const * const cmd,
+ skc_uint const pk_idx,
+ skc_uint const dx)
+{
+ skc_uint const lo = smem->lo.pk[pk_idx] & SKC_TTXK_LO_MASK_ID_PREFIX; // assumes prefix bit is 1
+ skc_uint const hi = smem->hi.pk[pk_idx];
+
+ skc_ttck_t ck;
+
+ ck.lo = lo | (cmd->layer_id << SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE); // FIXME -- preshift the layer id
+
+ // FIXME -- x and y should already be clipped and shifted
+ skc_uint const x = (cmd->tx + dx + SKC_BFE(hi,SKC_TTXK_HI_BITS_X,SKC_TTXK_HI_OFFSET_X)) << SKC_TTCK_HI_OFFSET_X;
+ skc_uint const y = (cmd->ty + SKC_BFE(hi,SKC_TTXK_HI_BITS_Y,SKC_TTXK_HI_OFFSET_Y)) << SKC_TTCK_HI_OFFSET_Y;
+
+ ck.hi = (cmd->layer_id >> SKC_TTCK_HI_SHR_LAYER) | x | y;
+
+ return ck;
+}
+
+//
+//
+//
+
+static
+void
+skc_ttsk_flush(__global SKC_ATOMIC_UINT volatile * const place_atomics,
+ __global skc_ttck_t * const ck_extent,
+ __local union skc_subgroup_smem volatile * const smem,
+ union skc_cmd_place const * const cmd,
+ skc_uint const sk)
+{
+ //
+ // Pretty sure you can never ever have an sk count equal to 0
+ //
+ skc_uint ck_base = 0;
+
+ // last lane performs the block pool allocation with an atomic increment
+ if (get_sub_group_local_id() == 0) {
+ ck_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(place_atomics,sk);
+ }
+
+ // broadcast base to all lanes
+ ck_base = sub_group_broadcast(ck_base,0);
+
+ // convert sk keys to ck keys
+ for (skc_uint ii=get_sub_group_local_id(); ii<sk; ii+=SKC_PLACE_SUBGROUP_SIZE)
+ {
+ ck_extent[ck_base+ii] = skc_sk_to_ck(smem,cmd,ii);
+ }
+}
+
+//
+//
+//
+
+static
+skc_int
+skc_ttpk_get_span(__local union skc_subgroup_smem volatile * const smem,
+ skc_uint const idx)
+{
+ skc_uint const lo = smem->lo.pk[idx];
+ skc_uint const hi = smem->hi.pk[idx];
+
+ skc_uint const span_lo = lo >> SKC_TTXK_LO_OFFSET_SPAN;
+ skc_uint const span_hi = (hi & SKC_BITS_TO_MASK(SKC_TTXK_HI_BITS_SPAN)) << SKC_TTXK_LO_BITS_SPAN;
+
+ return (span_lo | span_hi) + 1;
+}
+
+//
+//
+//
+
+static
+void
+skc_ttpk_flush(__global SKC_ATOMIC_UINT volatile * const place_atomics,
+ __global skc_ttck_t * const ck_extent,
+ __local union skc_subgroup_smem volatile * const smem,
+ union skc_cmd_place const * const cmd,
+ skc_uint const pk)
+{
+ // bail out if pk queue is empty
+ if (pk == 0)
+ return;
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("%u\n",pk);
+#endif
+
+ //
+ // FIXME -- this nested loop iterates over the queue processing a
+ // subgroup of 64-bit keys at a time. This is probably not the most
+ // efficient approach so investigate how to store and iterate over a
+ // wider than subgroup (node-sized) queue of keys.
+ //
+
+ // round up so we work with full subgroups
+ skc_uint const pk_ru = (pk + SKC_PLACE_SUBGROUP_SIZE - 1) & ~SKC_PLACE_SUBGROUP_MASK;
+ skc_uint ii = 0;
+
+ // nested loop that expands all ttpk keys
+#if (SKC_PLACE_SMEM_COUNT_TTPK > SKC_PLACE_SUBGROUP_SIZE)
+ for (; ii<pk_ru; ii+=SKC_PLACE_SUBGROUP_SIZE)
+#endif
+ {
+ skc_uint idx = ii + get_sub_group_local_id();
+ skc_int span = 0;
+
+ // how many tiles does this ttpk span?
+ if (idx < pk)
+ span = skc_ttpk_get_span(smem,idx);
+
+ // we need inclusive, exclusive and total
+ skc_int iss = sub_group_scan_inclusive_add(span);
+ skc_int ess = iss - span;
+ skc_int rem = sub_group_broadcast(iss,SKC_PLACE_SUBGROUP_SIZE-1);
+
+ // printf("%u : %u\n",span,iss);
+ // continue;
+
+ // atomically allocate space for the pk keys
+ skc_uint ck_base = 0;
+
+ // last lane performs the block pool allocation with an atomic increment
+ if (get_sub_group_local_id() == 0) {
+ ck_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(place_atomics,rem);
+ }
+
+ // broadcast atomically allocated extent base to all lanes
+ skc_uint ck_idx = sub_group_broadcast(ck_base,0) + get_sub_group_local_id();
+
+ //
+ // FIXME -- this loop would probably be faster if the ttpk keys
+ // were held in registers and accessed with shuffles instead of
+ // SMEM loads
+ //
+
+ //
+ // loop until there are no more expanded pk keys
+ //
+ while (true)
+ {
+ skc_int const source = skc_scatter_scan_max(smem,iss,ess);
+ skc_int const dx = get_sub_group_local_id() - intel_sub_group_shuffle(ess,source);
+
+ // store valid ck keys to gmem
+ if (get_sub_group_local_id() < rem) {
+ ck_extent[ck_idx] = skc_pk_to_ck(smem,cmd,ii+source,dx);
+ }
+
+ // decrement remainder
+ rem -= SKC_PLACE_SUBGROUP_SIZE;
+
+ if (rem <= 0)
+ break;
+
+ // increment/decrement indices
+ ck_idx += SKC_PLACE_SUBGROUP_SIZE;
+ iss -= SKC_PLACE_SUBGROUP_SIZE;
+ ess -= SKC_PLACE_SUBGROUP_SIZE;
+ }
+ }
+}
+
+//
+//
+//
+
+static
+skc_uint
+skc_ballot(skc_uint * const xk, skc_uint const is_xk)
+{
+#if 0
+ //
+ // FIXME -- when available, this should use the idiom:
+ //
+ // ballot() + lane_mask_less_than_or_equal + popcount()
+ //
+ // Supported by:
+ //
+ // - Vulkan 1.1 / SPIR-V 1.3
+ // - CUDA
+ // - AVX2 (SSE*?)
+ //
+#else
+ //
+ // otherwise, emulate with an inclusive scan (yuk)
+ //
+ skc_uint const prefix = sub_group_scan_inclusive_add(is_xk);
+
+ skc_uint const xk_idx = *xk + prefix - is_xk;
+
+ *xk += sub_group_broadcast(prefix,SKC_PLACE_SUBGROUP_LAST);
+
+#if 0
+ printf("< %3u >\n",xk_idx);
+#endif
+
+ return xk_idx;
+#endif
+}
+
+//
+//
+//
+__kernel
+SKC_PLACE_KERNEL_ATTRIBS
+void
+skc_kernel_place(__global skc_bp_elem_t * const bp_elems,
+ __global SKC_ATOMIC_UINT volatile * const place_atomics,
+ __global skc_ttck_t * const ck_extent,
+ __global union skc_cmd_place const * const cmds,
+ __global skc_block_id_t * const map,
+ skc_uint4 const clip,
+ skc_uint const count)
+{
+ //
+ // declare shared memory block
+ //
+#if ( SKC_PLACE_WORKGROUP_SUBGROUPS == 1 )
+ __local union skc_subgroup_smem volatile smem[1];
+#else
+ __local union skc_subgroup_smem volatile smem_wg[SKC_PLACE_WORKGROUP_SUBGROUPS];
+ __local union skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
+#endif
+
+ //
+ // This is a subgroup-centric kernel
+ //
+ // Which subgroup in the grid is this?
+ //
+ // TAKE NOTE: the Intel GEN compiler appears to be recognizing
+ // get_group_id(0) as a uniform but the alternative calculation used
+ // when there are multiple subgroups per workgroup is not
+ // cooperating and driving spillage elsewhere.
+ //
+ // Test the raster's translated bounds against the composition's
+ // tile clip
+ //
+ // There are 3 cases:
+ //
+ // - the raster is completely clipped -> return
+ // - the raster is partially clipped -> all keys must clipped
+ // - the raster is not clipped -> no keys are tested
+ //
+ //
+ // There are at least 4 implementations of place and we want to
+ // special-case them as much as possible so that, at the least, the
+ // fastpath remains fast.
+ //
+ // - implement NO CLIP + NO TRANSLATION fastpath -- CAN ATOMICALLY ALLOCATE SK+PK KEYS IN ONE STEP
+ //
+ // - implement CLIPPED + NO TRANSLATION path
+ //
+ // - implement NO CLIP + TRANSLATION path
+ //
+ // - implement CLIPPED + TRANSLATION path
+ //
+ //
+ // FIXME/OPTIMIZATION: split scan accumulator into a triple-bin
+ // 12:12:8 integer where:
+ //
+ // 12: ttsk
+ // 12: ttpk
+ // 8: /dev/null -- clipped or invalid key
+ //
+ // Three kinds of nodes in a raster's list:
+ //
+ // - the head node
+ // - an internal node
+ // - the final node
+ //
+
+#if ( SKC_PLACE_WORKGROUP_SUBGROUPS == 1 )
+ skc_uint const cmd_idx = get_group_id(0);
+#else
+ skc_uint const cmd_idx = get_group_id(0) * SKC_PLACE_WORKGROUP_SUBGROUPS + get_sub_group_id();
+#endif
+
+ // load command
+ union skc_cmd_place const cmd = cmds[cmd_idx];
+
+ // get the raster header from the raster host id -- scalar
+ skc_block_id_t id = map[cmd.raster_h];
+
+ //
+ // load all of the head block ttxk keys into registers
+ //
+ // FIXME -- this pattern lends itself to using the higher
+ // performance Intel GEN block load instructions
+ //
+ skc_uint const head_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_PLACE_STRIDE_H(get_sub_group_local_id());
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ union skc_raster_node_elem const h##I = { \
+ .u32v2 = { bp_elems[head_id + SKC_PLACE_STRIDE_V_LO(I)], \
+ bp_elems[head_id + SKC_PLACE_STRIDE_V_HI(I)] } \
+ };
+
+ SKC_PLACE_EXPAND();
+
+ //
+ // load raster header counts -- we only need the "nodes" and "keys"
+ // words but the keys we loaded are doublewords.
+ //
+ // FIXME -- this can be made portable with compile-time macro expansion
+ //
+ skc_uint nodes = sub_group_broadcast(h0.u32v2.lo,1); // SKC_RASTER_HEAD_OFFSET_COUNTS_NODES
+ skc_uint keys = sub_group_broadcast(h0.u32v2.hi,1); // SKC_RASTER_HEAD_OFFSET_COUNTS_KEYS
+
+ //
+ //
+ //
+#if 0
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ printf("%5u : %6u : %3u : %08X . %08X - %08X\n", \
+ nodes,keys, \
+ I*SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id(), \
+ h##I.u32v2.hi,h##I.u32v2.lo, \
+ h##I.u32v2.lo & SKC_TTXK_LO_MASK_PREFIX);
+
+ SKC_PLACE_EXPAND();
+#endif
+
+ //
+#if 0
+ if (get_sub_group_local_id() == 0) {
+ printf("place: %u / %u / %u\n",head_id,nodes,keys);
+ }
+#endif
+
+ {
+ //
+ // classify every key in the header
+ //
+ // keys: 0 is not a key / 1 is a key
+ // skpk: 0 is sk / 1 is pk
+ //
+ skc_uint bits_keys = 0;
+ skc_uint bits_skpk = 0;
+
+ //
+ // calculate bits_keys
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
+ skc_uint const idx = I * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id() - SKC_RASTER_HEAD_DWORDS; \
+ if (idx < keys) { \
+ bits_keys |= (1u << I); \
+ } \
+ if (SKC_PLACE_IS_TRAILING_ROW(I)) { \
+ if (keys > SKC_RASTER_HEAD_COUNT_KEYS) { \
+ if (get_sub_group_local_id() == SKC_PLACE_SUBGROUP_LAST) { \
+ bits_keys &= ~(1u << I); \
+ } \
+ } \
+ } \
+ }
+
+ SKC_PLACE_EXPAND();
+
+ //
+ // blindly calculate bits_skpk
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
+ bits_skpk |= (h##I.xk.lo & SKC_TTXK_LO_MASK_PREFIX) >> (SKC_TTXK_LO_OFFSET_PREFIX - I); \
+ }
+
+ SKC_PLACE_EXPAND();
+
+#if 0
+ printf("%2X : %2X\n",bits_keys,bits_skpk);
+#endif
+
+ //
+ // next pointer is last element of last row. save it now because
+ // this might be recognized as a subgroup-uniform/scalar.
+ //
+ id = sub_group_broadcast(SKC_CONCAT(h,SKC_PLACE_EXPAND_I_LAST).next.node,SKC_PLACE_SUBGROUP_LAST);
+
+ //
+ // append SK keys first
+ //
+ skc_uint const bits_sk = bits_keys & ~bits_skpk;
+ skc_uint sk = 0;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
+ skc_uint is_sk = (bits_sk >> I) & 1; \
+ skc_uint sk_idx = skc_ballot(&sk,is_sk); \
+ if (is_sk) { \
+ smem->lo.sk[sk_idx] = h##I.xk.lo; \
+ smem->hi.sk[sk_idx] = h##I.xk.hi; \
+ } \
+ }
+
+ SKC_PLACE_EXPAND();
+
+ //
+ // append PK keys next
+ //
+ skc_uint const bits_pk = bits_keys & bits_skpk;
+ skc_uint pk = 0;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_PLACE_IS_ALL_HEADER_ROW(I)) { \
+ skc_uint is_pk = (bits_pk >> I) & 1; \
+ skc_uint pk_idx = skc_ballot(&pk,is_pk); \
+ if (is_pk) { \
+ smem->lo.pk[pk_idx] = h##I.xk.lo; \
+ smem->hi.pk[pk_idx] = h##I.xk.hi; \
+ } \
+ }
+
+ SKC_PLACE_EXPAND();
+
+#if 0
+ printf("%2u * %2u\n",sk,pk);
+#endif
+ //
+ // flush the keys
+ //
+ skc_ttsk_flush(place_atomics,ck_extent,smem,&cmd,sk);
+ skc_ttpk_flush(place_atomics,ck_extent,smem,&cmd,pk);
+ }
+
+ //
+ // we're done if there was only a head node
+ //
+ if (nodes == 0)
+ return;
+
+ //
+ // decrement keys
+ //
+ keys -= SKC_RASTER_HEAD_COUNT_KEYS;
+
+ //
+ // otherwise, append keys in trailing nodes to smem
+ //
+ while (true)
+ {
+ //
+ // load all of the node block ttxk keys into registers
+ //
+ // FIXME -- this pattern lends itself to using the higher
+ // performance Intel GEN block load instructions
+ //
+ skc_uint const node_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_PLACE_STRIDE_H(get_sub_group_local_id());
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ union skc_raster_node_elem const n##I = { \
+ .u32v2 = { bp_elems[node_id + SKC_PLACE_STRIDE_V_LO(I)], \
+ bp_elems[node_id + SKC_PLACE_STRIDE_V_HI(I)] } \
+ };
+
+ SKC_PLACE_EXPAND();
+
+#if 0
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ printf("%5u : %6u : %3u : %08X . %08X - %08X\n", \
+ nodes,keys, \
+ I*SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id(), \
+ n##I.u32v2.hi,n##I.u32v2.lo, \
+ n##I.u32v2.lo & SKC_TTXK_LO_MASK_PREFIX);
+
+ SKC_PLACE_EXPAND();
+#endif
+
+ //
+ // classify every key in the header
+ //
+ // keys: 0 is not a key / 1 is a key
+ // skpk: 0 is sk / 1 is pk
+ //
+ skc_uint bits_keys = 0;
+ skc_uint bits_skpk = 0;
+
+ //
+ // calculate bits_keys
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) { \
+ skc_uint const idx = I * SKC_PLACE_SUBGROUP_SIZE + get_sub_group_local_id(); \
+ if (idx < keys) { \
+ bits_keys |= (1u << I); \
+ } \
+ if (SKC_PLACE_IS_TRAILING_ROW(I)) { \
+ if (keys > SKC_RASTER_NODE_COUNT_KEYS) { \
+ if (get_sub_group_local_id() == SKC_PLACE_SUBGROUP_LAST) { \
+ bits_keys &= ~(1u << I); \
+ } \
+ } \
+ } \
+ }
+
+ SKC_PLACE_EXPAND();
+
+ //
+ // blindly calculate bits_skpk
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) { \
+ bits_skpk |= (n##I.xk.lo & SKC_TTXK_LO_MASK_PREFIX) >> (SKC_TTXK_LO_OFFSET_PREFIX - I); \
+ }
+
+ SKC_PLACE_EXPAND();
+
+#if 0
+ printf("%2X : %2X\n",bits_keys,bits_skpk);
+#endif
+
+ //
+ // next pointer is last element of last row. save it now because
+ // this might be recognized as a subgroup-uniform/scalar.
+ //
+ id = sub_group_broadcast(SKC_CONCAT(n,SKC_PLACE_EXPAND_I_LAST).next.node,SKC_PLACE_SUBGROUP_LAST);
+
+ //
+ // append SK keys first
+ //
+ skc_uint const bits_sk = bits_keys & ~bits_skpk;
+ skc_uint sk = 0;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) { \
+ skc_uint is_sk = (bits_sk >> I) & 1; \
+ skc_uint sk_idx = skc_ballot(&sk,is_sk); \
+ if (is_sk) { \
+ smem->lo.sk[sk_idx] = n##I.xk.lo; \
+ smem->hi.sk[sk_idx] = n##I.xk.hi; \
+ } \
+ }
+
+ SKC_PLACE_EXPAND();
+
+ //
+ // append PK keys next
+ //
+ skc_uint const bits_pk = bits_keys & bits_skpk;
+ skc_uint pk = 0;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) { \
+ skc_uint is_pk = (bits_pk >> I) & 1; \
+ skc_uint pk_idx = skc_ballot(&pk,is_pk); \
+ if (is_pk) { \
+ smem->lo.pk[pk_idx] = n##I.xk.lo; \
+ smem->hi.pk[pk_idx] = n##I.xk.hi; \
+ } \
+ }
+
+ SKC_PLACE_EXPAND();
+
+#if 0
+ printf("%2u * %2u\n",sk,pk);
+#endif
+ //
+ // if total for either the sk or pk queue reaches the
+ // highwater mark then flush it to the extent
+ //
+ skc_ttsk_flush(place_atomics,ck_extent,smem,&cmd,sk);
+ skc_ttpk_flush(place_atomics,ck_extent,smem,&cmd,pk);
+
+ //
+ // if this was the last node then we're done
+ //
+ if (--nodes == 0)
+ return;
+
+ //
+ // otherwise decrement keys
+ //
+ keys -= SKC_RASTER_NODE_COUNT_KEYS;
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/prefix.cl b/src/compute/skc/platforms/cl_12/kernels/prefix.cl
index 960b6cf5ff..21a51694da 100644
--- a/src/compute/skc/prefix.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/prefix.cl
@@ -1,1042 +1,1041 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "raster_builder_cl_12.h"
-#include "block.h"
-#include "raster.h"
-#include "atomic_cl.h"
-#include "macros.h"
-#include "tile.h"
-
-//
-// INPUT:
-//
-// TTRK (64-BIT COMPARE)
-//
-// 0 63
-// | TTSB ID | X | Y | COHORT ID |
-// +---------+------+------+-----------+
-// | 27 | 12 | 12 | 13 |
-//
-//
-// TTRK (32-BIT COMPARE)
-//
-// 0 63
-// | TTSB ID | N/A | X | Y | COHORT ID |
-// +---------+-----+------+------+-----------+
-// | 27 | 5 | 12 | 12 | 8 |
-//
-//
-// OUTPUT:
-//
-// TTSK v2:
-//
-// 0 63
-// | TTSB ID | PREFIX | N/A | X | Y |
-// +---------+--------+------+----+----+
-// | 27 | 1 (=0) | 12 | 12 | 12 |
-//
-//
-// TTPK v1:
-//
-// 0 63
-// | TTPB ID | ALL ZEROES | SPAN | X | Y |
-// +---------+------------+------+-----+-----+
-// | 27 | 1 | 12 | 12 | 12 |
-//
-//
-// TTPK v2:
-//
-// 0 63
-// | TTPB ID | PREFIX | SPAN | X | Y |
-// +---------+--------+------+-----+-----+
-// | 27 | 1 (=1) | 12 | 12 | 12 |
-//
-
-#define SKC_PREFIX_SUBGROUP_MASK (SKC_PREFIX_SUBGROUP_SIZE - 1)
-
-//
-// smem accumulator
-//
-
-union skc_subgroup_accum
-{
- struct {
- SKC_ATOMIC_INT ttp[SKC_TILE_HEIGHT];
- } atomic;
-
- struct {
- skc_ttp_t ttp[SKC_TILE_HEIGHT];
- } aN;
-
- struct {
- SKC_PREFIX_TTP_V ttp[SKC_PREFIX_SUBGROUP_SIZE];
- } vN;
-
- struct {
- SKC_PREFIX_SMEM_ZERO ttp[SKC_TILE_HEIGHT / SKC_PREFIX_SMEM_ZERO_WIDTH];
- } zero;
-};
-
-//
-//
-//
-
-struct skc_subgroup_smem
-{
- // prefix accumulator
- union skc_subgroup_accum accum;
-};
-
-//
-//
-//
-
-static
-skc_uint
-skc_subgroup_lane()
-{
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- return get_sub_group_local_id();
-#else
- return 0;
-#endif
-}
-
-//
-//
-//
-
-static
-SKC_PREFIX_TTS_V_BITFIELD
-skc_tts_get_dy(skc_tts_v_t const ttsv)
-{
- // tts.dy is packed to fit in range [-32,31] and unpacked to [-32..-1,+1..+32]
- SKC_PREFIX_TTS_V_BITFIELD const dy = ttsv >> SKC_TTS_OFFSET_DY;
-
- return dy - (~ttsv >> 31);
-}
-
-static
-SKC_PREFIX_TTS_V_BITFIELD
-skc_tts_get_py(skc_tts_v_t const ttsv)
-{
- return SKC_BFE(ttsv,SKC_TTS_BITS_TY-SKC_SUBPIXEL_RESL_Y_LOG2,SKC_TTS_OFFSET_TY+SKC_SUBPIXEL_RESL_Y_LOG2);
-}
-
-//
-//
-//
-
-static
-void
-skc_accum_scatter(__local struct skc_subgroup_smem * const smem, skc_tts_v_t const tts_v)
-{
- // get "altitude"
- SKC_PREFIX_TTS_V_BITFIELD dy = skc_tts_get_dy(tts_v);
-
- // get the y pixel coordinate
- SKC_PREFIX_TTS_V_BITFIELD py = skc_tts_get_py(tts_v);
-
- //
- // FIXME -- benchmark performance of setting dy to 0 if tts_v is invalid?
- //
- // FIXME -- consider making TTS_INVALID a dy/py/etc. that's a no-op
- //
-
-#if 0
- if (tts_v != SKC_TTS_INVALID)
- printf("< %08X = %u : %d >\n",tts_v,py,dy);
-#endif
-
- //
- // scatter-add the "altitude" to accumulator
- //
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- //
- // GPU/SIMT -- IMPLIES SUPPORT FOR ATOMIC SCATTER-ADD
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (tts_v C != SKC_TTS_INVALID) { \
- SKC_ATOMIC_ADD_LOCAL_RELAXED_SUBGROUP(smem->accum.atomic.ttp + py C, dy C); \
- }
-
-#else
- //
- // CPU/SIMD -- ITERATE OVER VECTOR, NO NEED FOR ATOMICS
- //
- // WITH SIMD, ONCE A TTS_INVALID IS DETECTED WE CAN QUIT
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (tts_v C == SKC_TTS_INVALID) \
- return; \
- smem->accum.aN.ttp[py C] = dy C;
-#endif
-
- SKC_PREFIX_TTS_VECTOR_INT_EXPAND();
-}
-
-//
-// The implication here is that if our device configuration has a
-// rectangular 1:2 tile then we need a block size of at least 2
-// subblocks. The subblock size of course needs to match the length of
-// the smallest tile side.
-//
-
-static
-void
-skc_accum_flush(__local struct skc_subgroup_smem * const smem,
- __global skc_bp_elem_t * const bp_elems,
- skc_block_id_t const pb_id)
-{
- // load the ttp elements
- SKC_PREFIX_TTP_V const ttp_v = smem->accum.vN.ttp[get_sub_group_local_id()];
- skc_uint const offset = pb_id * (SKC_DEVICE_SUBBLOCK_WORDS / SKC_TILE_RATIO) + skc_subgroup_lane();
-
-#if ( SKC_TILE_RATIO == 1 )
-
- bp_elems[offset] = ttp_v;
-
-#elif ( SKC_TILE_RATIO == 2 )
-
- vstore2(ttp_v,offset,bp_elems);
-
-#else
-
-#error("tile ratio greater than 2 not supported")
-
-#endif
-}
-
-//
-//
-//
-
-static
-void
-skc_accum_reset(__local struct skc_subgroup_smem * const smem)
-{
- for (uint ii=0; ii<SKC_TILE_HEIGHT / SKC_PREFIX_SMEM_ZERO_WIDTH / SKC_PREFIX_SUBGROUP_SIZE; ii++)
- smem->accum.zero.ttp[ii * SKC_PREFIX_SUBGROUP_SIZE + skc_subgroup_lane()] = ( 0 );
-}
-
-//
-// get next sk key
-//
-
-static
-skc_ttsk_s_t
-skc_ttsk_v_get_next(skc_ttsk_v_t * const sk_v,
- skc_uint * const sk_next,
- skc_int * const rkpk_rem)
-{
- // decrement count
- *rkpk_rem -= 1;
-
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- //
- // SIMT with subgroup support is easy
- //
- // SIMT without subgroup support can always emulate with smem
- //
-#if 0
- //
- // BUG TICKLED BY FILTHY CODE -- Intel compiler doesn't properly
- // broadcast a uint2 cast to a long. It was probably bad to do this
- // anyway without a union wrapping the TTSK scalar type.
- //
- // Consider creating a union { ulong; uint2 } at a later date --
- // probably no need to ever do this unless it makes broadcast faster
- // which is unlikely since it will probably be implemented as 2
- // 32-bit broadcasts.
- //
- // Additionally, the TTRK and TTXK key bitfield sizes are probably
- // cast in stone and we aren't going to change them no matter
- // architecture we're on.
- //
- skc_ttsk_s_t sk_s = sub_group_broadcast(SKC_AS(ulong)(*sk_v),(*sk_next)++);
-#else
- skc_ttsk_s_t sk_s;
-
- sk_s.lo = sub_group_broadcast(sk_v->lo,*sk_next);
- sk_s.hi = sub_group_broadcast(sk_v->hi,*sk_next);
- *sk_next += 1;
-#endif
-
-#else
- //
- // SIMD will always grab component .s0 and then rotate the vector
- //
- sk_s = ( sk_v->s0 );
-
- skc_ttsk_v_rotate_down(sk_v);
-
-#endif
-
- return sk_s;
-}
-
-//
-//
-//
-
-static
-skc_raster_yx_s
-skc_ttsk_v_first(skc_ttsk_v_t * const sk_v, skc_uint const sk_next)
-{
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- //
- // SIMT with subgroup support is easy
- //
- // SIMT without subgroup support can always emulate with smem
- //
- skc_raster_yx_s const yx_s = sub_group_broadcast(sk_v->hi,sk_next);
-
-#else
- //
- // SIMD will always grab component .s0 and then rotate the vector
- //
- skc_raster_yx_s const yx_s = ( sk_v->s0.hi );
-
-#endif
-
- return yx_s;
-}
-
-//
-// mask off ttsb id
-//
-
-static
-skc_block_id_s_t
-skc_ttsk_s_get_ttsb_id(skc_ttsk_s_t const * const sk_s)
-{
- return ( sk_s->lo & SKC_TTXK_LO_MASK_ID );
-}
-
-//
-// load tts_v as early as possible
-//
-
-static
-skc_tts_v_t
-skc_load_tts(__global skc_bp_elem_t * const bp_elems,
- skc_block_id_s_t const sb_id)
-{
- return ( bp_elems[sb_id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane()] );
-}
-
-//
-// massage ttrk keys into ttsk keys
-//
-
-static
-void
-skc_ttrk_to_ttsk(skc_ttsk_v_t * const sk_v)
-{
- sk_v->lo = sk_v->lo & SKC_TTXK_LO_MASK_ID; // clear high (N/A) bits
- sk_v->hi = sk_v->hi << SKC_TTRK_HI_BITS_COHORT; // shift cohort away -- zeroes low bits
-}
-
-//
-// replenish ttsk keys
-//
-
-static
-void
-skc_ttsk_v_replenish(skc_ttsk_v_t * const sk_v,
- skc_uint * const sk_next,
- skc_uint * const rks_next,
- __global skc_ttrk_e_t const * const rks)
-{
- // if there are still keys available then return
- if (*sk_next < SKC_PREFIX_TTXK_V_SIZE)
- return;
-
- //
- // otherwise, replenish sk_v
- //
- // NOTE NOTE NOTE -- we are assuming rks[] extent size is always
- // divisible by TTXK_V_SIZE and therefore loading some keys from the
- // next raster is OK.
- //
- *sk_next = 0;
- *rks_next += SKC_PREFIX_SUBGROUP_SIZE;
- *sk_v = rks[*rks_next];
-
-#if 0
- printf("* %08X ( %3u, %3u )\n",
- sk_v->hi,
- (sk_v->hi >> 12) & 0xFFF,
- (sk_v->hi ) & 0xFFF);
-#endif
-
- skc_ttrk_to_ttsk(sk_v);
-
-#if 0
- printf("! %08X ( %3u, %3u )\n",
- sk_v->hi,
- (sk_v->hi >> 20) & 0xFFF,
- (sk_v->hi >> 8) & 0xFFF);
-#endif
-}
-
-//
-// replenish block ids
-//
-// note that you can't overrun the block id pool since it's a ring
-//
-
-static
-void
-skc_blocks_replenish(skc_uint * const blocks_next,
- skc_uint * const blocks_idx,
- skc_block_id_v_t * const blocks,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const bp_ids)
-
-{
- *blocks_idx += SKC_PREFIX_BLOCK_ID_V_SIZE;
- *blocks = bp_ids[*blocks_idx & bp_mask];
- *blocks_next = 0;
-
-#if 0
- printf("replenish blocks: %u\n",*blocks);
-#endif
-}
-
-//
-//
-//
-
-static
-skc_block_id_t
-skc_blocks_get_next(skc_uint * const blocks_next,
- skc_uint * const blocks_idx,
- skc_block_id_v_t * const blocks,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const bp_ids)
-{
- // replenish?
- if (*blocks_next == SKC_PREFIX_BLOCK_ID_V_SIZE)
- {
- skc_blocks_replenish(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
- }
-
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- //
- // SIMT
- //
- skc_block_id_t id = sub_group_broadcast(*blocks,*blocks_next);
-
-#else
- //
- // SIMD
- //
- skc_block_id_t id = blocks->s0;
-
- skc_shuffle_down_1(*blocks);
-
-#endif
-
- *blocks_next += 1;
-
- return id;
-}
-
-//
-// subblock allocator
-//
-
-#if ( SKC_DEVICE_SUBBLOCK_WORDS_LOG2 < SKC_DEVICE_BLOCK_WORDS_LOG2 )
-
-static
-skc_block_id_t
-skc_subblocks_get_next_pb_id(skc_block_id_t * const subblocks,
- skc_uint * const blocks_next,
- skc_uint * const blocks_idx,
- skc_block_id_v_t * const blocks,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const bp_ids)
-{
- if ((*subblocks & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
- {
- *subblocks = skc_blocks_get_next(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
- }
-
- skc_block_id_t const pb_id = *subblocks;
-
- *subblocks += SKC_TILE_RATIO; // note this is one or two subblocks
-
- return pb_id;
-}
-
-#endif
-
-//
-// append a ttsk key to the work-in-progress node
-//
-
-static
-void
-skc_node_v_append_sk(skc_ttsk_s_t const * const sk_s,
-
- skc_ttxk_v_t * const xk_v,
- skc_uint * const xk_v_next,
- skc_uint * const xk_v_idx,
- __global skc_bp_elem_t * const bp_elems,
-
- skc_int const rkpk_rem,
-
- skc_uint * const blocks_next,
- skc_uint * const blocks_idx,
- skc_block_id_v_t * const blocks,
- skc_uint const bp_mask,
- __global skc_block_id_t const * const bp_ids)
-{
- //
- // Append an sk key to the in-register xk_v vector
- //
- // If the work-in-progress node in gmem will only have room for one
- // more key then:
- //
- // - if this was the final SK then write out xk_v and exit
- //
- // - otherwise, acquire a block id, link it, write out xk_v,
- // prepare new node
- //
- // Note that this does *not* try to squeeze in a final key into the
- // next node slot. This optimization isn't worth the added
- // down-pipeline complexity.
- //
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- //
- // SIMT
- //
- if (get_sub_group_local_id() == (*xk_v_next & SKC_PREFIX_TTXK_V_MASK))
- {
- *xk_v = *sk_s;
- }
-
- *xk_v_next += 1;
-
- // are there more keys coming?
- if (rkpk_rem > 0)
- {
- // is the node almost full?
- if (*xk_v_next == SKC_RASTER_NODE_DWORDS - 1)
- {
- skc_block_id_t const id = skc_blocks_get_next(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
-
- if (get_sub_group_local_id() == SKC_PREFIX_TTXK_V_SIZE - 1)
- {
- xk_v->lo = id;
- xk_v->hi = SKC_UINT_MAX; // this initialization isn't necessary
- }
-
- // store xk_v (uint2) to bp (uint)
- bp_elems[*xk_v_idx ] = xk_v->lo;
- bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
-#if 0
- printf("S) %u : %08v2X\n",*xk_v_idx,*xk_v);
-#endif
- // reinitialize xk_v
- xk_v->lo = SKC_UINT_MAX;
- xk_v->hi = SKC_UINT_MAX;
-
- // update node elem idx
- *xk_v_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
-
- // reset node count
- *xk_v_next = 0;
- }
- // is xk_v full?
- else if ((*xk_v_next & SKC_PREFIX_TTXK_V_MASK) == 0)
- {
- // store xk_v to bp
- bp_elems[*xk_v_idx ] = xk_v->lo;
- bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
-#if 0
- printf("s) %u : %08v2X\n",*xk_v_idx,*xk_v);
-#endif
- // reinitialize xk_v
- xk_v->lo = SKC_UINT_MAX;
- xk_v->hi = SKC_UINT_MAX;
-
- // increment node elem idx
- *xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
- }
- }
- else
- {
- bp_elems[*xk_v_idx ] = xk_v->lo;
- bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
-#if 0
- printf("z) %u : %08v2X\n",*xk_v_idx,*xk_v);
-#endif
- while ((*xk_v_idx & SKC_DEVICE_BLOCK_WORDS_MASK) < SKC_DEVICE_BLOCK_WORDS - SKC_PREFIX_SUBGROUP_SIZE * 2)
- {
- *xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
-
- bp_elems[*xk_v_idx] = SKC_UINT_MAX;
- bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = SKC_UINT_MAX;
- }
- }
-
-#else
- //
- // SIMD
- //
-
-#endif
-}
-
-//
-//
-//
-
-static
-skc_ttpk_s_t
-skc_ttpk_create(skc_raster_yx_s const yx_prev,
- skc_raster_yx_s const yx_next,
- skc_block_id_t const pb_id)
-{
- // - yx_prev is already incremented by one
- // - yx_span is already shifted up at hi.x
- skc_uint const yx_span = yx_next - yx_prev;
-
- skc_ttpk_s_t pk;
-
- // turn on prefix bit | shift span bits upward
- pk.lo = pb_id | SKC_TTXK_LO_MASK_PREFIX | (yx_span << SKC_TTPK_LO_SHL_YX_SPAN);
-
- // shift down high span bits | yx of tile
- pk.hi = (yx_span >> SKC_TTPK_HI_SHR_YX_SPAN) | yx_prev;
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("* %08v2X : %u\n",pk,yx_span);
-#endif
-
- return pk;
-}
-
-//
-// append a ttpk key to the work-in-progress node
-//
-
-static
-void
-skc_node_v_append_pk(skc_ttpk_s_t const * const pk_s,
-
- skc_ttxk_v_t * const xk_v,
- skc_uint * const xk_v_next,
- skc_uint * const xk_v_idx,
- __global skc_bp_elem_t * const bp_elems,
-
- skc_uint * const blocks_next,
- skc_uint * const blocks_idx,
- skc_block_id_v_t * const blocks,
- skc_uint const bp_mask,
- __global skc_block_id_t const * const bp_ids)
-{
- //
- // append a pk key to the in-register xk_v vector
- //
- // if the work-in-progress node in gmem will only have room for one
- // more key then:
- //
- // - if this was the final SK then write out xk_v and exit
- //
- // - otherwise, acquire a block id, link it, write out xk_v,
- // prepare new node
- //
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- //
- // SIMT
- //
- if (get_sub_group_local_id() == (*xk_v_next & SKC_PREFIX_TTXK_V_MASK))
- {
- *xk_v = *pk_s;
- }
-
- *xk_v_next += 1;
-
- // is the node almost full?
- if (*xk_v_next == SKC_RASTER_NODE_DWORDS - 1)
- {
- skc_block_id_t const id = skc_blocks_get_next(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
-
- if (get_sub_group_local_id() == SKC_PREFIX_TTXK_V_SIZE - 1)
- {
- xk_v->lo = id;
- xk_v->hi = SKC_UINT_MAX; // this initialization isn't necessary
- }
-
- // store xk_v to bp
- bp_elems[*xk_v_idx ] = xk_v->lo;
- bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
-#if 0
- printf("P) %u : %08v2X\n",*xk_v_idx,*xk_v);
-#endif
- // reinitialize xk_v
- xk_v->lo = SKC_UINT_MAX;
- xk_v->hi = SKC_UINT_MAX;
-
- // update node elem idx
- *xk_v_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
-
- // reset node count
- *xk_v_next = 0;
- }
- // is xk_v full?
- else if ((*xk_v_next & SKC_PREFIX_TTXK_V_MASK) == 0)
- {
- // store xk_v to bp
- bp_elems[*xk_v_idx ] = xk_v->lo;
- bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
-#if 0
- printf("p) %u : %08v2X\n",*xk_v_idx,*xk_v);
-#endif
- // reinitialize xk_v
- xk_v->lo = SKC_UINT_MAX;
- xk_v->hi = SKC_UINT_MAX;
-
- // increment node elem idx
- *xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
- }
-
-#else
- //
- // SIMD
- //
-#endif
-}
-
-//
-// append the first 3 fields of meta info to the raster header
-//
-
-static
-void
-skc_node_v_init_header(skc_ttxk_v_t * const xk_v,
- skc_uint * const xk_v_next,
- union skc_raster_cohort_meta_out const * const meta)
-{
-#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
- //
- // SIMT
- //
- if (get_sub_group_local_id() < 2)
- {
- *xk_v = ((get_sub_group_local_id() & 1) == 0) ? meta->u32v4.lo : meta->u32v4.hi;
- }
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("header: %08v4X\n",meta->u32v4);
-#endif
-
- //
- // increment counter: uint4 + uint4 = uint2 x 4
- //
- *xk_v_next = 2 + 2; // +2 for unitialized bounds
-
-#else
- //
- // SIMD
- //
-
-#endif
-}
-
-//
-//
-//
-
-__kernel
-SKC_PREFIX_KERNEL_ATTRIBS
-void
-skc_kernel_prefix(__global skc_uint const * const bp_atomics,
- __global skc_block_id_t const * const bp_ids,
- __global skc_bp_elem_t * const bp_elems,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_ttrk_e_t const * const rks,
- __global skc_block_id_t * const map,
- __global skc_uint const * const metas,
- skc_uint const count)
-{
- //
- // declare shared memory block
- //
-#if ( SKC_PREFIX_WORKGROUP_SUBGROUPS == 1 )
- __local struct skc_subgroup_smem smem[1];
-#else
- __local struct skc_subgroup_smem smems[SKC_PREFIX_WORKGROUP_SUBGROUPS];
- __local struct skc_subgroup_smem * restrict const smem = smems + get_sub_group_id();
-#endif
-
- //
- // where is this subgroup in the grid?
- //
-#if ( SKC_PREFIX_WORKGROUP_SUBGROUPS == 1 )
- skc_uint const sgi = get_group_id(0);
-#else
- skc_uint const sgi = get_group_id(0) * SKC_PREFIX_WORKGROUP_SUBGROUPS + get_sub_group_id();
-#endif
-
- skc_uint const sgl = get_sub_group_local_id();
-
- //
- // return if this subgroup is excess
- //
-#if ( SKC_PREFIX_WORKGROUP_SUBGROUPS > 1 )
- if (sgi >= count)
- return;
-#endif
-
- //
- // get meta info for this subgroup's raster
- //
- union skc_raster_cohort_meta_out const meta = { vload4(sgi,metas) };
- skc_uint const reads = metas[SKC_RASTER_COHORT_META_OFFSET_READS + sgi];
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("%3u : %5u / %5u / %5u / %5u / %u\n",
- sgi,
- meta.blocks,
- meta.offset,
- meta.nodes,
- meta.keys,
- reads);
-#endif
-
- //
- // preload blocks -- align on subgroup
- //
- skc_uint blocks_idx = (reads & ~SKC_PREFIX_SUBGROUP_MASK) + skc_subgroup_lane();
- skc_block_id_v_t blocks = bp_ids[blocks_idx & bp_mask];
- skc_uint blocks_next = (reads & SKC_PREFIX_SUBGROUP_MASK);
-
- //
- // prime xk_v_idx with a block but note that OpenCL vstore_n() will scale the offset
- //
- skc_uint xk_v_idx = sub_group_broadcast(blocks,blocks_next++) * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
-
- //
- // initialize raster header -- assumes block is greater than 8 words (4 doublewords)
- //
- skc_ttxk_v_t xk_v = { SKC_UINT_MAX, SKC_UINT_MAX };
- skc_uint xk_v_next;
-
- skc_node_v_init_header(&xk_v,&xk_v_next,&meta);
-
- //
- // no keys -- this is an empty raster!
- //
- if (meta.keys == 0)
- {
- bp_elems[xk_v_idx ] = xk_v.lo;
- bp_elems[xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v.hi;
-
- while ((xk_v_idx & SKC_DEVICE_BLOCK_WORDS_MASK) < SKC_DEVICE_BLOCK_WORDS - SKC_PREFIX_SUBGROUP_SIZE * 2)
- {
- xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
-
- bp_elems[xk_v_idx] = SKC_UINT_MAX;
- bp_elems[xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = SKC_UINT_MAX;
- }
-
- return;
- }
-
- //
- // load TTRK keys and in-place convert to TTSK keys
- //
- skc_uint rks_next = (meta.offset & ~SKC_PREFIX_SUBGROUP_MASK) + skc_subgroup_lane();
- skc_ttsk_v_t sk_v = rks[rks_next];
- skc_uint sk_next = (meta.offset & SKC_PREFIX_SUBGROUP_MASK);
- skc_int rkpk_rem = meta.keys; // signed count of remaining rk+pk keys
-
-#if 0
- printf("* %08X ( %3u, %3u )\n",
- sk_v.hi,
- (sk_v.hi >> 12) & 0xFFF,
- (sk_v.hi ) & 0xFFF);
-#endif
-
- skc_ttrk_to_ttsk(&sk_v);
-
-#if 0
- printf("! %08X ( %3u, %3u )\n",
- sk_v.hi,
- (sk_v.hi >> 20) & 0xFFF,
- (sk_v.hi >> 8) & 0xFFF);
-#endif
-
- //
- // subblocks
- //
-#if ( SKC_DEVICE_SUBBLOCK_WORDS_LOG2 < SKC_DEVICE_BLOCK_WORDS_LOG2 )
- skc_block_id_t subblocks = 0;
-#endif
-
- //
- // begin "scan" of tiles
- //
- skc_raster_yx_s yx_prev = skc_ttsk_v_first(&sk_v,sk_next);
-
- //
- // zero the accumulator
- //
- skc_accum_reset(smem);
-
- while (true)
- {
- // get next rk key
- skc_ttsk_s_t const sk_s = skc_ttsk_v_get_next(&sk_v,&sk_next,&rkpk_rem);
-
- // load ttsb id
- skc_block_id_s_t const sb_id = skc_ttsk_s_get_ttsb_id(&sk_s);
-
- // load tts_v transaction "in flight" as early as possible
- skc_tts_v_t const tts_v = skc_load_tts(bp_elems,sb_id);
-
-#if 0
- printf("{ %08X }\n",tts_v);
-#endif
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("[ %d, %X ]\n",rkpk_rem,sb_id);
-#endif
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("@ %08X ( %3u, %3u )\n",sk_s.hi,(sk_s.hi >> 20),(sk_s.hi >> 8) & 0xFFF);
-#endif
-
- //
- // FIXME -- SOME OF THESE COMPARISONS CAN BE PERFORMED AHEAD OF
- // TIME AND SIMD'IZED
- //
-
- // if yx's don't match then we're either issuing a ttpk or
- // resetting the accumulator
- if (sk_s.hi != yx_prev)
- {
- // if yx_next.y == yx_last.y then x changed
- if (((sk_s.hi ^ yx_prev) & SKC_TTXK_HI_MASK_Y) == 0)
- {
- //
- // if the tile is not square then it's ratio is 1:2
- //
-#if SKC_DEVICE_SUBBLOCK_WORDS_LOG2 < SKC_DEVICE_BLOCK_WORDS_LOG2
- skc_block_id_t const pb_id = skc_subblocks_get_next_pb_id(&subblocks,
- &blocks_next,
- &blocks_idx,
- &blocks,
- bp_mask,
- bp_ids);
-#else
- skc_block_id_t const pb_id = skc_blocks_get_next(&blocks_next,
- &blocks_idx,
- &blocks,
- bp_mask,
- bp_ids);
-#endif
-
- // flush accumulated ttp vector to block/subblock at ttpb_id
- skc_accum_flush(smem,bp_elems,pb_id);
-
-#if 0
- if (get_sub_group_local_id() == 0)
- {
- printf("%8u : ( %4u, %4u ) -> ( %4u, %4u )\n",
- pb_id,
- (yx_prev >> SKC_TTXK_HI_OFFSET_Y),
- (yx_prev >> SKC_TTXK_HI_OFFSET_X) & 0xFFF,
- (sk_s.hi >> SKC_TTXK_HI_OFFSET_Y) & 0xFFF,
- (sk_s.hi >> SKC_TTXK_HI_OFFSET_X) & 0xFFF);
- }
-#endif
-
- //
- // FIXME -- A SIMD-WIDE BLOCK OF TTPK KEYS CAN BE CREATED IN ONE STEP
- //
- rkpk_rem -= 1;
-
- // create the pk
- skc_ttpk_s_t const pk_s = skc_ttpk_create(yx_prev+SKC_TTXK_HI_ONE_X,sk_s.hi,pb_id);
-
- // append pk key to xk buffer
- skc_node_v_append_pk(&pk_s,
-
- &xk_v,
- &xk_v_next,
- &xk_v_idx,
- bp_elems,
-
- &blocks_next,
- &blocks_idx,
- &blocks,
- bp_mask,
- bp_ids);
- }
- else if (rkpk_rem > 0) // we're starting a new tile row
- {
- skc_accum_reset(smem);
- }
- }
-
- //
- // append sk key to node_v
- //
- // if rkpk_rem is zero then return from kernel
- //
- skc_node_v_append_sk(&sk_s,
-
- &xk_v,
- &xk_v_next,
- &xk_v_idx,
- bp_elems,
-
- rkpk_rem,
-
- &blocks_next,
- &blocks_idx,
- &blocks,
- bp_mask,
- bp_ids);
-
- // we're done if no more sk keys
- if (rkpk_rem == 0)
- break;
-
- // move to new tile
- yx_prev = sk_s.hi;
-
- // scatter tts values into accumulator
- skc_accum_scatter(smem,tts_v);
-
- // replenish sk keys
- skc_ttsk_v_replenish(&sk_v,&sk_next,&rks_next,rks);
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "tile.h"
+#include "block.h"
+#include "raster.h"
+#include "atomic_cl.h"
+#include "raster_builder_cl_12.h"
+#include "device_cl_12.h"
+
+//
+// INPUT:
+//
+// TTRK (64-BIT COMPARE)
+//
+// 0 63
+// | TTSB ID | X | Y | COHORT ID |
+// +---------+------+------+-----------+
+// | 27 | 12 | 12 | 13 |
+//
+//
+// TTRK (32-BIT COMPARE)
+//
+// 0 63
+// | TTSB ID | N/A | X | Y | COHORT ID |
+// +---------+-----+------+------+-----------+
+// | 27 | 5 | 12 | 12 | 8 |
+//
+//
+// OUTPUT:
+//
+// TTSK v2:
+//
+// 0 63
+// | TTSB ID | PREFIX | N/A | X | Y |
+// +---------+--------+------+----+----+
+// | 27 | 1 (=0) | 12 | 12 | 12 |
+//
+//
+// TTPK v1:
+//
+// 0 63
+// | TTPB ID | ALL ZEROES | SPAN | X | Y |
+// +---------+------------+------+-----+-----+
+// | 27 | 1 | 12 | 12 | 12 |
+//
+//
+// TTPK v2:
+//
+// 0 63
+// | TTPB ID | PREFIX | SPAN | X | Y |
+// +---------+--------+------+-----+-----+
+// | 27 | 1 (=1) | 12 | 12 | 12 |
+//
+
+#define SKC_PREFIX_SUBGROUP_MASK (SKC_PREFIX_SUBGROUP_SIZE - 1)
+
+//
+// smem accumulator
+//
+
+union skc_subgroup_accum
+{
+ struct {
+ SKC_ATOMIC_INT ttp[SKC_TILE_HEIGHT];
+ } atomic;
+
+ struct {
+ skc_ttp_t ttp[SKC_TILE_HEIGHT];
+ } aN;
+
+ struct {
+ SKC_PREFIX_TTP_V ttp[SKC_PREFIX_SUBGROUP_SIZE];
+ } vN;
+
+ struct {
+ SKC_PREFIX_SMEM_ZERO ttp[SKC_TILE_HEIGHT / SKC_PREFIX_SMEM_ZERO_WIDTH];
+ } zero;
+};
+
+//
+//
+//
+
+struct skc_subgroup_smem
+{
+ // prefix accumulator
+ union skc_subgroup_accum accum;
+};
+
+//
+//
+//
+
+static
+skc_uint
+skc_subgroup_lane()
+{
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ return get_sub_group_local_id();
+#else
+ return 0;
+#endif
+}
+
+//
+//
+//
+
+static
+SKC_PREFIX_TTS_V_BITFIELD
+skc_tts_get_dy(skc_tts_v_t const ttsv)
+{
+ // tts.dy is packed to fit in range [-32,31] and unpacked to [-32..-1,+1..+32]
+ SKC_PREFIX_TTS_V_BITFIELD const dy = ttsv >> SKC_TTS_OFFSET_DY;
+
+ return dy - (~ttsv >> 31);
+}
+
+static
+SKC_PREFIX_TTS_V_BITFIELD
+skc_tts_get_py(skc_tts_v_t const ttsv)
+{
+ return SKC_BFE(ttsv,SKC_TTS_BITS_TY-SKC_SUBPIXEL_RESL_Y_LOG2,SKC_TTS_OFFSET_TY+SKC_SUBPIXEL_RESL_Y_LOG2);
+}
+
+//
+//
+//
+
+static
+void
+skc_accum_scatter(__local struct skc_subgroup_smem * const smem, skc_tts_v_t const tts_v)
+{
+ // get "altitude"
+ SKC_PREFIX_TTS_V_BITFIELD dy = skc_tts_get_dy(tts_v);
+
+ // get the y pixel coordinate
+ SKC_PREFIX_TTS_V_BITFIELD py = skc_tts_get_py(tts_v);
+
+ //
+ // FIXME -- benchmark performance of setting dy to 0 if tts_v is invalid?
+ //
+ // FIXME -- consider making TTS_INVALID a dy/py/etc. that's a no-op
+ //
+
+#if 0
+ if (tts_v != SKC_TTS_INVALID)
+ printf("< %08X = %u : %d >\n",tts_v,py,dy);
+#endif
+
+ //
+ // scatter-add the "altitude" to accumulator
+ //
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ //
+ // GPU/SIMT -- IMPLIES SUPPORT FOR ATOMIC SCATTER-ADD
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (tts_v C != SKC_TTS_INVALID) { \
+ SKC_ATOMIC_ADD_LOCAL_RELAXED_SUBGROUP(smem->accum.atomic.ttp + py C, dy C); \
+ }
+
+#else
+ //
+ // CPU/SIMD -- ITERATE OVER VECTOR, NO NEED FOR ATOMICS
+ //
+ // WITH SIMD, ONCE A TTS_INVALID IS DETECTED WE CAN QUIT
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (tts_v C == SKC_TTS_INVALID) \
+ return; \
+ smem->accum.aN.ttp[py C] = dy C;
+#endif
+
+ SKC_PREFIX_TTS_VECTOR_INT_EXPAND();
+}
+
+//
+// The implication here is that if our device configuration has a
+// rectangular 1:2 tile then we need a block size of at least 2
+// subblocks. The subblock size of course needs to match the length of
+// the smallest tile side.
+//
+
+static
+void
+skc_accum_flush(__local struct skc_subgroup_smem * const smem,
+ __global skc_bp_elem_t * const bp_elems,
+ skc_block_id_t const pb_id)
+{
+ // load the ttp elements
+ SKC_PREFIX_TTP_V const ttp_v = smem->accum.vN.ttp[get_sub_group_local_id()];
+ skc_uint const offset = pb_id * (SKC_DEVICE_SUBBLOCK_WORDS / SKC_TILE_RATIO) + skc_subgroup_lane();
+
+#if ( SKC_TILE_RATIO == 1 )
+
+ bp_elems[offset] = ttp_v;
+
+#elif ( SKC_TILE_RATIO == 2 )
+
+ vstore2(ttp_v,offset,bp_elems);
+
+#else
+
+#error("tile ratio greater than 2 not supported")
+
+#endif
+}
+
+//
+//
+//
+
+static
+void
+skc_accum_reset(__local struct skc_subgroup_smem * const smem)
+{
+ for (uint ii=0; ii<SKC_TILE_HEIGHT / SKC_PREFIX_SMEM_ZERO_WIDTH / SKC_PREFIX_SUBGROUP_SIZE; ii++)
+ smem->accum.zero.ttp[ii * SKC_PREFIX_SUBGROUP_SIZE + skc_subgroup_lane()] = ( 0 );
+}
+
+//
+// get next sk key
+//
+
+static
+skc_ttsk_s_t
+skc_ttsk_v_get_next(skc_ttsk_v_t * const sk_v,
+ skc_uint * const sk_next,
+ skc_int * const rkpk_rem)
+{
+ // decrement count
+ *rkpk_rem -= 1;
+
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ //
+ // SIMT with subgroup support is easy
+ //
+ // SIMT without subgroup support can always emulate with smem
+ //
+#if 0
+ //
+ // BUG TICKLED BY FILTHY CODE -- Intel compiler doesn't properly
+ // broadcast a uint2 cast to a long. It was probably bad to do this
+ // anyway without a union wrapping the TTSK scalar type.
+ //
+ // Consider creating a union { ulong; uint2 } at a later date --
+ // probably no need to ever do this unless it makes broadcast faster
+ // which is unlikely since it will probably be implemented as 2
+ // 32-bit broadcasts.
+ //
+ // Additionally, the TTRK and TTXK key bitfield sizes are probably
+ // cast in stone and we aren't going to change them no matter
+ // architecture we're on.
+ //
+ skc_ttsk_s_t sk_s = sub_group_broadcast(SKC_AS(ulong)(*sk_v),(*sk_next)++);
+#else
+ skc_ttsk_s_t sk_s;
+
+ sk_s.lo = sub_group_broadcast(sk_v->lo,*sk_next);
+ sk_s.hi = sub_group_broadcast(sk_v->hi,*sk_next);
+ *sk_next += 1;
+#endif
+
+#else
+ //
+ // SIMD will always grab component .s0 and then rotate the vector
+ //
+ sk_s = ( sk_v->s0 );
+
+ skc_ttsk_v_rotate_down(sk_v);
+
+#endif
+
+ return sk_s;
+}
+
+//
+//
+//
+
+static
+skc_raster_yx_s
+skc_ttsk_v_first(skc_ttsk_v_t * const sk_v, skc_uint const sk_next)
+{
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ //
+ // SIMT with subgroup support is easy
+ //
+ // SIMT without subgroup support can always emulate with smem
+ //
+ skc_raster_yx_s const yx_s = sub_group_broadcast(sk_v->hi,sk_next);
+
+#else
+ //
+ // SIMD will always grab component .s0 and then rotate the vector
+ //
+ skc_raster_yx_s const yx_s = ( sk_v->s0.hi );
+
+#endif
+
+ return yx_s;
+}
+
+//
+// mask off ttsb id
+//
+
+static
+skc_block_id_s_t
+skc_ttsk_s_get_ttsb_id(skc_ttsk_s_t const * const sk_s)
+{
+ return ( sk_s->lo & SKC_TTXK_LO_MASK_ID );
+}
+
+//
+// load tts_v as early as possible
+//
+
+static
+skc_tts_v_t
+skc_load_tts(__global skc_bp_elem_t * const bp_elems,
+ skc_block_id_s_t const sb_id)
+{
+ return ( bp_elems[sb_id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane()] );
+}
+
+//
+// massage ttrk keys into ttsk keys
+//
+
+static
+void
+skc_ttrk_to_ttsk(skc_ttsk_v_t * const sk_v)
+{
+ sk_v->lo = sk_v->lo & SKC_TTXK_LO_MASK_ID; // clear high (N/A) bits
+ sk_v->hi = sk_v->hi << SKC_TTRK_HI_BITS_COHORT; // shift cohort away -- zeroes low bits
+}
+
+//
+// replenish ttsk keys
+//
+
+static
+void
+skc_ttsk_v_replenish(skc_ttsk_v_t * const sk_v,
+ skc_uint * const sk_next,
+ skc_uint * const rks_next,
+ __global skc_ttrk_e_t const * const rks)
+{
+ // if there are still keys available then return
+ if (*sk_next < SKC_PREFIX_TTXK_V_SIZE)
+ return;
+
+ //
+ // otherwise, replenish sk_v
+ //
+ // NOTE NOTE NOTE -- we are assuming rks[] extent size is always
+ // divisible by TTXK_V_SIZE and therefore loading some keys from the
+ // next raster is OK.
+ //
+ *sk_next = 0;
+ *rks_next += SKC_PREFIX_SUBGROUP_SIZE;
+ *sk_v = rks[*rks_next];
+
+#if 0
+ printf("* %08X ( %3u, %3u )\n",
+ sk_v->hi,
+ (sk_v->hi >> 12) & 0xFFF,
+ (sk_v->hi ) & 0xFFF);
+#endif
+
+ skc_ttrk_to_ttsk(sk_v);
+
+#if 0
+ printf("! %08X ( %3u, %3u )\n",
+ sk_v->hi,
+ (sk_v->hi >> 20) & 0xFFF,
+ (sk_v->hi >> 8) & 0xFFF);
+#endif
+}
+
+//
+// replenish block ids
+//
+// note that you can't overrun the block id pool since it's a ring
+//
+
+static
+void
+skc_blocks_replenish(skc_uint * const blocks_next,
+ skc_uint * const blocks_idx,
+ skc_block_id_v_t * const blocks,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const bp_ids)
+
+{
+ *blocks_idx += SKC_PREFIX_BLOCK_ID_V_SIZE;
+ *blocks = bp_ids[*blocks_idx & bp_mask];
+ *blocks_next = 0;
+
+#if 0
+ printf("replenish blocks: %u\n",*blocks);
+#endif
+}
+
+//
+//
+//
+
+static
+skc_block_id_t
+skc_blocks_get_next(skc_uint * const blocks_next,
+ skc_uint * const blocks_idx,
+ skc_block_id_v_t * const blocks,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const bp_ids)
+{
+ // replenish?
+ if (*blocks_next == SKC_PREFIX_BLOCK_ID_V_SIZE)
+ {
+ skc_blocks_replenish(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
+ }
+
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ //
+ // SIMT
+ //
+ skc_block_id_t id = sub_group_broadcast(*blocks,*blocks_next);
+
+#else
+ //
+ // SIMD
+ //
+ skc_block_id_t id = blocks->s0;
+
+ skc_shuffle_down_1(*blocks);
+
+#endif
+
+ *blocks_next += 1;
+
+ return id;
+}
+
+//
+// subblock allocator
+//
+
+#if ( SKC_DEVICE_SUBBLOCK_WORDS_LOG2 < SKC_DEVICE_BLOCK_WORDS_LOG2 )
+
+static
+skc_block_id_t
+skc_subblocks_get_next_pb_id(skc_block_id_t * const subblocks,
+ skc_uint * const blocks_next,
+ skc_uint * const blocks_idx,
+ skc_block_id_v_t * const blocks,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const bp_ids)
+{
+ if ((*subblocks & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
+ {
+ *subblocks = skc_blocks_get_next(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
+ }
+
+ skc_block_id_t const pb_id = *subblocks;
+
+ *subblocks += SKC_TILE_RATIO; // note this is one or two subblocks
+
+ return pb_id;
+}
+
+#endif
+
+//
+// append a ttsk key to the work-in-progress node
+//
+
+static
+void
+skc_node_v_append_sk(skc_ttsk_s_t const * const sk_s,
+
+ skc_ttxk_v_t * const xk_v,
+ skc_uint * const xk_v_next,
+ skc_uint * const xk_v_idx,
+ __global skc_bp_elem_t * const bp_elems,
+
+ skc_int const rkpk_rem,
+
+ skc_uint * const blocks_next,
+ skc_uint * const blocks_idx,
+ skc_block_id_v_t * const blocks,
+ skc_uint const bp_mask,
+ __global skc_block_id_t const * const bp_ids)
+{
+ //
+ // Append an sk key to the in-register xk_v vector
+ //
+ // If the work-in-progress node in gmem will only have room for one
+ // more key then:
+ //
+ // - if this was the final SK then write out xk_v and exit
+ //
+ // - otherwise, acquire a block id, link it, write out xk_v,
+ // prepare new node
+ //
+ // Note that this does *not* try to squeeze in a final key into the
+ // next node slot. This optimization isn't worth the added
+ // down-pipeline complexity.
+ //
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ //
+ // SIMT
+ //
+ if (get_sub_group_local_id() == (*xk_v_next & SKC_PREFIX_TTXK_V_MASK))
+ {
+ *xk_v = *sk_s;
+ }
+
+ *xk_v_next += 1;
+
+ // are there more keys coming?
+ if (rkpk_rem > 0)
+ {
+ // is the node almost full?
+ if (*xk_v_next == SKC_RASTER_NODE_DWORDS - 1)
+ {
+ skc_block_id_t const id = skc_blocks_get_next(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
+
+ if (get_sub_group_local_id() == SKC_PREFIX_TTXK_V_SIZE - 1)
+ {
+ xk_v->lo = id;
+ xk_v->hi = SKC_UINT_MAX; // this initialization isn't necessary
+ }
+
+ // store xk_v (uint2) to bp (uint)
+ bp_elems[*xk_v_idx ] = xk_v->lo;
+ bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
+#if 0
+ printf("S) %u : %08v2X\n",*xk_v_idx,*xk_v);
+#endif
+ // reinitialize xk_v
+ xk_v->lo = SKC_UINT_MAX;
+ xk_v->hi = SKC_UINT_MAX;
+
+ // update node elem idx
+ *xk_v_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
+
+ // reset node count
+ *xk_v_next = 0;
+ }
+ // is xk_v full?
+ else if ((*xk_v_next & SKC_PREFIX_TTXK_V_MASK) == 0)
+ {
+ // store xk_v to bp
+ bp_elems[*xk_v_idx ] = xk_v->lo;
+ bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
+#if 0
+ printf("s) %u : %08v2X\n",*xk_v_idx,*xk_v);
+#endif
+ // reinitialize xk_v
+ xk_v->lo = SKC_UINT_MAX;
+ xk_v->hi = SKC_UINT_MAX;
+
+ // increment node elem idx
+ *xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
+ }
+ }
+ else
+ {
+ bp_elems[*xk_v_idx ] = xk_v->lo;
+ bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
+#if 0
+ printf("z) %u : %08v2X\n",*xk_v_idx,*xk_v);
+#endif
+ while ((*xk_v_idx & SKC_DEVICE_BLOCK_WORDS_MASK) < SKC_DEVICE_BLOCK_WORDS - SKC_PREFIX_SUBGROUP_SIZE * 2)
+ {
+ *xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
+
+ bp_elems[*xk_v_idx] = SKC_UINT_MAX;
+ bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = SKC_UINT_MAX;
+ }
+ }
+
+#else
+ //
+ // SIMD
+ //
+
+#endif
+}
+
+//
+//
+//
+
+static
+skc_ttpk_s_t
+skc_ttpk_create(skc_raster_yx_s const yx_prev,
+ skc_raster_yx_s const yx_next,
+ skc_block_id_t const pb_id)
+{
+ // - yx_prev is already incremented by one
+ // - yx_span is already shifted up at hi.x
+ skc_uint const yx_span = yx_next - yx_prev;
+
+ skc_ttpk_s_t pk;
+
+ // turn on prefix bit | shift span bits upward
+ pk.lo = pb_id | SKC_TTXK_LO_MASK_PREFIX | (yx_span << SKC_TTPK_LO_SHL_YX_SPAN);
+
+ // shift down high span bits | yx of tile
+ pk.hi = (yx_span >> SKC_TTPK_HI_SHR_YX_SPAN) | yx_prev;
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("* %08v2X : %u\n",pk,yx_span);
+#endif
+
+ return pk;
+}
+
+//
+// append a ttpk key to the work-in-progress node
+//
+
+static
+void
+skc_node_v_append_pk(skc_ttpk_s_t const * const pk_s,
+
+ skc_ttxk_v_t * const xk_v,
+ skc_uint * const xk_v_next,
+ skc_uint * const xk_v_idx,
+ __global skc_bp_elem_t * const bp_elems,
+
+ skc_uint * const blocks_next,
+ skc_uint * const blocks_idx,
+ skc_block_id_v_t * const blocks,
+ skc_uint const bp_mask,
+ __global skc_block_id_t const * const bp_ids)
+{
+ //
+ // append a pk key to the in-register xk_v vector
+ //
+ // if the work-in-progress node in gmem will only have room for one
+ // more key then:
+ //
+ // - if this was the final SK then write out xk_v and exit
+ //
+ // - otherwise, acquire a block id, link it, write out xk_v,
+ // prepare new node
+ //
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ //
+ // SIMT
+ //
+ if (get_sub_group_local_id() == (*xk_v_next & SKC_PREFIX_TTXK_V_MASK))
+ {
+ *xk_v = *pk_s;
+ }
+
+ *xk_v_next += 1;
+
+ // is the node almost full?
+ if (*xk_v_next == SKC_RASTER_NODE_DWORDS - 1)
+ {
+ skc_block_id_t const id = skc_blocks_get_next(blocks_next,blocks_idx,blocks,bp_mask,bp_ids);
+
+ if (get_sub_group_local_id() == SKC_PREFIX_TTXK_V_SIZE - 1)
+ {
+ xk_v->lo = id;
+ xk_v->hi = SKC_UINT_MAX; // this initialization isn't necessary
+ }
+
+ // store xk_v to bp
+ bp_elems[*xk_v_idx ] = xk_v->lo;
+ bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
+#if 0
+ printf("P) %u : %08v2X\n",*xk_v_idx,*xk_v);
+#endif
+ // reinitialize xk_v
+ xk_v->lo = SKC_UINT_MAX;
+ xk_v->hi = SKC_UINT_MAX;
+
+ // update node elem idx
+ *xk_v_idx = id * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
+
+ // reset node count
+ *xk_v_next = 0;
+ }
+ // is xk_v full?
+ else if ((*xk_v_next & SKC_PREFIX_TTXK_V_MASK) == 0)
+ {
+ // store xk_v to bp
+ bp_elems[*xk_v_idx ] = xk_v->lo;
+ bp_elems[*xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v->hi;
+#if 0
+ printf("p) %u : %08v2X\n",*xk_v_idx,*xk_v);
+#endif
+ // reinitialize xk_v
+ xk_v->lo = SKC_UINT_MAX;
+ xk_v->hi = SKC_UINT_MAX;
+
+ // increment node elem idx
+ *xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
+ }
+
+#else
+ //
+ // SIMD
+ //
+#endif
+}
+
+//
+// append the first 3 fields of meta info to the raster header
+//
+
+static
+void
+skc_node_v_init_header(skc_ttxk_v_t * const xk_v,
+ skc_uint * const xk_v_next,
+ union skc_raster_cohort_meta_out const * const meta)
+{
+#if ( SKC_PREFIX_SUBGROUP_SIZE > 1 )
+ //
+ // SIMT
+ //
+ if (get_sub_group_local_id() < 2)
+ {
+ *xk_v = ((get_sub_group_local_id() & 1) == 0) ? meta->u32v4.lo : meta->u32v4.hi;
+ }
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("header: %08v4X\n",meta->u32v4);
+#endif
+
+ //
+ // increment counter: uint4 + uint4 = uint2 x 4
+ //
+ *xk_v_next = 2 + 2; // +2 for unitialized bounds
+
+#else
+ //
+ // SIMD
+ //
+
+#endif
+}
+
+//
+//
+//
+
+__kernel
+SKC_PREFIX_KERNEL_ATTRIBS
+void
+skc_kernel_prefix(__global skc_uint const * const bp_atomics,
+ __global skc_block_id_t const * const bp_ids,
+ __global skc_bp_elem_t * const bp_elems,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_ttrk_e_t const * const rks,
+ __global skc_block_id_t * const map,
+ __global skc_uint const * const metas,
+ skc_uint const count)
+{
+ //
+ // declare shared memory block
+ //
+#if ( SKC_PREFIX_WORKGROUP_SUBGROUPS == 1 )
+ __local struct skc_subgroup_smem smem[1];
+#else
+ __local struct skc_subgroup_smem smems[SKC_PREFIX_WORKGROUP_SUBGROUPS];
+ __local struct skc_subgroup_smem * restrict const smem = smems + get_sub_group_id();
+#endif
+
+ //
+ // where is this subgroup in the grid?
+ //
+#if ( SKC_PREFIX_WORKGROUP_SUBGROUPS == 1 )
+ skc_uint const sgi = get_group_id(0);
+#else
+ skc_uint const sgi = get_group_id(0) * SKC_PREFIX_WORKGROUP_SUBGROUPS + get_sub_group_id();
+#endif
+
+ skc_uint const sgl = get_sub_group_local_id();
+
+ //
+ // return if this subgroup is excess
+ //
+#if ( SKC_PREFIX_WORKGROUP_SUBGROUPS > 1 )
+ if (sgi >= count)
+ return;
+#endif
+
+ //
+ // get meta info for this subgroup's raster
+ //
+ union skc_raster_cohort_meta_out const meta = { vload4(sgi,metas) };
+ skc_uint const reads = metas[SKC_RASTER_COHORT_META_OFFSET_READS + sgi];
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("%3u : %5u / %5u / %5u / %5u / %u\n",
+ sgi,
+ meta.blocks,
+ meta.offset,
+ meta.nodes,
+ meta.keys,
+ reads);
+#endif
+
+ //
+ // preload blocks -- align on subgroup
+ //
+ skc_uint blocks_idx = (reads & ~SKC_PREFIX_SUBGROUP_MASK) + skc_subgroup_lane();
+ skc_block_id_v_t blocks = bp_ids[blocks_idx & bp_mask];
+ skc_uint blocks_next = (reads & SKC_PREFIX_SUBGROUP_MASK);
+
+ //
+ // prime xk_v_idx with a block but note that OpenCL vstore_n() will scale the offset
+ //
+ skc_uint xk_v_idx = sub_group_broadcast(blocks,blocks_next++) * SKC_DEVICE_SUBBLOCK_WORDS + get_sub_group_local_id();
+
+ //
+ // initialize raster header -- assumes block is greater than 8 words (4 doublewords)
+ //
+ skc_ttxk_v_t xk_v = { SKC_UINT_MAX, SKC_UINT_MAX };
+ skc_uint xk_v_next;
+
+ skc_node_v_init_header(&xk_v,&xk_v_next,&meta);
+
+ //
+ // no keys -- this is an empty raster!
+ //
+ if (meta.keys == 0)
+ {
+ bp_elems[xk_v_idx ] = xk_v.lo;
+ bp_elems[xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = xk_v.hi;
+
+ while ((xk_v_idx & SKC_DEVICE_BLOCK_WORDS_MASK) < SKC_DEVICE_BLOCK_WORDS - SKC_PREFIX_SUBGROUP_SIZE * 2)
+ {
+ xk_v_idx += SKC_PREFIX_SUBGROUP_SIZE * 2;
+
+ bp_elems[xk_v_idx] = SKC_UINT_MAX;
+ bp_elems[xk_v_idx+SKC_PREFIX_SUBGROUP_SIZE] = SKC_UINT_MAX;
+ }
+
+ return;
+ }
+
+ //
+ // load TTRK keys and in-place convert to TTSK keys
+ //
+ skc_uint rks_next = (meta.offset & ~SKC_PREFIX_SUBGROUP_MASK) + skc_subgroup_lane();
+ skc_ttsk_v_t sk_v = rks[rks_next];
+ skc_uint sk_next = (meta.offset & SKC_PREFIX_SUBGROUP_MASK);
+ skc_int rkpk_rem = meta.keys; // signed count of remaining rk+pk keys
+
+#if 0
+ printf("* %08X ( %3u, %3u )\n",
+ sk_v.hi,
+ (sk_v.hi >> 12) & 0xFFF,
+ (sk_v.hi ) & 0xFFF);
+#endif
+
+ skc_ttrk_to_ttsk(&sk_v);
+
+#if 0
+ printf("! %08X ( %3u, %3u )\n",
+ sk_v.hi,
+ (sk_v.hi >> 20) & 0xFFF,
+ (sk_v.hi >> 8) & 0xFFF);
+#endif
+
+ //
+ // subblocks
+ //
+#if ( SKC_DEVICE_SUBBLOCK_WORDS_LOG2 < SKC_DEVICE_BLOCK_WORDS_LOG2 )
+ skc_block_id_t subblocks = 0;
+#endif
+
+ //
+ // begin "scan" of tiles
+ //
+ skc_raster_yx_s yx_prev = skc_ttsk_v_first(&sk_v,sk_next);
+
+ //
+ // zero the accumulator
+ //
+ skc_accum_reset(smem);
+
+ while (true)
+ {
+ // get next rk key
+ skc_ttsk_s_t const sk_s = skc_ttsk_v_get_next(&sk_v,&sk_next,&rkpk_rem);
+
+ // load ttsb id
+ skc_block_id_s_t const sb_id = skc_ttsk_s_get_ttsb_id(&sk_s);
+
+ // load tts_v transaction "in flight" as early as possible
+ skc_tts_v_t const tts_v = skc_load_tts(bp_elems,sb_id);
+
+#if 0
+ printf("{ %08X }\n",tts_v);
+#endif
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("[ %d, %X ]\n",rkpk_rem,sb_id);
+#endif
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("@ %08X ( %3u, %3u )\n",sk_s.hi,(sk_s.hi >> 20),(sk_s.hi >> 8) & 0xFFF);
+#endif
+
+ //
+ // FIXME -- SOME OF THESE COMPARISONS CAN BE PERFORMED AHEAD OF
+ // TIME AND SIMD'IZED
+ //
+
+ // if yx's don't match then we're either issuing a ttpk or
+ // resetting the accumulator
+ if (sk_s.hi != yx_prev)
+ {
+ // if yx_next.y == yx_last.y then x changed
+ if (((sk_s.hi ^ yx_prev) & SKC_TTXK_HI_MASK_Y) == 0)
+ {
+ //
+ // if the tile is not square then it's ratio is 1:2
+ //
+#if SKC_DEVICE_SUBBLOCK_WORDS_LOG2 < SKC_DEVICE_BLOCK_WORDS_LOG2
+ skc_block_id_t const pb_id = skc_subblocks_get_next_pb_id(&subblocks,
+ &blocks_next,
+ &blocks_idx,
+ &blocks,
+ bp_mask,
+ bp_ids);
+#else
+ skc_block_id_t const pb_id = skc_blocks_get_next(&blocks_next,
+ &blocks_idx,
+ &blocks,
+ bp_mask,
+ bp_ids);
+#endif
+
+ // flush accumulated ttp vector to block/subblock at ttpb_id
+ skc_accum_flush(smem,bp_elems,pb_id);
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ {
+ printf("%8u : ( %4u, %4u ) -> ( %4u, %4u )\n",
+ pb_id,
+ (yx_prev >> SKC_TTXK_HI_OFFSET_Y),
+ (yx_prev >> SKC_TTXK_HI_OFFSET_X) & 0xFFF,
+ (sk_s.hi >> SKC_TTXK_HI_OFFSET_Y) & 0xFFF,
+ (sk_s.hi >> SKC_TTXK_HI_OFFSET_X) & 0xFFF);
+ }
+#endif
+
+ //
+ // FIXME -- A SIMD-WIDE BLOCK OF TTPK KEYS CAN BE CREATED IN ONE STEP
+ //
+ rkpk_rem -= 1;
+
+ // create the pk
+ skc_ttpk_s_t const pk_s = skc_ttpk_create(yx_prev+SKC_TTXK_HI_ONE_X,sk_s.hi,pb_id);
+
+ // append pk key to xk buffer
+ skc_node_v_append_pk(&pk_s,
+
+ &xk_v,
+ &xk_v_next,
+ &xk_v_idx,
+ bp_elems,
+
+ &blocks_next,
+ &blocks_idx,
+ &blocks,
+ bp_mask,
+ bp_ids);
+ }
+ else if (rkpk_rem > 0) // we're starting a new tile row
+ {
+ skc_accum_reset(smem);
+ }
+ }
+
+ //
+ // append sk key to node_v
+ //
+ // if rkpk_rem is zero then return from kernel
+ //
+ skc_node_v_append_sk(&sk_s,
+
+ &xk_v,
+ &xk_v_next,
+ &xk_v_idx,
+ bp_elems,
+
+ rkpk_rem,
+
+ &blocks_next,
+ &blocks_idx,
+ &blocks,
+ bp_mask,
+ bp_ids);
+
+ // we're done if no more sk keys
+ if (rkpk_rem == 0)
+ break;
+
+ // move to new tile
+ yx_prev = sk_s.hi;
+
+ // scatter tts values into accumulator
+ skc_accum_scatter(smem,tts_v);
+
+ // replenish sk keys
+ skc_ttsk_v_replenish(&sk_v,&sk_next,&rks_next,rks);
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/rasterize.cl b/src/compute/skc/platforms/cl_12/kernels/rasterize.cl
index c9462ecff5..e622845d9c 100644
--- a/src/compute/skc/rasterize.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/rasterize.cl
@@ -1,3367 +1,3366 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "raster_builder_cl_12.h"
-#include "block_pool_cl.h"
-
-#include "atomic_cl.h"
-#include "common.h"
-#include "tile.h"
-
-// #define SKC_ARCH_AVX2
-// #define SKC_RASTERIZE_SIMD_USES_SMEM
-
-#define PRINTF_ENABLE 0
-#define PRINTF_BLOCK_COUNT 0
-
-//
-// NOTE:
-//
-// ON SIMD DEVICES THE BIN COUNT MUST BE POW2 SO THAT WE CAN LOAD IT
-// AS A VECTOR AND PERFORM A SWIZZLE/SHUFFLE
-//
-// NOTE:
-//
-// IGNORE FOR NOW ANY AVX2 CODE SNIPPETS. THEY WILL BE MOVED ASAP.
-//
-//
-
-#if 0 // SKC_ARCH_AVX2
-
-// #define SKC_RASTERIZE_SUBGROUP_SIZE 1
-// #define SKC_RASTERIZE_VECTOR_SIZE_LOG2 3
-// #define SKC_RASTERIZE_WORKGROUP_COUNT_SUBGROUP 1
-
-// #define SKC_TTXB_WORDS 8
-
-// #define SKC_RASTERIZE_FLOAT float8
-// #define SKC_RASTERIZE_UINT uint8
-// #define SKC_RASTERIZE_INT int8
-// #define SKC_RASTERIZE_PREDICATE int8
-
-// #define SKC_RASTERIZE_BIN_BLOCK uint16
-// #define SKC_RASTERIZE_BIN uint8
-
-// #define SKC_RASTERIZE_POOL uint8
-// #define SKC_RASTERIZE_POOL_SCALE 6
-
-// #define SKC_RASTERIZE_TILE_HASH_X_BITS 1
-// #define SKC_RASTERIZE_TILE_HASH_Y_BITS 2
-
-// #define SKC_RASTERIZE_VECTOR_EXPAND() SKC_EXPAND_8()
-
-#endif
-
-//
-// SIMT
-//
-
-#define SKC_RASTERIZE_BLOCK_ID_V_SIZE SKC_RASTERIZE_SUBGROUP_SIZE
-#define SKC_RASTERIZE_TTSK_V_SIZE SKC_RASTERIZE_SUBGROUP_SIZE
-#define SKC_RASTERIZE_TTSK_V_MASK (SKC_RASTERIZE_TTSK_V_SIZE - 1)
-
-//
-//
-//
-
-#define SKC_RASTERIZE_VECTOR_SIZE (1 << SKC_RASTERIZE_VECTOR_SIZE_LOG2)
-#define SKC_RASTERIZE_ELEMS_PER_SUBGROUP (SKC_RASTERIZE_SUBGROUP_SIZE * SKC_RASTERIZE_VECTOR_SIZE)
-
-//
-//
-//
-
-#define SKC_RASTERIZE_YX_INIT 0x7FFF7FFF // { +32767, +32767 }
-#define SKC_RASTERIZE_YX_INVALID 0x80008000 // { -32768, -32768 }
-
-//
-//
-//
-
-#define SKC_RASTERIZE_TILE_HASH_X_MASK SKC_BITS_TO_MASK(SKC_RASTERIZE_TILE_HASH_X_BITS)
-#define SKC_RASTERIZE_TILE_HASH_Y_MASK SKC_BITS_TO_MASK(SKC_RASTERIZE_TILE_HASH_Y_BITS)
-#define SKC_RASTERIZE_TILE_HASH_BITS (SKC_RASTERIZE_TILE_HASH_X_BITS + SKC_RASTERIZE_TILE_HASH_Y_BITS)
-#define SKC_RASTERIZE_TILE_HASH_BIN_COUNT (1 << SKC_RASTERIZE_TILE_HASH_BITS)
-#define SKC_RASTERIZE_TILE_HASH_BIN_BITS (SKC_RASTERIZE_TILE_HASH_BITS + 1) // FIXME -- LOG2_RU(BIN_COUNT)
-#define SKC_RASTERIZE_TILE_HASH_BIN_MASK SKC_BITS_TO_MASK(SKC_RASTERIZE_TILE_HASH_BIN_BITS)
-
-//
-// Norbert Juffa notes: "GPU Pro Tip: Lerp Faster in C++"
-//
-// https://devblogs.nvidia.com/parallelforall/lerp-faster-cuda/
-//
-// Lerp in two fma/mad ops:
-//
-// t * b + ((-t) * a + a)
-//
-// Note: OpenCL documents mix() as being implemented as:
-//
-// a + (b - a) * t
-//
-// But this may be a native instruction on some devices. For example,
-// on GEN9 there is an LRP "linear interoplation" opcode but it
-// doesn't appear to support half floats.
-//
-// Feel free to toggle this option and then benchmark and inspect the
-// generated code. We really want the double FMA to be generated when
-// there isn't support for a LERP/MIX operation.
-//
-
-#if 1
-#define SKC_LERP(a,b,t) mad(t,b,mad(-(t),a,a))
-#else
-#define SKC_LERP(a,b,t) mix(a,b,t)
-#endif
-
-//
-// There is no integer MAD in OpenCL with "don't care" overflow
-// semantics.
-//
-// FIXME -- verify if the platform needs explicit MAD operations even
-// if a "--fastmath" option is available at compile time. It might
-// make sense to explicitly use MAD calls if the platform requires it.
-//
-
-#if 1
-#define SKC_MAD_UINT(a,b,c) ((a) * (b) + (c))
-#else
-#define SKC_MAD_UINT(a,b,c) mad_sat(a,b,c)
-#endif
-
-//
-//
-//
-
-#define SKC_RASTERIZE_SEGMENT(id) (id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane())
-
-//
-//
-//
-
-union skc_bp_elem
-{
- skc_uint u32;
- skc_tagged_block_id_t tag_id;
- skc_float coord;
-};
-
-//
-//
-//
-
-struct skc_subgroup_smem
-{
- //
- // SIMT subgroup scratchpad for max scan -- also shared with 'winner' member
- //
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE > 1 ) || defined ( SKC_RASTERIZE_SIMD_USES_SMEM )
- struct {
- union {
-
- skc_uint winner;
-
- struct {
- skc_uint scratch[SKC_RASTERIZE_SUBGROUP_SIZE];
- } aN;
-
- struct {
- SKC_RASTERIZE_UINT scratch[SKC_RASTERIZE_SUBGROUP_SIZE];
- } vN;
- };
- } subgroup;
-#endif
-
- //
- // work-in-progress TTSB blocks and associated YX keys
- //
- union {
- struct {
- // FIXME -- some typedefs are valid here
- skc_uint ttsb [SKC_RASTERIZE_TILE_HASH_BIN_COUNT][SKC_DEVICE_SUBBLOCK_WORDS];
- skc_uint yx [SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
- skc_uint id [SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
- skc_uint count[SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
- } aN;
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- struct {
- SKC_RASTERIZE_BIN_BLOCK ttsb[SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
- SKC_RASTERIZE_BIN yx;
- SKC_RASTERIZE_BIN id;
- SKC_RASTERIZE_BIN count;
- } vN;
-#endif
- } bin;
-};
-
-//
-//
-//
-
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
-#define skc_subgroup_lane() 0
-#else
-#define skc_subgroup_lane() get_sub_group_local_id()
-#endif
-
-//
-// replenish block ids
-//
-// note that you can't overrun the block id pool since it's a ring
-//
-
-static
-void
-skc_blocks_replenish(skc_uint * const blocks_next,
- skc_block_id_v_t * const blocks,
- __global SKC_ATOMIC_UINT volatile * const bp_atomics,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const bp_ids)
-{
- //
- // get a new vector of block ids -- this is kind of a narrow
- // allocation but subblocks help stretch out the pool.
- //
- // FIXME -- there is now plenty of SMEM to allocate a LOT of block ids
- //
- skc_uint bp_idx = 0;
-
- if (skc_subgroup_lane() == 0)
- {
- bp_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+SKC_BP_ATOMIC_OFFSET_READS,
- SKC_RASTERIZE_BLOCK_ID_V_SIZE); // ring_reads
-#if 0
- printf("r+: %8u + %u\n",bp_idx,SKC_RASTERIZE_BLOCK_ID_V_SIZE);
-#endif
- }
-
- bp_idx = (sub_group_broadcast(bp_idx,0) + skc_subgroup_lane()) & bp_mask;
- *blocks = bp_ids[bp_idx];
- *blocks_next = 0;
-}
-
-//
-//
-//
-
-static
-skc_block_id_t
-skc_blocks_get_next(skc_uint * const blocks_next,
- skc_block_id_v_t * const blocks,
- __global SKC_ATOMIC_UINT volatile * const bp_atomics,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const bp_ids)
-{
- // replenish?
- if (*blocks_next == SKC_RASTERIZE_BLOCK_ID_V_SIZE)
- {
- skc_blocks_replenish(blocks_next,blocks,bp_atomics,bp_mask,bp_ids);
- }
-
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE > 1 )
- //
- // SIMT
- //
- skc_block_id_t id = sub_group_broadcast(*blocks,*blocks_next);
-
-#else
- //
- // SIMD
- //
- skc_block_id_t id = blocks->s0;
-
- skc_shuffle_down_1(*blocks);
-
-#endif
-
- *blocks_next += 1;
-
- return id;
-}
-
-//
-// subblock allocator
-//
-
-#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
-
-static
-skc_block_id_t
-skc_subblocks_get_next(skc_block_id_t * const subblocks,
- skc_uint * const blocks_next,
- skc_block_id_v_t * const blocks,
- __global SKC_ATOMIC_UINT volatile * const bp_atomics,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const bp_ids)
-{
- if ((*subblocks & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
- {
- *subblocks = skc_blocks_get_next(blocks_next,blocks,bp_atomics,bp_mask,bp_ids);
- }
-
- skc_block_id_t const sb_id = *subblocks;
-
- *subblocks += 1;
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("= %u\n",sb_id);
-#endif
-
- return sb_id;
-}
-
-
-#define SKC_SUBBLOCKS_BLOCKS_PROTO() skc_block_id_t * const subblocks, skc_block_id_t * const blocks
-#define SKC_SUBBLOCKS_BLOCKS_ARGS() subblocks, blocks
-
-#else
-
-#define SKC_SUBBLOCKS_BLOCKS_PROTO() skc_block_id_t * const blocks
-#define SKC_SUBBLOCKS_BLOCKS_ARGS() blocks
-
-#endif
-
-//
-//
-//
-
-static
-skc_block_id_t
-skc_ttsk_v_append(SKC_SUBBLOCKS_BLOCKS_PROTO(),
- skc_uint * const blocks_next,
- __global SKC_ATOMIC_UINT volatile * const bp_atomics,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const bp_ids,
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- skc_ttsk_v_t * const sk_v,
- skc_uint * const sk_v_next,
- __global skc_ttsk_s_t * const sk_extent,
- skc_uint const new_yx)
-{
-#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
- skc_block_id_t const new_id = skc_subblocks_get_next(subblocks,
- blocks_next,
- blocks,
- bp_atomics,
- bp_mask,
- bp_ids);
-#else
- skc_block_id_t const new_id = skc_blocks_get_next(blocks_next,
- blocks,
- bp_atomics,
- bp_mask, // pow2 modulo mask for block pool ring
- bp_ids);
-#endif
-
- if (get_sub_group_local_id() == (*sk_v_next & SKC_RASTERIZE_TTSK_V_MASK))
- {
- sk_v->lo = new_id;
- sk_v->hi = (sk_v->hi & SKC_TTRK_HI_MASK_COHORT) | new_yx;
-#if 0
- printf("@ ( %3u, %3u ) %u\n",
- (new_yx >> 12) & 0xFFF,
- (new_yx ) & 0xFFF,
- new_id);
-#endif
- }
-
- *sk_v_next += 1;
-
- if (*sk_v_next == SKC_RASTERIZE_TTSK_V_SIZE)
- {
- *sk_v_next = 0;
-
- skc_uint sk_idx = 0;
-
- if (skc_subgroup_lane() == 0)
- {
- sk_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE
- (cohort_atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_KEYS,SKC_RASTERIZE_TTSK_V_SIZE);
-#if 0
- printf("+ %u\n",sk_idx);
-#endif
- }
-
- sk_idx = sub_group_broadcast(sk_idx,0) + skc_subgroup_lane();
-
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE > SKC_RASTERIZE_TTSK_V_SIZE )
- if (skc_subgroup_lane() < SKC_RASTERIZE_TTSK_V_SIZE)
-#endif
- {
- sk_extent[sk_idx] = *sk_v;
-#if 0
- printf("> %u : %v2u\n",sk_idx,*sk_v);
-#endif
- }
- }
-
- return new_id;
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_FLOAT
-skc_subgroup_scan_inclusive_add_float(SKC_RASTERIZE_FLOAT const v)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
- // Note that there isn't a built-in horizontal scan for vectors so
- // we'll define some here for various widths.
- //
- // FIXME -- a scalar version might be faster so put in a
- // compile-time switch to selection between implementations
- //
-
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return v;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
- // 01
- // 0 +
- // --
- // 01
- SKC_RASTERIZE_FLOAT const w = mad(v.s10,(SKC_RASTERIZE_FLOAT)(0,1),v);
- return w;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
- // 0123
- // 012 +
- // ----
- // 0123
- // 01 +
- // ----
- // 0123
- //
- SKC_RASTERIZE_FLOAT const w = mad(v.s3012,(SKC_RASTERIZE_FLOAT)(0,1,1,1),v);
- SKC_RASTERIZE_FLOAT const x = mad(w.s2301,(SKC_RASTERIZE_FLOAT)(0,0,1,1),w);
- return x;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
- // 01234567
- // 0123456 +
- // --------
- // 01234567
- // 012345 +
- // --------
- // 01234567
- // 0123 +
- // --------
- // 01234567
- //
- SKC_RASTERIZE_FLOAT const w = mad(v.s70123456,(SKC_RASTERIZE_FLOAT)(0,1,1,1,1,1,1,1),v);
- SKC_RASTERIZE_FLOAT const x = mad(w.s67012345,(SKC_RASTERIZE_FLOAT)(0,0,1,1,1,1,1,1),w);
- SKC_RASTERIZE_FLOAT const y = mad(x.s45670123,(SKC_RASTERIZE_FLOAT)(0,0,0,0,1,1,1,1),x);
- return y;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
- // 0123456789abcdef
- // 0123456789abcde +
- // ----------------
- // 0123456789abcdef
- // 0123456789abcd +
- // ----------------
- // 0123456789abcdef
- // 0123456789ab +
- // ----------------
- // 0123456789abcdef
- // 01234567 +
- // ----------------
- // 0123456789abcdef
- //
- SKC_RASTERIZE_FLOAT const w = mad(v.sf0123456789abcde,(SKC_RASTERIZE_FLOAT)(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),v);
- SKC_RASTERIZE_FLOAT const x = mad(w.sef0123456789abcd,(SKC_RASTERIZE_FLOAT)(0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1),w);
- SKC_RASTERIZE_FLOAT const y = mad(x.scdef0123456789ab,(SKC_RASTERIZE_FLOAT)(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1),x);
- SKC_RASTERIZE_FLOAT const z = mad(y.s89abcdef01234567,(SKC_RASTERIZE_FLOAT)(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1),y);
- return z;
-
-#endif
-
-#else
- //
- // SIMT
- //
-
- return sub_group_scan_inclusive_add(v);
-
-#endif
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_UINT
-skc_subgroup_scan_inclusive_add_uint(SKC_RASTERIZE_UINT const v)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
- // Note that there isn't a built-in horizontal scan for vectors so
- // we'll define some here for various widths.
- //
- // FIXME -- a scalar version might be faster so put in a
- // compile-time switch to selection between implementations
- //
-
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return v;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
- // 01
- // 0 +
- // --
- // 01
- SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.s10,(SKC_RASTERIZE_UINT)(0,1),v);
- return w;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
- // 0123
- // 012 +
- // ----
- // 0123
- // 01 +
- // ----
- // 0123
- //
- SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.s3012,(SKC_RASTERIZE_UINT)(0,1,1,1),v);
- SKC_RASTERIZE_UINT const x = SKC_MAD_UINT(w.s2301,(SKC_RASTERIZE_UINT)(0,0,1,1),w);
- return x;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
- // 01234567
- // 0123456 +
- // --------
- // 01234567
- // 012345 +
- // --------
- // 01234567
- // 0123 +
- // --------
- // 01234567
- //
- SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.s70123456,(SKC_RASTERIZE_UINT)(0,1,1,1,1,1,1,1),v);
- SKC_RASTERIZE_UINT const x = SKC_MAD_UINT(w.s67012345,(SKC_RASTERIZE_UINT)(0,0,1,1,1,1,1,1),w);
- SKC_RASTERIZE_UINT const y = SKC_MAD_UINT(x.s45670123,(SKC_RASTERIZE_UINT)(0,0,0,0,1,1,1,1),x);
- return y;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
- // 0123456789abcdef
- // 0123456789abcde +
- // ----------------
- // 0123456789abcdef
- // 0123456789abcd +
- // ----------------
- // 0123456789abcdef
- // 0123456789ab +
- // ----------------
- // 0123456789abcdef
- // 01234567 +
- // ----------------
- // 0123456789abcdef
- //
- SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.sf0123456789abcde,(SKC_RASTERIZE_UINT)(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),v);
- SKC_RASTERIZE_UINT const x = SKC_MAD_UINT(w.sef0123456789abcd,(SKC_RASTERIZE_UINT)(0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1),w);
- SKC_RASTERIZE_UINT const y = SKC_MAD_UINT(x.scdef0123456789ab,(SKC_RASTERIZE_UINT)(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1),x);
- SKC_RASTERIZE_UINT const z = SKC_MAD_UINT(y.s89abcdef01234567,(SKC_RASTERIZE_UINT)(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1),y);
- return z;
-
-#endif
-
-#else
- //
- // SIMT
- //
-
- return sub_group_scan_inclusive_add(v);
-
-#endif
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_UINT
-skc_subgroup_scan_inclusive_max(SKC_RASTERIZE_UINT const v)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
- // Note that there isn't a built-in horizontal scan for vectors so
- // we'll define some here for various widths.
- //
- // FIXME -- a scalar version might be faster so put in a
- // compile-time switch to selection between implementations
- //
-
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return v;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
- // 01
- // 00 max
- // --
- // 01
- SKC_RASTERIZE_UINT const w = max(v.s00,v);
- return w;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
- // 0123
- // 0012 +
- // ----
- // 0123
- // 0101 +
- // ----
- // 0123
- //
- SKC_RASTERIZE_UINT const w = max(v.s0012,v);
- SKC_RASTERIZE_UINT const x = max(w.s0101,w);
- return x;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
- // 01234567
- // 00123456 +
- // --------
- // 01234567
- // 01012345 +
- // --------
- // 01234567
- // 01230123 +
- // --------
- // 01234567
- //
- SKC_RASTERIZE_UINT const w = max(v.s00123456,v);
- SKC_RASTERIZE_UINT const x = max(w.s01012345,w);
- SKC_RASTERIZE_UINT const y = max(x.s01230123,x);
- return y;
-
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
- // 0123456789abcdef
- // 00123456789abcde +
- // ----------------
- // 0123456789abcdef
- // 010123456789abcd +
- // ----------------
- // 0123456789abcdef
- // 01230123456789ab +
- // ----------------
- // 0123456789abcdef
- // 0123456701234567 +
- // ----------------
- // 0123456789abcdef
- //
- SKC_RASTERIZE_UINT const w = max(v.s00123456789abcde,v);
- SKC_RASTERIZE_UINT const x = max(w.s010123456789abcd,w);
- SKC_RASTERIZE_UINT const y = max(x.s01230123456789ab,x);
- SKC_RASTERIZE_UINT const z = max(y.s0123456701234567,y);
- return z;
-
-#endif
-
-#else
- //
- // SIMT
- //
-
- return sub_group_scan_inclusive_max(v);
-
-#endif
-}
-
-//
-//
-//
-
-static
-float
-skc_subgroup_last_float(SKC_RASTERIZE_FLOAT const v)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return v;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
- return v.s1;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
- return v.s3;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
- return v.s7;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
- return v.sf;
-#endif
-
-#else
- //
- // SIMT
- //
- return sub_group_broadcast(v,SKC_RASTERIZE_SUBGROUP_SIZE-1);
-
-#endif
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_UINT
-skc_subgroup_last_uint(SKC_RASTERIZE_UINT const v)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return v;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
- return v.s1;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
- return v.s3;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
- return v.s7;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
- return v.sf;
-#endif
-
-#else
- //
- // SIMT
- //
- return sub_group_broadcast(v,SKC_RASTERIZE_SUBGROUP_SIZE-1);
-
-#endif
-}
-
-//
-//
-//
-
-static
-float
-skc_subgroup_first(SKC_RASTERIZE_FLOAT const v)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return v;
-#else
- return v.s0;
-#endif
-
-#else
- //
- // SIMT
- //
- return sub_group_broadcast(v,0);
-
-#endif
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_FLOAT
-skc_subgroup_shuffle(SKC_RASTERIZE_FLOAT const v,
- SKC_RASTERIZE_UINT const i)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return v;
-#else
- return shuffle(v,i);
-#endif
-
-#else
- //
- // SIMT
- //
- return intel_sub_group_shuffle(v,i);
-
-#endif
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_FLOAT
-skc_subgroup_shuffle_up_1(SKC_RASTERIZE_FLOAT const p, // previous
- SKC_RASTERIZE_FLOAT const c) // current
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
- // FIXME -- there are alternative formulations here:
- //
- // Option 1:
- //
- // select(c.rotate(+1),p.rotate(-1),(1,0,0,...))
- //
- // Option 2:
- //
- // p is a scalar
- // t = c.rotate(+1)
- // t.s0 = p;
- //
- // Option 3: ...
- //
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return p;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
- return shuffle2(p,c,(uint2)(1,2));
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
- return shuffle2(p,c,(uint4)(3,4,5,6));
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
- return shuffle2(p,c,(uint8)(7,8,9,10,11,12,13,14));
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
- return shuffle2(p,c,(uint16)(15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30));
-#endif
-
-#else
- //
- // SIMT
- //
- return intel_sub_group_shuffle_up(p,c,1);
-
-#endif
-}
-
-//
-//
-//
-
-static
-bool
-skc_is_lane_first()
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1)
- //
- // SIMD
- //
- return true;
-#else
- //
- // SIMT
- //
- return get_sub_group_local_id() == 0;
-#endif
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_FLOAT
-skc_delta_offset()
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- return 1;
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
- return (SKC_RASTERIZE_FLOAT)( 1, 2 );
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
- return (SKC_RASTERIZE_FLOAT)( 1, 2, 3, 4 );
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
- return (SKC_RASTERIZE_FLOAT)( 1, 2, 3, 4, 5, 6, 7, 8 );
-#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
- return (SKC_RASTERIZE_FLOAT)( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 );
-#endif
-
-#else
- //
- // SIMT
- //
- return 1.0f + get_sub_group_local_id();
-
-#endif
-
-}
-
-//
-//
-//
-
-static
-int
-skc_subgroup_any(SKC_RASTERIZE_PREDICATE const p)
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
- return any(p);
-#else
- //
- // SIMT
- //
- return sub_group_any(p);
-#endif
-}
-
-//
-//
-//
-
-#define SKC_PATH_NODEWORD_IS_LAST(n) (((n) & SKC_DEVICE_BLOCK_WORDS_MASK) == SKC_DEVICE_BLOCK_WORDS_MASK)
-
-void
-skc_segment_next(__global union skc_bp_elem * const bp_elems,
- skc_uint * const nodeword,
- skc_block_id_t * const id)
-{
- if ((++*id & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
- {
- if (SKC_PATH_NODEWORD_IS_LAST(++*nodeword))
- {
- *nodeword = SKC_TAGGED_BLOCK_ID_GET_ID(bp_elems[*nodeword].tag_id) * SKC_DEVICE_SUBBLOCK_WORDS;
- }
-
- skc_tagged_block_id_t const tag_id = bp_elems[*nodeword].tag_id;
-
- *id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
- }
-}
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_FLOAT
-skc_native_length(SKC_RASTERIZE_FLOAT const x, SKC_RASTERIZE_FLOAT const y)
-{
- return native_sqrt(x * x + y * y);
-}
-
-//
-// Wang's Formula (1985)
-//
-
-#define SKC_WANG_PIXEL_RESL 0.25f // <-- this can be tuned
-
-#define SKC_WANG_EPSILON (SKC_WANG_PIXEL_RESL * SKC_SUBPIXEL_RESL_X_F32)
-
-#define SKC_WANG_CUBIC ((3.0f * 2.0f) / (8.0f * SKC_WANG_EPSILON))
-#define SKC_WANG_QUADRATIC ((2.0f ) / (8.0f * SKC_WANG_EPSILON))
-
-#define SKC_WANG_LENGTH(x,y) skc_native_length(x,y)
-#define SKC_WANG_SQRT(x) native_sqrt(x)
-
-//
-//
-//
-
-static
-SKC_RASTERIZE_FLOAT
-skc_wangs_formula_cubic(SKC_RASTERIZE_FLOAT const t0x, SKC_RASTERIZE_FLOAT const t0y,
- SKC_RASTERIZE_FLOAT const t1x, SKC_RASTERIZE_FLOAT const t1y,
- SKC_RASTERIZE_FLOAT const t2x, SKC_RASTERIZE_FLOAT const t2y,
- SKC_RASTERIZE_FLOAT const t3x, SKC_RASTERIZE_FLOAT const t3y)
-{
- //
- // Return the number of evenly spaced (in the parametric sense) line
- // segments that are guaranteed to be within "epsilon" error of the
- // curve.
- //
- // We're then going to take multiples of the reciprocal of this
- // number so that the segmentation can be distributed across the
- // subgroup.
- //
- // Note, this can probably be slightly optimized per architecture
- // but it's probably far from being a hotspot since it's all
- // straight-line unpredicated code.
- //
- // The result is an integer ranging from [1.0,#segments]
- //
- // Note that even if all of the control points are coincident, the
- // max(1.0f) will categorize this as a line of 1 segment.
- //
- // This is what we want! We want to convert cubics to lines as
- // easily as possible and *then* cull lines that are either
- // horizontal or zero length.
- //
- return max(1.0f,
- ceil(SKC_WANG_SQRT(SKC_WANG_CUBIC *
- SKC_WANG_LENGTH(max(fabs(t2x - 2.0f * t1x + t0x),
- fabs(t3x - 2.0f * t2x + t1x)),
- max(fabs(t2y - 2.0f * t1y + t0y),
- fabs(t3y - 2.0f * t2y + t1y))))));
-}
-
-static
-SKC_RASTERIZE_FLOAT
-skc_wangs_formula_quadratic(SKC_RASTERIZE_FLOAT const t0x, SKC_RASTERIZE_FLOAT const t0y,
- SKC_RASTERIZE_FLOAT const t1x, SKC_RASTERIZE_FLOAT const t1y,
- SKC_RASTERIZE_FLOAT const t2x, SKC_RASTERIZE_FLOAT const t2y)
-{
- return max(1.0f,
- ceil(SKC_WANG_SQRT(SKC_WANG_QUADRATIC *
- SKC_WANG_LENGTH(fabs(t2x - 2.0f * t1x + t0x),
- fabs(t2y - 2.0f * t1y + t0y)))));
-}
-
-//
-// rational curves
-//
-
-static
-SKC_RASTERIZE_FLOAT
-skc_wangs_formula_cubic_rat()
-{
- return 0.0f;
-}
-
-static
-SKC_RASTERIZE_FLOAT
-skc_wangs_formula_quad_rat()
-{
- return 0.0f;
-}
-
-//
-// flush any work-in-progress blocks and return unused block ids
-//
-
-static
-void
-skc_finalize(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- skc_block_id_v_t * const blocks,
- skc_uint const blocks_next,
- skc_ttsk_v_t * const sk_v,
- skc_uint const sk_v_next,
- __global skc_ttsk_s_t * const sk_extent,
- __local struct skc_subgroup_smem volatile * const smem)
-{
- //
- // flush non-empty bins
- //
- // FIXME -- accelerate this iteration/search with a subgroup operation
- //
- for (skc_uint ii=0; ii<SKC_RASTERIZE_TILE_HASH_BIN_COUNT; ii++)
- {
- if (smem->bin.aN.count[ii] > 0)
- {
- skc_block_id_v_t const id = smem->bin.aN.id[ii];
- skc_uint const idx = id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
- skc_uint const tts = smem->bin.aN.ttsb[ii][skc_subgroup_lane()];
-#if 0
- printf("???????? : [ %10u = %10u : %08X ]\n",id,idx,tts);
-#endif
- bp_elems[idx].u32 = tts;
- }
-
- //
- // FIXME -- vectorize with vstoreN()
- //
- }
-
- //
- // return remaining block ids back to the pool
- //
- skc_uint const blocks_rem = SKC_RASTERIZE_BLOCK_ID_V_SIZE - blocks_next;
-
- if (blocks_rem > 0)
- {
- skc_uint bp_idx = 0;
-
- if (skc_subgroup_lane() == 0)
- {
- bp_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+SKC_BP_ATOMIC_OFFSET_WRITES,blocks_rem);
-
-#if 0
- printf("r-: %8u + %u\n",bp_idx,blocks_rem);
-#endif
- }
-
- bp_idx = (sub_group_broadcast(bp_idx,0) + skc_subgroup_lane() - blocks_next) & bp_mask;
-
- if (skc_subgroup_lane() >= blocks_next)
- {
- bp_ids[bp_idx] = *blocks;
- }
- }
-
- //
- // flush work-in-progress ryx keys
- //
- if (sk_v_next > 0)
- {
- skc_uint sk_idx = 0;
-
- if (skc_subgroup_lane() == 0)
- {
- sk_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE
- (cohort_atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_KEYS,sk_v_next);
-#if 0
- printf("* %u\n",sk_idx);
-#endif
- }
-
- sk_idx = sub_group_broadcast(sk_idx,0) + skc_subgroup_lane();
-
- if (skc_subgroup_lane() < sk_v_next)
- {
- sk_extent[sk_idx] = *sk_v;
- }
- }
-}
-
-//
-// If there are lanes that were unable to append to a bin because
-// their hashes collided with a bin's current ryx key then those bins
-// must be ejected.
-//
-// Note that we do not eject "full" bins because lazily waiting for a
-// collision results in simpler code.
-//
-
-static
-void
-skc_flush(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- skc_block_id_t * const subblocks,
- skc_block_id_v_t * const blocks,
- skc_uint * const blocks_next,
- skc_ttsk_v_t * const sk_v,
- skc_uint * const sk_v_next,
- __global skc_ttsk_s_t * const sk_extent,
- __local struct skc_subgroup_smem volatile * const smem,
- SKC_RASTERIZE_UINT const hash,
- SKC_RASTERIZE_UINT const yx,
- SKC_RASTERIZE_PREDICATE is_collision) // pass by value
-{
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
-
- //
- // FIXME -- this code is now stale with the changes to the
- // subblock/block allocation strategy
- //
-
- //
- // get local TTSB ID queue count
- //
- skc_uint ttsb_id_count = smem->pool.count; // scalar
-
- // init hash bit mask
- skc_uint component_mask = 0;
-
- for (int cc=0; cc<SKC_RASTERIZE_VECTOR_SIZE; cc++)
- {
- // if no collision continue
- if (((int*)&is_collision)[cc] == 0)
- continue;
-
- uint const winner = ((uint*)&hash)[cc];
- uint const component_bit = 1u << winner;
-
- // if already processed this hash then continue
- if (component_mask & component_bit)
- continue;
-
- // update component mask
- component_mask |= component_bit;
-
- //
- // new winner requires ejecting the old TTSB
- //
- if (smem->bin.aN.count[winner] > 0)
- {
- skc_uint const elem_idx = smem->bin.aN.id[winner] * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
-
- bp_elems[elem_idx].u32 = smem->bin.aN.ttsb[winner][skc_subgroup_lane()];
- }
-
- //
- // ensure there is at least one TTSK and TTSB ID
- //
- if (ttsb_id_count == SKC_RASTERIZE_POOL_SIZE)
- {
- //
- // update remaining count
- //
- ttsb_id_count = 0;
-
- //
- // flush accumulated ttsk_ryx keys
- //
- uint const idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE
- (cohort_atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_KEYS,SKC_RASTERIZE_POOL_SIZE); // ttsk_ryx_count
-
-#if 0
- printf("# %u\n",idx);
-#endif
-
- for (uint ii=0; ii<SKC_RASTERIZE_POOL_SIZE; ii+=SKC_RASTERIZE_SUBGROUP_SIZE)
- {
- ttsk_ryx[idx + ii] = skc_make_ttsk_ryx(smem,SKC_CMD_RASTERIZE_GET_COHORT(cmd),ii);
- }
-
- //
- // allocate more ttsb ids from pool
- //
- uint const id = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+0,SKC_RASTERIZE_POOL_SIZE); // ring_reads
-
- for (uint ii=0; ii<SKC_RASTERIZE_POOL_SIZE; ii+=SKC_RASTERIZE_SUBGROUP_SIZE)
- smem->pool.aN.id[ii] = bp_ids[id + ii];
- }
-
- //
- // invalidate the winning block
- //
-
- //
- // update bin with winning yx, new ttsb id and zero count
- //
- // all lanes are loading/storing from/to the same index
- //
- smem->bin.vN.ttsb [winner] = ( SKC_TTS_INVALID );
- smem->bin.aN.id [winner] = smem->pool.aN.id[ttsb_id_count];
- smem->bin.aN.yx [winner] = smem->pool.aN.yx[ttsb_id_count] = ((uint*)&yx)[cc];
- smem->bin.aN.count[winner] = 0;
-
- //
- // update count
- //
- ttsb_id_count += 1;
- }
-
- //
- // save count
- //
- smem->pool.count = ttsb_id_count;
-
-#else
- //
- // SIMT
- //
-
- do {
- //
- // only one lane will win!
- //
- if (is_collision)
- smem->subgroup.winner = hash;
-
- barrier(CLK_LOCAL_MEM_FENCE);
-
- //
- // which bin is being ejected?
- //
- skc_uint const winner = smem->subgroup.winner;
-
- //
- // which colliding hash is taking over the bin?
- //
- SKC_RASTERIZE_PREDICATE const is_winner = is_collision && (hash == winner);
-
- //
- // all lanes with the same hash will try to store but only one
- // lane will win
- //
- if (is_winner)
- smem->subgroup.winner = yx;
-
- barrier(CLK_LOCAL_MEM_FENCE);
-
- //
- // flush this block to the pool
- //
- if (smem->bin.aN.count[winner] > 0)
- {
- skc_block_id_v_t const id = smem->bin.aN.id[winner];
- skc_uint const idx = id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
- skc_uint const tts = smem->bin.aN.ttsb[winner][skc_subgroup_lane()];
-#if 0
- printf("%08X : [ %10u = %10u : %08X ]\n",yx,id,idx,tts);
-#endif
- bp_elems[idx].u32 = tts;
- }
-
- //
- // append new ttsk
- //
- skc_uint const new_yx = smem->subgroup.winner;
- skc_block_id_t const new_id = skc_ttsk_v_append(SKC_SUBBLOCKS_BLOCKS_ARGS(),
- blocks_next,
- bp_atomics,
- bp_mask, // pow2 modulo mask for block pool ring
- bp_ids,
- cohort_atomics,
- sk_v,
- sk_v_next,
- sk_extent,
- new_yx);
-
-#if 0
- if (get_sub_group_local_id() == 0) {
- printf(">>> %9u\n",new_id);
- }
-#endif
-
- //
- // update bin with winning yx, new ttsb id and zero count
- //
- smem->bin.aN.ttsb [winner][skc_subgroup_lane()] = SKC_TTS_INVALID;
- smem->bin.aN.yx [winner] = new_yx;
- smem->bin.aN.id [winner] = new_id;
- smem->bin.aN.count[winner] = 0;
-
- //
- // remove all lanes matching this hash
- //
- is_collision = is_collision && !is_winner;
-
- //
- // exit if nothing left to do
- //
- } while (sub_group_any(is_collision));
-
-#endif
-}
-
-//
-// scatter scan max
-//
-static
-SKC_RASTERIZE_UINT
-skc_scatter_scan_max(__local struct skc_subgroup_smem volatile * const smem,
- SKC_RASTERIZE_FLOAT const iss,
- SKC_RASTERIZE_FLOAT const ess)
-{
- //
- // prefix sums determine which lanes we're going to work on next
- //
- SKC_RASTERIZE_PREDICATE const is_scratch_store = (iss > 0.0f) && (ess < (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP);
- SKC_RASTERIZE_UINT const scratch_idx = SKC_CONVERT(SKC_RASTERIZE_UINT)(max(ess,0.0f));
-
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
-#ifdef SKC_RASTERIZE_SIMD_USES_SMEM
- //
- // SIMD APPROACH 1: SIMT'ISH
- //
-
- // zero the volatile smem scratchpad using vector syntax
- smem->subgroup.vN.scratch[0] = ( 0 );
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (is_scratch_store C) \
- smem->subgroup.aN.scratch[scratch_idx C] = I;
-
- SKC_RASTERIZE_VECTOR_EXPAND();
-
- // propagate lanes to right using max scan
- SKC_RASTERIZE_UINT const scratch = smem->subgroup.vN.scratch[0];
- SKC_RASTERIZE_UINT const source = skc_subgroup_scan_inclusive_max(scratch);
-
-#else
- //
- // SIMD APPROACH 2: SCALAR'ISH
- //
-
- SKC_RASTERIZE_UINT source = ( 0 );
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (is_scratch_store C) \
- ((uint *)&source)[scratch_idx C] = I;
-
- SKC_RASTERIZE_VECTOR_EXPAND();
-
- for (uint ii=1; ii<SKC_RASTERIZE_ELEMS_PER_SUBGROUP; ii++)
- ((uint *)&source)[ii] = max(((uint *)&source)[ii-1],((uint *)&source)[ii]);
-#endif
-
-#else
- //
- // SIMT
- //
-
- //
- // zero the volatile smem scratchpad using vector syntax
- //
- smem->subgroup.vN.scratch[skc_subgroup_lane()] = ( 0 );
-
- //
- // store source lane at starting lane
- //
- if (is_scratch_store)
- smem->subgroup.aN.scratch[scratch_idx] = skc_subgroup_lane();
-
- //
- // propagate lanes to right using max scan
- //
- SKC_RASTERIZE_UINT const scratch = smem->subgroup.vN.scratch[skc_subgroup_lane()];
- SKC_RASTERIZE_UINT const source = skc_subgroup_scan_inclusive_max(scratch);
-#endif
-
- return source;
-}
-
-//
-// sliver lines into subpixels
-//
-
-static
-void
-skc_sliver(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- skc_block_id_t * const subblocks,
- skc_block_id_v_t * const blocks,
- skc_uint * const blocks_next,
- skc_ttsk_v_t * const sk_v,
- skc_uint * const sk_v_next,
- __global skc_ttsk_s_t * const sk_extent,
- __local struct skc_subgroup_smem volatile * const smem,
- SKC_RASTERIZE_FLOAT const l0x,
- SKC_RASTERIZE_FLOAT const l0y,
- SKC_RASTERIZE_FLOAT const l1x,
- SKC_RASTERIZE_FLOAT const l1y)
-{
- //
- // Y-SLIVERING
- // -----------
- //
- // immediately sliver all multi-pixel lines in into 1-pixel high
- // lines
- //
- // note this implicitly squelches horizontal lines
- //
- // there is another test for horizontal lines after x-slivering
- // is complete
- //
-
- //
- // will we need to flip the sign of y_delta ?
- //
- SKC_RASTERIZE_PREDICATE const y_lt = (l0y <= l1y);
- SKC_RASTERIZE_UINT const dy_xor = y_lt ? 0 : 0x80000000;
-
- //
- // save 1/dy
- //
- SKC_RASTERIZE_FLOAT const y_denom = native_recip(l1y - l0y);
-
- //
- // how many non-horizontal subpixel y-axis slivers are there?
- //
- SKC_RASTERIZE_FLOAT const y_min = floor(fmin(l0y,l1y) * SKC_SUBPIXEL_Y_SCALE_DOWN);
- SKC_RASTERIZE_FLOAT const y_max = ceil (fmax(l0y,l1y) * SKC_SUBPIXEL_Y_SCALE_DOWN);
- SKC_RASTERIZE_FLOAT const y_base = y_lt ? y_min : y_max;
- SKC_RASTERIZE_FLOAT y_segs = y_max - y_min;
-
- //
- // inclusive subgroup scan of y_segs
- //
- SKC_RASTERIZE_FLOAT y_iss = skc_subgroup_scan_inclusive_add_float(y_segs);
- SKC_RASTERIZE_FLOAT y_ess = y_iss - y_segs;
- float y_rem = skc_subgroup_last_float(y_iss);
-
- //
- // if this is a horizontal line then tweak y_iss so "is_scratch_store" always fails
- //
- if (y_segs == 0.0f)
- y_iss = 0.0f;
-
-#if 0
- printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } (* %5.0f / %5.0f / %5.0f / %5.0f *) }, \n",a0x,a0y,a1x,a1y,y_segs,y_iss,y_ess,y_rem);
-#endif
-
- //
- // these values don't matter on first iteration
- //
- SKC_RASTERIZE_FLOAT n1x_prev = 0;
- SKC_RASTERIZE_FLOAT n1y_prev = 0;
-
- //
- // loop until done
- //
- while (y_rem > 0.0f)
- {
- //
- // distribute work across lanes
- //
- SKC_RASTERIZE_UINT const y_source = skc_scatter_scan_max(smem,y_iss,y_ess);
-
- //
- // get line at y_source line
- //
- SKC_RASTERIZE_FLOAT const m0x = skc_subgroup_shuffle(l0x,y_source);
- SKC_RASTERIZE_FLOAT const m0y = skc_subgroup_shuffle(l0y,y_source);
- SKC_RASTERIZE_FLOAT const m1x = skc_subgroup_shuffle(l1x,y_source);
- SKC_RASTERIZE_FLOAT const m1y = skc_subgroup_shuffle(l1y,y_source);
-
- //
- // every lane will create a 1 pixel tall line "sliver"
- //
- // FIXME -- this gets expanded on SIMD
- //
- // if numerator == 1 then this is the first lane
- // if numerator == s then this is the last lane
- //
- SKC_RASTERIZE_FLOAT const y_delta = skc_delta_offset() - skc_subgroup_shuffle(y_ess,y_source);
- SKC_RASTERIZE_FLOAT const y_count = skc_subgroup_shuffle(y_segs,y_source);
-
- SKC_RASTERIZE_PREDICATE const is_y_first = (y_delta == 1.0f);
- SKC_RASTERIZE_PREDICATE const is_y_last = (y_delta >= y_count);
-
- // toggle y_delta sign
- SKC_RASTERIZE_FLOAT const y_offset = as_float((as_uint(y_delta) ^ intel_sub_group_shuffle(dy_xor,y_source)));
-
- //
- // calculate "right" line segment endpoint
- //
- SKC_RASTERIZE_FLOAT n1y = (y_offset + skc_subgroup_shuffle(y_base,y_source)) * SKC_SUBPIXEL_Y_SCALE_UP;
- SKC_RASTERIZE_FLOAT const n_t = (n1y - m0y) * skc_subgroup_shuffle(y_denom,y_source);
- SKC_RASTERIZE_FLOAT n1x = round(SKC_LERP(m0x,m1x,n_t));
-
- //
- // override c1 if this is last point
- //
- n1y = select(n1y,m1y,is_y_last);
- n1x = select(n1x,m1x,is_y_last);
-
- //
- // shuffle up "left" line segment endpoint
- //
- // NOTE: Intel's shuffle_up is unique with its elegant
- // "previous" argument so don't get used to it
- //
- SKC_RASTERIZE_FLOAT n0y = skc_subgroup_shuffle_up_1(n1y_prev,n1y);
- SKC_RASTERIZE_FLOAT n0x = skc_subgroup_shuffle_up_1(n1x_prev,n1x);
-
- //
- // override shuffle up if this is the first line segment
- //
- n0y = select(n0y,m0y,is_y_first);
- n0x = select(n0x,m0x,is_y_first);
-
- //
- // save previous right endpoint
- //
- n1x_prev = n1x;
- n1y_prev = n1y;
-
- //
- // decrement by subgroup size
- //
- y_iss -= (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- y_ess -= (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- y_rem -= (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
-
-#if 0
- //
- // debug
- //
- if (n0y != n1y) {
- printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",n0x,n0y,n1x,n1y);
- }
-#endif
-
- //
- // X-SLIVERING
- // -----------
- //
- // now sliver 1-pixel high lines into at either vertical or
- // 1-pixel wide lines
- //
- // save original direction and work with increasing x
- //
- SKC_RASTERIZE_PREDICATE const x_lt = (n0x <= n1x);
- SKC_RASTERIZE_UINT const dx_xor = x_lt ? 0 : 0x80000000;
-
- //
- // save 1/dy
- //
- SKC_RASTERIZE_FLOAT const x_denom = native_recip(n1x - n0x);
-
- //
- // how many non-horizontal subpixel y-axis slivers are there?
- //
- SKC_RASTERIZE_FLOAT const x_min = floor(fmin(n0x,n1x) * SKC_SUBPIXEL_X_SCALE_DOWN);
- SKC_RASTERIZE_FLOAT const x_max = ceil (fmax(n0x,n1x) * SKC_SUBPIXEL_X_SCALE_DOWN);
- SKC_RASTERIZE_FLOAT const x_base = x_lt ? x_min : x_max;
- SKC_RASTERIZE_FLOAT const x_segs = fmax(x_max - x_min,1.0f);
-
- //
- // inclusive subgroup scan of y_segs
- //
- SKC_RASTERIZE_FLOAT x_iss = skc_subgroup_scan_inclusive_add_float(x_segs);
- SKC_RASTERIZE_FLOAT x_ess = x_iss - x_segs;
- float x_rem = skc_subgroup_last_float(x_iss);
-
- //
- // if this is a horizontal line then tweak x_iss so "is_scratch_store" always fails
- //
- //if (x_segs == 0.0f)
- // x_iss = 0.0f;
-
- //
- // these values don't matter on first iteration
- //
- SKC_RASTERIZE_FLOAT p1x_prev = 0;
- SKC_RASTERIZE_FLOAT p1y_prev = 0;
-
- //
- // loop until done
- //
- while (x_rem > 0)
- {
- //
- // distribute work across lanes
- //
- SKC_RASTERIZE_UINT const x_source = skc_scatter_scan_max(smem,x_iss,x_ess);
-
- //
- // get line at y_source line
- //
- SKC_RASTERIZE_FLOAT const o0x = skc_subgroup_shuffle(n0x,x_source);
- SKC_RASTERIZE_FLOAT const o0y = skc_subgroup_shuffle(n0y,x_source);
- SKC_RASTERIZE_FLOAT const o1x = skc_subgroup_shuffle(n1x,x_source);
- SKC_RASTERIZE_FLOAT const o1y = skc_subgroup_shuffle(n1y,x_source);
-
- //
- // every lane will create a 1 pixel tall line "sliver"
- //
- // FIXME -- this gets expanded on SIMD
- //
- // if numerator == 1 then this is the first lane
- // if numerator == s then this is the last lane
- //
- SKC_RASTERIZE_FLOAT const x_delta = skc_delta_offset() - skc_subgroup_shuffle(x_ess,x_source);
- SKC_RASTERIZE_FLOAT const x_count = skc_subgroup_shuffle(x_segs,x_source);
-
- SKC_RASTERIZE_PREDICATE const is_x_first = (x_delta == 1.0f);
- SKC_RASTERIZE_PREDICATE const is_x_last = (x_delta >= x_count);
-
- // toggle x_delta sign
- SKC_RASTERIZE_FLOAT const x_offset = as_float((as_uint(x_delta) ^ intel_sub_group_shuffle(dx_xor,x_source)));
-
- //
- // calculate "right" line segment endpoint
- //
- SKC_RASTERIZE_FLOAT p1x = (x_offset + skc_subgroup_shuffle(x_base,x_source)) * SKC_SUBPIXEL_X_SCALE_UP;
- SKC_RASTERIZE_FLOAT const p_t = (p1x - o0x) * skc_subgroup_shuffle(x_denom,x_source);
- SKC_RASTERIZE_FLOAT p1y = round(SKC_LERP(o0y,o1y,p_t));
-
- //
- // override c1 if this is last point
- //
- p1x = select(p1x,o1x,is_x_last);
- p1y = select(p1y,o1y,is_x_last);
-
- //
- // shuffle up "left" line segment endpoint
- //
- // NOTE: Intel's shuffle_up is unique with its elegant
- // "previous" argument so don't get used to it
- //
- SKC_RASTERIZE_FLOAT p0x = skc_subgroup_shuffle_up_1(p1x_prev,p1x);
- SKC_RASTERIZE_FLOAT p0y = skc_subgroup_shuffle_up_1(p1y_prev,p1y);
-
- //
- // override shuffle up if this is the first line segment
- //
- p0x = select(p0x,o0x,is_x_first);
- p0y = select(p0y,o0y,is_x_first);
-
- //
- // save previous right endpoint
- //
- p1x_prev = p1x;
- p1y_prev = p1y;
-
- //
- // decrement by subgroup size
- //
- x_iss -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- x_ess -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- x_rem -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
-
- //
- // only non-horizontal subpixel lines are valid
- //
- SKC_RASTERIZE_PREDICATE is_active = (p0y != p1y);
-
- //
- // if no lanes are active then continue
- //
- // FIXME -- THIS SIMPLE SUB_GROUP_ANY TEST SIGNIFICANTLY
- // IMPACTS PERFORMANCE (+12% ?)
- //
- // IT SHOULDN'T !!!
- //
-#if 0
- if (!skc_subgroup_any(is_active))
- continue;
-#endif
-
- //
- // Option 1: use SLM for explicitly managed coalesced stores
- //
- // 1. which tile does this line belong?
- // 2. hash tile coordinates
- // 3. lookup hash
- // 4. if tile matches then SLM append keys
- // 5. if tile doesn't match
- // a. flush
- // b. create new TTSK_RYX
- // c. obtain TTSB block from pool
- // d. goto 3.
- //
-
- //
- // Option 2: rely on L1/L2/L3 to mitigate non-coalesced stores
- //
- // 1. which tile does this line belong?
- // 2. hash tile coordinates
- // 3. lookup hash
- // 4. if tile matches then GMEM append keys
- // 5. if tile doesn't match
- // a. flush (and invalidate empty elems)
- // b. create new TTSK_RYX
- // c. obtain TTSB block from pool
- // d. goto 3.
- //
-
- //
- // The virtual rasterization surface is very large and
- // signed: +/- ~64K-256K, depending on the architecture.
- //
- // Rasters must be clipped to the virtual surface and,
- // optionally, clipped even further on a per raster
- // basis.
- //
-
- //
- // Clip to the per-raster clip
- //
-
- /*
-
- CLIP HERE
-
- */
-
- //
- // Hash the tile coordinates
- //
- // This table lists nominal values for each architecture.
- // We want to choose values that are naturally fit the
- // "width" of the architecture.
- //
- // SIMD RANGE BITS MAX RANGE MAX BINS HASH BITS
- // ---- ------- ---- --------- -------- ---------
- // 4 [0, 4] 3 [0, 7] 10 mod(10) <-- SSE42, ?
- // 8 [0, 8] 4 [0, 15] 8 3 <-- GEN*,AVX*
- // 16 [0, 16] 5 [0, 31] 6 mod(6) <-- GEN*,?
- // 32 [0, 32] 6 [0, 63] 5 mod(5) <-- CUDA,PowerVR,Adreno,GEN*
- // 64 [0, 64] 7 [0,127] 4 2 <-- AMD Radeon
- //
- // NOTE: When possible, bias the hash toward using more y
- // bits because of:
- //
- // 1. the 90 degree counter-clockwise rotation that we put
- // in place to offset the render-time clockwise
- // rotation
- //
- // 2. the likely presence of left-to-right or
- // right-to-left glyphs.
- //
- // For power-of-two bins, the hash is easy.
- //
- // For non-power-of-two, we may want to either implement a
- // fast mod (compiler should do this for us... hahahaha) or
- // drop down to the next power-of-two.
- //
-
- //
- // FIXME -- this snarl is not good -- can probably reduce
- // some of the sign casting but some is there to vectorize a
- // scalar
- //
- SKC_RASTERIZE_INT const z0y = SKC_CONVERT(SKC_RASTERIZE_INT)(p0y);
- SKC_RASTERIZE_INT const z1y = SKC_CONVERT(SKC_RASTERIZE_INT)(p1y);
-
- SKC_RASTERIZE_INT const z0x = SKC_CONVERT(SKC_RASTERIZE_INT)(p0x);
- SKC_RASTERIZE_INT const z1x = SKC_CONVERT(SKC_RASTERIZE_INT)(p1x);
-
- SKC_RASTERIZE_INT const min_y = min(z0y,z1y);
- SKC_RASTERIZE_INT const max_y = max(z0y,z1y);
-
- SKC_RASTERIZE_INT const tile_y = min_y >> SKC_SUBTILE_RESL_Y_LOG2;
-
- SKC_RASTERIZE_UINT const ty = SKC_AS(SKC_RASTERIZE_UINT)(min_y) & SKC_SUBTILE_MASK_Y;
- SKC_RASTERIZE_INT dy = SKC_AS(SKC_RASTERIZE_INT)(z1y - z0y);
-
- //
- // map [+1,+32] to [ 0,+31]
- // map [-1,-32] to [-1,-32]
- //
- SKC_RASTERIZE_INT dys = (dy + (~dy >> 31)) << 26;
-
- SKC_RASTERIZE_INT const min_x = min(z0x,z1x);
- SKC_RASTERIZE_INT const max_x = max(z0x,z1x);
- SKC_RASTERIZE_INT const tile_x = min_x >> SKC_SUBTILE_RESL_X_LOG2;
-
- SKC_RASTERIZE_UINT const tx = SKC_AS(SKC_RASTERIZE_UINT)(min_x) & SKC_SUBTILE_MASK_X;
- SKC_RASTERIZE_UINT const sx = SKC_AS(SKC_RASTERIZE_UINT)(max_x - min_x);
-
- SKC_RASTERIZE_UINT const tts = dys | (ty << 16) | (sx << 10) | tx;
-
- SKC_RASTERIZE_UINT const hash = (((SKC_AS(SKC_RASTERIZE_UINT)(tile_y) & SKC_RASTERIZE_TILE_HASH_Y_MASK) << SKC_RASTERIZE_TILE_HASH_X_BITS) |
- (SKC_AS(SKC_RASTERIZE_UINT)(tile_x) & SKC_RASTERIZE_TILE_HASH_X_MASK));
-
- SKC_RASTERIZE_UINT const yx = (((SKC_AS(SKC_RASTERIZE_UINT)(tile_y) & 0xFFF) << 12) | (SKC_AS(SKC_RASTERIZE_UINT)(tile_x) & 0xFFF));
-
-#if 0
- printf("(%3u, %3u)\n",tile_y,tile_x);
-#endif
-
-#if 0
- if (is_active)
- printf("( %3u, %3u ) : [ %3u, %3u, %3d, %3d, %3u ]\n",tile_y,tile_x,ty,tx,dy,((int)dys)>>26,sx);
-#endif
-
- //
- // debug
- //
-#if 0 // PRINTF_ENABLE
-
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (is_active C) \
- printf("{ { %5d, %5d }, { %5d, %5d } (* %2u *) },\n",z0x C,z0y C,z1x C,z1y C,hash C);
-
- SKC_RASTERIZE_VECTOR_EXPAND();
-#else
- if (is_active)
- printf("{ { %5d, %5d }, { %5d, %5d } } (* %2u *),\n",z0x,z0y,z1x,z1y,hash);
-#endif
-
-#endif
- //
- // flush all active lanes
- //
- while (true)
- {
- //
- // either gather load or vector load+shuffle the yx keys
- //
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- SKC_RASTERIZE_BIN const yx_bin = smem->bin.vN.yx;
- SKC_RASTERIZE_UINT const yx_cur = shuffle(yx_bin,hash);
-#else
- SKC_RASTERIZE_UINT const yx_cur = smem->bin.aN.yx[hash];
-#endif
-
- //
- // does yx for lane match yx for hash?
- //
- SKC_RASTERIZE_UINT const active_yx = is_active ? yx : SKC_RASTERIZE_YX_INVALID;
- SKC_RASTERIZE_PREDICATE const is_match = (yx_cur == active_yx);
-
- //
- // OpenCL spec: "When casting a bool to a vector integer
- // data type, the vector components will be set to -1
- // (i.e. all bits set) if the vector bool value is true
- // and 0 otherwise.
- //
-#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
- SKC_RASTERIZE_UINT const h_match = (SKC_RASTERIZE_UINT)is_match;
-#else
- SKC_RASTERIZE_UINT const h_match = abs(is_match); // {-1,0} -> {+1,0}
-#endif
- //
- // how many new elements for each matching hash bin?
- //
- SKC_RASTERIZE_UINT const h_shl = hash * SKC_RASTERIZE_TILE_HASH_BIN_BITS;
- SKC_RASTERIZE_UINT const h = h_match << h_shl;
-
- //
- // prefix sum all of the bins in parallel
- //
- SKC_RASTERIZE_UINT const h_iss = skc_subgroup_scan_inclusive_add_uint(h);
- SKC_RASTERIZE_UINT const h_total = skc_subgroup_last_uint(h_iss);
-
- //
- // current bin counts
- //
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- SKC_RASTERIZE_BIN const count_bin = smem->bin.vN.count;
- SKC_RASTERIZE_UINT const count_cur = shuffle(count_bin,hash);
-#else
- SKC_RASTERIZE_UINT const count_cur = smem->bin.aN.count[hash];
-#endif
-
- //
- // calculate where each cache-hit and in-bounds tts should be stored
- //
- SKC_RASTERIZE_UINT const ttsb_index = (h_iss >> h_shl & SKC_RASTERIZE_TILE_HASH_BIN_MASK) + count_cur - 1;
- SKC_RASTERIZE_UINT const count_new = (h_total >> h_shl & SKC_RASTERIZE_TILE_HASH_BIN_MASK) + count_cur;
-
- //
- // which lanes can append to a matching bin?
- //
- SKC_RASTERIZE_PREDICATE const is_append = is_match && (ttsb_index < SKC_DEVICE_SUBBLOCK_WORDS);
-
- //
- // scatter append tts elements to bin blocks
- //
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1)
- //
- // SIMD
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (is_append C) \
- { \
- smem->bin.aN.ttsb [hash C][ttsb_index C] = tts C; \
- smem->bin.aN.count[hash C] = count_new C; \
- }
-
- SKC_RASTERIZE_VECTOR_EXPAND();
-#else
- //
- // SIMT
- //
- if (is_append)
- {
- smem->bin.aN.ttsb [hash][ttsb_index] = tts;
- smem->bin.aN.count[hash] = count_new; // it's ok if this is > SKC_DEVICE_SUBBLOCK_WORDS
- }
-#endif
- //
- // try to keep predicate updates SIMD-friendly and
- // outside of predicated code paths -- this is not
- // always how we would normally do things on SIMT but
- // either approach is acceptable
- //
-
- //
- // mask off lanes/components that successfully appended
- //
- is_active = is_active && !is_append;
-
- //
- // are there any active lanes left?
- //
- if (!skc_subgroup_any(is_active))
- break;
-
- //
- // There are active lanes that couldn't be appended to a
- // bin because their hashes collided with the bin's
- // current ryx key then those bins must be ejected.
- //
- // Note that we do not eject "full" bins because lazily
- // waiting for a collision results in simpler code.
- //
- skc_flush(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- subblocks,
- blocks,
- blocks_next,
- sk_v,
- sk_v_next,
- sk_extent,
- smem,
- hash,
- yx,
- is_active);
- }
- }
- }
-}
-
-//
-// INITIALIZE SMEM
-//
-// Note that SIMD/SIMT have nearly the same syntax.
-//
-static
-void
-skc_smem_init(__local struct skc_subgroup_smem volatile * const smem)
-{
- //
- // initialize smem bins
- //
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
- smem->bin.vN.yx = ( SKC_RASTERIZE_YX_INIT );
- smem->bin.vN.count = ( 0 );
-#else
- //
- // SIMT
- //
- int idx = skc_subgroup_lane();
-
-#if ( SKC_RASTERIZE_TILE_HASH_BIN_COUNT < SKC_RASTERIZE_ELEMS_PER_SUBGROUP )
- if (idx < SKC_RASTERIZE_TILE_HASH_BIN_COUNT)
-#elif ( SKC_RASTERIZE_TILE_HASH_BIN_COUNT > SKC_RASTERIZE_ELEMS_PER_SUBGROUP )
- for (; idx<SKC_RASTERIZE_TILE_HASH_BIN_COUNT; idx+=SKC_RASTERIZE_SUBGROUP_SIZE)
-#endif
- {
- smem->bin.aN.yx [idx] = ( SKC_RASTERIZE_YX_INIT );
- smem->bin.aN.count[idx] = ( 0 );
- }
-#endif
-}
-
-//
-// RASTERIZE CUBIC KERNEL
-//
-
-static
-void
-skc_rasterize_cubics(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __local struct skc_subgroup_smem volatile * const smem,
-
- skc_uint * const nodeword,
- skc_block_id_t * const id,
-
- union skc_transform const * const tv,
- union skc_path_clip const * const cv,
- skc_uint const cohort)
-{
- //
- // the initial segment idx and segments-per-block constant determine
- // how many block ids will need to be loaded
- //
- SKC_RASTERIZE_FLOAT const c0x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c0y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c1x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c1y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c2x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c2y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c3x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c3y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- //
- // apply transform
- //
- // note that we only care if the end points are rounded to subpixel precision
- //
- // FIXME -- transformation is currently affine-only support perspective later
- //
- // the affine transformation requires 8 FMA + 2 ROUND operations
- //
- SKC_RASTERIZE_FLOAT const b0x = round(c0x * tv->sx + c0y * tv->shx + tv->tx);
- SKC_RASTERIZE_FLOAT const b0y = round(c0x * tv->shy + c0y * tv->sy + tv->ty);
-
- SKC_RASTERIZE_FLOAT const t1x = c1x * tv->sx + c1y * tv->shx + tv->tx;
- SKC_RASTERIZE_FLOAT const t1y = c1x * tv->shy + c1y * tv->sy + tv->ty;
-
- SKC_RASTERIZE_FLOAT const t2x = c2x * tv->sx + c2y * tv->shx + tv->tx;
- SKC_RASTERIZE_FLOAT const t2y = c2x * tv->shy + c2y * tv->sy + tv->ty;
-
- SKC_RASTERIZE_FLOAT const t3x = round(c3x * tv->sx + c3y * tv->shx + tv->tx);
- SKC_RASTERIZE_FLOAT const t3y = round(c3x * tv->shy + c3y * tv->sy + tv->ty);
-
- //
- //
- //
-#if PRINTF_ENABLE
-
-#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- printf("{ { %.02f, %.02f }, { %.02f, %.02f }," \
- " { %.02f, %.02f }, { %.02f, %.02f } },\n", \
- b0x C,b0y C,t1x C,t1y C, \
- t2x C,t2y C,t3x C,t3y C);
-
- SKC_RASTERIZE_VECTOR_EXPAND();
-
-#else
-
- printf("{ { %.02f, %.02f }, { %.02f, %.02f }, { %.02f, %.02f }, { %.02f, %.02f } },\n",
- b0x,b0y,t1x,t1y,t2x,t2y,t3x,t3y);
-
-#endif
-
-#endif
-
- //
- // OLD APPROACH
- // ------------
- //
- // The Spinel CUDA rasterizer was significantly more complex and
- // performed a few different tasks that are probably best kept
- // separate.
- //
- // The Spinel rasterizer Bezier held 4-element x and y coordinates
- // in adjacent lanes. This simplified intermingling of single lane
- // 4-coordinate line segments with two-lane cubic Beziers.
- //
- // After transformation of the input segments, the Spinel rasterizer
- // would test cubics for flatness and, if flat, collapse the
- // adjacent lanes into a single line lane and an empty lane.
- //
- // Any lines would then be appended to a line queue.
- //
- // Any cubics would then be subdivided.
- //
- // The reclassification process would be repeated.
- //
- // NEW APPROACH
- // ------------
- //
- // Assume we're only working with cubics in this kernel.
- //
- // Optimization: if the line segment is a special case -- a cusp,
- // has 1+ inflections, or a loop -- it might be beneficial to
- // subdivide the control cage 1+ times in order to separate the
- // flatter segments the high-velocity region(s).
- //
- // This means we want to split using [a,b] formulation to _directly_
- // subdivide producing a new control cage.
- //
- // Wang's Formula is still useful even if we subdivide once or twice
- // as it's so cheap that it might give some useful hints about where
- // the high-velocity sections of curve reside.
- //
- // But it seems like using Wang's and directly flattening to line
- // segments without any subdivision is good enough for the limited
- // set of test cases that I've tried.
- //
- // So... use Wang's Formula to estimate how many line segment are
- // required to properly flatten the cubics.
- //
- // Then use inclusive/exclusive scans to put all the lanes to work:
- //
- // 1. segmenting cubics to line segments
- //
- // 2. slivering line segments into 1-pixel high line segments
- //
- // 3. slivering 1-pixel high line segments into 1-pixel wide line
- // segments
- //
- // MORE BACKGROUND ON NEW APPROACH
- // -------------------------------
- //
- // Two options for handling line segments:
- //
- // 1. append the line segments onto an SLM array until enough
- // work has been accrued (Spinel does this)
- //
- // 2. immediately sliver the potentially multi-pixel line
- // segments into subpixel lines
- //
- // The advantage of (1) is that it guarantees the slivering
- // process will, on average, always be emitting a full subgroup
- // of subpixel lines.
- //
- // The advantage of (2) is that it reduces code complexity and
- // leaves more room for SLM tile bins. The difference between Spinel
- // and Skia Compute is that Wang's Formula guarantees there will be
- // a full subgroup of multi-pixel lines unless this is the final
- // iteration of the warp of multi-pixel lines.
- //
- // Note that wider GPU architectures might benefit from (1) and
- // other work accumulation strategies because it will minimize
- // partial warp workloads in the final iteration of each stage. It
- // also minimizes the sunk cost of the uniform control logic steps.
- //
- // So let's implement (2) for now...
- //
-
- //
- // And... begin!
- //
- // Estimate how many line segments are in quad/cubic curve.
- //
- // Wang's Formula will return zero if the control points are
- // collinear but we bump it up to 1.0f.
- //
- SKC_RASTERIZE_FLOAT const s_segs = skc_wangs_formula_cubic(b0x,b0y,t1x,t1y,t2x,t2y,t3x,t3y);
-
- //
- // if there are free registers then precalculate the reciprocal for
- // each estimated segments since it will never change
- //
- SKC_RASTERIZE_FLOAT const s_denom = native_recip(s_segs);
-
-
- //
- // inclusive add scan of estimated line segments
- // exclusive add scan of estimated line segments
- // total number of estimated line segments
- //
- SKC_RASTERIZE_FLOAT s_iss = skc_subgroup_scan_inclusive_add_float(s_segs);
- SKC_RASTERIZE_FLOAT s_ess = s_iss - s_segs;
- float s_rem = skc_subgroup_last_float(s_iss); // scalar
-
- //
- // Precompute cubic polynomial coefficients from transformed control
- // cage so we can shuffle them in on each iteration of the outer
- // loop and then evaluate the polynomial in Horner form.
- //
- // | 1 0 0 0 | | c0 |
- // | | | |
- // | -3 3 0 0 | | c1 |
- // B(t) = [ 1 t^1 t^2 t^3 ] | | | |
- // | 3 -6 3 0 | | c2 |
- // | | | |
- // | -1 3 -3 1 | | c3 |
- //
- //
- SKC_RASTERIZE_FLOAT const b1x = mad(-3.0f,b0x,3.0f*t1x); // 2 - 1 MAD + MUL
- SKC_RASTERIZE_FLOAT const b1y = mad(-3.0f,b0y,3.0f*t1y); // 2 - 1 MAD + MUL
-
- SKC_RASTERIZE_FLOAT const b2x = mad(3.0f,b0x,mad(-6.0f,t1x,3.0f*t2x)); // 3 - 2 MAD + MUL
- SKC_RASTERIZE_FLOAT const b2y = mad(3.0f,b0y,mad(-6.0f,t1y,3.0f*t2y)); // 3 - 2 MAD + MUL
-
- SKC_RASTERIZE_FLOAT const b3x = mad(3.0f,t1x,mad(-3.0f,t2x,t3x)) - b0x; // 3 - 2 MAD + SUB
- SKC_RASTERIZE_FLOAT const b3y = mad(3.0f,t1y,mad(-3.0f,t2y,t3y)) - b0y; // 3 - 2 MAD + SUB
-
- //
- // these values don't matter on the first iteration
- //
- SKC_RASTERIZE_FLOAT l1x_prev = 0;
- SKC_RASTERIZE_FLOAT l1y_prev = 0;
-
- //
- // allocate and init in-register TTSK keys
- //
- skc_uint sk_v_next = 0;
- skc_ttsk_v_t sk_v;
-
- sk_v.hi = cohort;
-
- //
- // initialize smem
- //
- skc_smem_init(smem);
-
- //
- // initialize blocks / subblocks
- //
- skc_block_id_v_t blocks;
- skc_uint blocks_next = SKC_RASTERIZE_BLOCK_ID_V_SIZE;
-
-#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
- skc_block_id_t subblocks = 0;
-#endif
-
- //
- // loop until done
- //
- while (s_rem > 0)
- {
- //
- // distribute work across lanes
- //
- SKC_RASTERIZE_UINT const s_source = skc_scatter_scan_max(smem,s_iss,s_ess);
-
- //
- // every lane has a fraction to work off of
- //
- // FIXME -- this gets expanded on SIMD
- //
- // if delta == 1 then this is the first lane
- // if count == s_segs then this is the last lane
- //
- SKC_RASTERIZE_FLOAT const s_delta = skc_delta_offset() - skc_subgroup_shuffle(s_ess,s_source);
- SKC_RASTERIZE_FLOAT const s_count = skc_subgroup_shuffle(s_segs,s_source);
-
- SKC_RASTERIZE_PREDICATE const is_s_first = (s_delta == 1.0f);
- SKC_RASTERIZE_PREDICATE const is_s_last = (s_delta >= s_count);
-
- //
- // init parametric t
- //
- SKC_RASTERIZE_FLOAT s_t = s_delta * skc_subgroup_shuffle(s_denom,s_source); // faster than native_recip(s_count)?
-
- //
- // if last then override to a hard 1.0f
- //
- s_t = is_s_last ? 1.0f : s_t;
-
- //
- // decrement by subgroup size
- //
- s_iss -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- s_ess -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- s_rem -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
-
- //
- // now every lane knows what to do and the following lines will
- // pump out up to SUBGROUP_SIZE line segments
- //
- // obtain the src vertices through shared or via a shuffle
- //
-
- //
- // shuffle in the polynomial coefficients their source lane
- //
- SKC_RASTERIZE_FLOAT const s0x = skc_subgroup_shuffle(b0x,s_source);
- SKC_RASTERIZE_FLOAT const s0y = skc_subgroup_shuffle(b0y,s_source);
-
- SKC_RASTERIZE_FLOAT const s1x = skc_subgroup_shuffle(b1x,s_source);
- SKC_RASTERIZE_FLOAT const s1y = skc_subgroup_shuffle(b1y,s_source);
-
- SKC_RASTERIZE_FLOAT const s2x = skc_subgroup_shuffle(b2x,s_source);
- SKC_RASTERIZE_FLOAT const s2y = skc_subgroup_shuffle(b2y,s_source);
-
- SKC_RASTERIZE_FLOAT const s3x = skc_subgroup_shuffle(b3x,s_source);
- SKC_RASTERIZE_FLOAT const s3y = skc_subgroup_shuffle(b3y,s_source);
-
- //
- // calculate "right" line segment endpoint using Horner form
- //
- SKC_RASTERIZE_FLOAT l1x = round(mad(mad(mad(s3x,s_t,s2x),s_t,s1x),s_t,s0x)); // 3 MAD + ROUND
- SKC_RASTERIZE_FLOAT l1y = round(mad(mad(mad(s3y,s_t,s2y),s_t,s1y),s_t,s0y)); // 3 MAD + ROUND
-
- //
- // shuffle up "left" line segment endpoint
- //
- // NOTE: Intel's shuffle_up is unique with its elegant
- // "previous" argument so don't get used to it
- //
- SKC_RASTERIZE_FLOAT l0x = skc_subgroup_shuffle_up_1(l1x_prev,l1x);
- SKC_RASTERIZE_FLOAT l0y = skc_subgroup_shuffle_up_1(l1y_prev,l1y);
-
- //
- // save previous right endpoint
- //
- l1x_prev = l1x;
- l1y_prev = l1y;
-
- //
- // override shuffle up if this is the first line segment
- //
- l0x = select(l0x,s0x,is_s_first);
- l0y = select(l0y,s0y,is_s_first);
-
- //
- // sliver lines
- //
- skc_sliver(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- &subblocks,
- &blocks,
- &blocks_next,
- &sk_v,
- &sk_v_next,
- sk_extent,
- smem,
- l0x,l0y,l1x,l1y);
- }
-
- //
- // - flush work-in-progress blocks
- // - return unused block ids
- //
- skc_finalize(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- &blocks,
- blocks_next,
- &sk_v,
- sk_v_next,
- sk_extent,
- smem);
-}
-
-//
-// RASTERIZE QUAD KERNEL
-//
-
-static
-void
-skc_rasterize_quads(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __local struct skc_subgroup_smem volatile * const smem,
-
- skc_uint * const nodeword,
- skc_block_id_t * const id,
-
- union skc_transform const * const tv,
- union skc_path_clip const * const cv,
- skc_uint const cohort)
-{
- //
- // the initial segment idx and segments-per-block constant determine
- // how many block ids will need to be loaded
- //
- SKC_RASTERIZE_FLOAT const c0x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c0y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c1x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c1y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c2x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c2y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- //
- // apply transform
- //
- // note that we only care if the end points are rounded to subpixel precision
- //
- // FIXME -- transformation is currently affine-only support perspective later
- //
- // the affine transformation requires 8 FMA + 2 ROUND operations
- //
- SKC_RASTERIZE_FLOAT const b0x = round(c0x * tv->sx + c0y * tv->shx + tv->tx);
- SKC_RASTERIZE_FLOAT const b0y = round(c0x * tv->shy + c0y * tv->sy + tv->ty);
-
- SKC_RASTERIZE_FLOAT const t1x = c1x * tv->sx + c1y * tv->shx + tv->tx;
- SKC_RASTERIZE_FLOAT const t1y = c1x * tv->shy + c1y * tv->sy + tv->ty;
-
- SKC_RASTERIZE_FLOAT const t2x = round(c2x * tv->sx + c2y * tv->shx + tv->tx);
- SKC_RASTERIZE_FLOAT const t2y = round(c2x * tv->shy + c2y * tv->sy + tv->ty);
-
- //
- // Estimate how many line segments are in quad/cubic curve.
- //
- // Wang's Formula will return zero if the control points are
- // collinear but we bump it up to 1.0f.
- //
- SKC_RASTERIZE_FLOAT const s_segs = skc_wangs_formula_quadratic(b0x,b0y,t1x,t1y,t2x,t2y);
-
- //
- // if there are free registers then precalculate the reciprocal for
- // each estimated segments since it will never change
- //
- SKC_RASTERIZE_FLOAT const s_denom = native_recip(s_segs);
-
-
- //
- // inclusive add scan of estimated line segments
- // exclusive add scan of estimated line segments
- // total number of estimated line segments
- //
- SKC_RASTERIZE_FLOAT s_iss = skc_subgroup_scan_inclusive_add_float(s_segs);
- SKC_RASTERIZE_FLOAT s_ess = s_iss - s_segs;
- float s_rem = skc_subgroup_last_float(s_iss); // scalar
-
- //
- // Precompute quadratic polynomial coefficients from control cage so
- // we can shuffle them in on each iteration of the outer loop and
- // then evaluate the polynomial in Horner form.
- //
-
- // | 1 0 0 | | c0 |
- // | | | |
- // B(t) = [ 1 t^1 t^2 ] | -2 2 0 | | c1 |
- // | | | |
- // | 1 -2 1 | | c2 |
- //
- //
- SKC_RASTERIZE_FLOAT const b1x = mad(-2.0f,b0x,2.0f*t1x); // 2 - 1 MAD + MUL
- SKC_RASTERIZE_FLOAT const b1y = mad(-2.0f,b0y,2.0f*t1y); // 2 - 1 MAD + MUL
-
- SKC_RASTERIZE_FLOAT const b2x = mad(-2.0f,t1x,b0x+t2x); // 2 - 1 MAD + ADD
- SKC_RASTERIZE_FLOAT const b2y = mad(-2.0f,t1y,b0y+t2y); // 2 - 1 MAD + ADD
-
- //
- // these values don't matter on the first iteration
- //
- SKC_RASTERIZE_FLOAT l1x_prev = 0;
- SKC_RASTERIZE_FLOAT l1y_prev = 0;
-
- //
- // allocate and init in-register TTSK keys
- //
- skc_uint sk_v_next = 0;
- skc_ttsk_v_t sk_v;
-
- sk_v.hi = cohort;
-
- //
- // initialize smem
- //
- skc_smem_init(smem);
-
- //
- // initialize blocks / subblocks
- //
- skc_block_id_v_t blocks;
- skc_uint blocks_next = SKC_RASTERIZE_BLOCK_ID_V_SIZE;
-
-#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
- skc_block_id_t subblocks = 0;
-#endif
-
- //
- // loop until done
- //
- while (s_rem > 0)
- {
- //
- // distribute work across lanes
- //
- SKC_RASTERIZE_UINT const s_source = skc_scatter_scan_max(smem,s_iss,s_ess);
-
- //
- // every lane has a fraction to work off of
- //
- // FIXME -- this gets expanded on SIMD
- //
- // if delta == 1 then this is the first lane
- // if count == s_segs then this is the last lane
- //
- SKC_RASTERIZE_FLOAT const s_delta = skc_delta_offset() - skc_subgroup_shuffle(s_ess,s_source);
- SKC_RASTERIZE_FLOAT const s_count = skc_subgroup_shuffle(s_segs,s_source);
-
- SKC_RASTERIZE_PREDICATE const is_s_first = (s_delta == 1.0f);
- SKC_RASTERIZE_PREDICATE const is_s_last = (s_delta >= s_count);
-
- //
- // init parametric t
- //
- SKC_RASTERIZE_FLOAT s_t = s_delta * skc_subgroup_shuffle(s_denom,s_source); // faster than native_recip(s_count)?
-
- //
- // if last then override to a hard 1.0f
- //
- s_t = is_s_last ? 1.0f : s_t;
-
- //
- // decrement by subgroup size
- //
- s_iss -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- s_ess -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
- s_rem -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
-
- //
- // now every lane knows what to do and the following lines will
- // pump out up to SUBGROUP_SIZE line segments
- //
- // obtain the src vertices through shared or via a shuffle
- //
-
- //
- // shuffle in the polynomial coefficients their source lane
- //
- SKC_RASTERIZE_FLOAT const s0x = skc_subgroup_shuffle(b0x,s_source);
- SKC_RASTERIZE_FLOAT const s0y = skc_subgroup_shuffle(b0y,s_source);
-
- SKC_RASTERIZE_FLOAT const s1x = skc_subgroup_shuffle(b1x,s_source);
- SKC_RASTERIZE_FLOAT const s1y = skc_subgroup_shuffle(b1y,s_source);
-
- SKC_RASTERIZE_FLOAT const s2x = skc_subgroup_shuffle(b2x,s_source);
- SKC_RASTERIZE_FLOAT const s2y = skc_subgroup_shuffle(b2y,s_source);
-
- //
- // calculate "right" line segment endpoint using Horner form
- //
- SKC_RASTERIZE_FLOAT l1x = round(mad(mad(s2x,s_t,s1x),s_t,s0x)); // 2 MAD + ROUND
- SKC_RASTERIZE_FLOAT l1y = round(mad(mad(s2y,s_t,s1y),s_t,s0y)); // 2 MAD + ROUND
-
- //
- // shuffle up "left" line segment endpoint
- //
- // NOTE: Intel's shuffle_up is unique with its elegant
- // "previous" argument so don't get used to it
- //
- SKC_RASTERIZE_FLOAT l0x = skc_subgroup_shuffle_up_1(l1x_prev,l1x);
- SKC_RASTERIZE_FLOAT l0y = skc_subgroup_shuffle_up_1(l1y_prev,l1y);
-
- //
- // save previous right endpoint
- //
- l1x_prev = l1x;
- l1y_prev = l1y;
-
- //
- // override shuffle up if this is the first line segment
- //
- l0x = select(l0x,s0x,is_s_first);
- l0y = select(l0y,s0y,is_s_first);
-
- //
- // sliver lines
- //
- skc_sliver(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- &subblocks,
- &blocks,
- &blocks_next,
- &sk_v,
- &sk_v_next,
- sk_extent,
- smem,
- l0x,l0y,l1x,l1y);
- }
-
- //
- // - flush work-in-progress blocks
- // - return unused block ids
- //
- skc_finalize(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- &blocks,
- blocks_next,
- &sk_v,
- sk_v_next,
- sk_extent,
- smem);
-}
-
-//
-// RASTERIZE LINE KERNEL
-//
-
-static
-void
-skc_rasterize_lines(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __local struct skc_subgroup_smem volatile * const smem,
-
- skc_uint * const nodeword,
- skc_block_id_t * const id,
-
- union skc_transform const * const tv,
- union skc_path_clip const * const cv,
- skc_uint const cohort)
-{
- //
- // the initial segment idx and segments-per-block constant determine
- // how many block ids will need to be loaded
- //
- SKC_RASTERIZE_FLOAT const c0x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c0y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c1x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
- skc_segment_next(bp_elems,nodeword,id);
-
- SKC_RASTERIZE_FLOAT const c1y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
-
-#if 0
- // printf("%5u : { { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",(skc_uint)get_global_id(0),c0x,c0y,c1x,c1y);
- printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",c0x,c0y,c1x,c1y);
-#endif
-
- //
- // apply transform
- //
- // note that we only care if the end points are rounded to subpixel precision
- //
- // FIXME -- transformation is currently affine-only
- // FIXME -- support perspective later
- //
- // the affine transformation requires 8 FMA + 4 ROUND operations
- //
- SKC_RASTERIZE_FLOAT const l0x = round(c0x * tv->sx + c0y * tv->shx + tv->tx);
- SKC_RASTERIZE_FLOAT const l0y = round(c0x * tv->shy + c0y * tv->sy + tv->ty);
-
- SKC_RASTERIZE_FLOAT const l1x = round(c1x * tv->sx + c1y * tv->shx + tv->tx);
- SKC_RASTERIZE_FLOAT const l1y = round(c1x * tv->shy + c1y * tv->sy + tv->ty);
-
-#if 0
- printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",l0x,l0y,l1x,l1y);
-#endif
-
- //
- // allocate and init in-register TTSK keys
- //
- skc_uint sk_v_next = 0;
- skc_ttsk_v_t sk_v;
-
- sk_v.hi = cohort;
-
- //
- // initialize smem
- //
- skc_smem_init(smem);
-
- //
- // initialize blocks / subblocks
- //
- skc_block_id_v_t blocks;
- skc_uint blocks_next = SKC_RASTERIZE_BLOCK_ID_V_SIZE;
-
-#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
- skc_block_id_t subblocks = 0;
-#endif
-
- //
- // sliver lines
- //
- skc_sliver(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- &subblocks,
- &blocks,
- &blocks_next,
- &sk_v,
- &sk_v_next,
- sk_extent,
- smem,
- l0x,l0y,l1x,l1y);
-
- //
- // - flush work-in-progress blocks
- // - return unused block ids
- //
- skc_finalize(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- &blocks,
- blocks_next,
- &sk_v,
- sk_v_next,
- sk_extent,
- smem);
-}
-
-//
-//
-//
-
-__kernel
-SKC_RASTERIZE_KERNEL_ATTRIBS
-void
-skc_kernel_rasterize_all(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __global float8 const * const transforms, // FIXME -- __constant
- __global float4 const * const clips, // FIXME -- __constant
- __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
- skc_uint const count)
-{
- //
- // declare shared memory block
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- __local struct skc_subgroup_smem volatile smem[1];
-#else
- __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
- __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
-#endif
-
- //
- // this is a subgroup/warp-centric kernel
- //
- // which subgroup in the grid is this?
- //
- // TAKE NOTE: the Intel GEN compiler appears to be recognizing
- // get_group_id(0) as a uniform but the alternative calculation used
- // when there are multiple subgroups per workgroup is not
- // cooperating and driving spillage elsewhere.
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- uint const cmd_idx = get_group_id(0);
-#else
- uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
-#endif
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("+cmd_idx = %u\n",cmd_idx);
-#endif
-
- //
- // if worksgroups are multi-subgroup then there may be excess
- // subgroups in the final workgroup
- //
- if (cmd_idx >= count)
- return;
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("-cmd_idx = %u\n",cmd_idx);
-#endif
-
- //
- // load a single command for this subgroup
- //
- union skc_cmd_rasterize const cmd = cmds[cmd_idx];
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("[ %u ]< %u, %u, %u, %u >\n",
- cmd_idx,
- cmd.nodeword,
- SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd),
- SKC_CMD_RASTERIZE_GET_CLIP(cmd),
- SKC_CMD_RASTERIZE_GET_COHORT(cmd));
-#endif
-
- //
- // get first block node command word and its subblock
- //
- skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
- skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
- skc_block_id_tag tag = SKC_TAGGED_BLOCK_ID_GET_TAG(tag_id);
- skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
-
- //
- // load transform -- uniform across subgroup
- //
- // v8: { sx shx tx shy sy ty w0 w1 }
- //
- // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
- //
- // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
- //
- // Coordinates are scaled to subpixel resolution. All that matters
- // is that continuity is maintained between end path element
- // endpoints.
- //
- // It's the responsibility of the host to ensure that the transforms
- // are properly scaled either via intitializing a transform stack
- // with the subpixel resolution scaled identity or scaling the
- // transform before its loaded by a rasterization grid.
- //
- // FIXME -- horizontal load might be better than this broadcast load
- //
- union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
- union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
- skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
-
- switch (tag)
- {
- case SKC_BLOCK_ID_TAG_PATH_LINE:
- skc_rasterize_lines(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- sk_extent,
- smem,
- &nodeword,&id,
- &tv,&cv,cohort);
- break;
-
- case SKC_BLOCK_ID_TAG_PATH_QUAD:
- skc_rasterize_quads(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- sk_extent,
- smem,
- &nodeword,&id,
- &tv,&cv,cohort);
- break;
-
- case SKC_BLOCK_ID_TAG_PATH_CUBIC:
- skc_rasterize_cubics(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- sk_extent,
- smem,
- &nodeword,&id,
- &tv,&cv,cohort);
- break;
-
- case SKC_BLOCK_ID_TAG_PATH_RAT_QUAD:
- break;
- case SKC_BLOCK_ID_TAG_PATH_RAT_CUBIC:
- break;
-
- default:
- break;
- }
-}
-
-//
-//
-//
-
-__kernel
-SKC_RASTERIZE_KERNEL_ATTRIBS
-void
-skc_kernel_rasterize_lines(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __global float8 const * const transforms, // FIXME -- __constant
- __global float4 const * const clips, // FIXME -- __constant
- __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
- skc_uint const count)
-{
- //
- // declare shared memory block
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- __local struct skc_subgroup_smem volatile smem[1];
-#else
- __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
- __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
-#endif
-
- //
- // this is a subgroup/warp-centric kernel
- //
- // which subgroup in the grid is this?
- //
- // TAKE NOTE: the Intel GEN compiler appears to be recognizing
- // get_group_id(0) as a uniform but the alternative calculation used
- // when there are multiple subgroups per workgroup is not
- // cooperating and driving spillage elsewhere.
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- uint const cmd_idx = get_group_id(0);
-#else
- uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
-#endif
-
- //
- // if worksgroups are multi-subgroup then there may be excess
- // subgroups in the final workgroup
- //
- if (cmd_idx >= count)
- return;
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("cmd_idx = %u\n",cmd_idx);
-#endif
-
- //
- // load a single command for this subgroup
- //
- union skc_cmd_rasterize const cmd = cmds[cmd_idx];
-
- //
- // get first block node command word and its subblock
- //
- skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
- skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
- skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
-
- //
- // load transform -- uniform across subgroup
- //
- // v8: { sx shx tx shy sy ty w0 w1 }
- //
- // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
- //
- // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
- //
- // Coordinates are scaled to subpixel resolution. All that matters
- // is that continuity is maintained between end path element
- // endpoints.
- //
- // It's the responsibility of the host to ensure that the transforms
- // are properly scaled either via intitializing a transform stack
- // with the subpixel resolution scaled identity or scaling the
- // transform before its loaded by a rasterization grid.
- //
- // FIXME -- horizontal load might be better than this broadcast load
- //
- union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
- union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
- skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
-
- skc_rasterize_lines(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- sk_extent,
- smem,
- &nodeword,&id,
- &tv,&cv,cohort);
-}
-
-//
-//
-//
-
-//
-//
-//
-
-__kernel
-SKC_RASTERIZE_KERNEL_ATTRIBS
-void
-skc_kernel_rasterize_quads(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __global float8 const * const transforms, // FIXME -- __constant
- __global float4 const * const clips, // FIXME -- __constant
- __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
- skc_uint const count)
-{
- //
- // declare shared memory block
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- __local struct skc_subgroup_smem volatile smem[1];
-#else
- __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
- __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
-#endif
-
- //
- // this is a subgroup/warp-centric kernel
- //
- // which subgroup in the grid is this?
- //
- // TAKE NOTE: the Intel GEN compiler appears to be recognizing
- // get_group_id(0) as a uniform but the alternative calculation used
- // when there are multiple subgroups per workgroup is not
- // cooperating and driving spillage elsewhere.
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- uint const cmd_idx = get_group_id(0);
-#else
- uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
-#endif
-
- //
- // if worksgroups are multi-subgroup then there may be excess
- // subgroups in the final workgroup
- //
- if (cmd_idx >= count)
- return;
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("cmd_idx = %u\n",cmd_idx);
-#endif
-
- //
- // load a single command for this subgroup
- //
- union skc_cmd_rasterize const cmd = cmds[cmd_idx];
-
- //
- // get first block node command word and its subblock
- //
- skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
- skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
- skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
-
- //
- // load transform -- uniform across subgroup
- //
- // v8: { sx shx tx shy sy ty w0 w1 }
- //
- // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
- //
- // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
- //
- // Coordinates are scaled to subpixel resolution. All that matters
- // is that continuity is maintained between end path element
- // endpoints.
- //
- // It's the responsibility of the host to ensure that the transforms
- // are properly scaled either via intitializing a transform stack
- // with the subpixel resolution scaled identity or scaling the
- // transform before its loaded by a rasterization grid.
- //
- // FIXME -- horizontal load might be better than this broadcast load
- //
- union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
- union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
- skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
-
- skc_rasterize_quads(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- sk_extent,
- smem,
- &nodeword,&id,
- &tv,&cv,cohort);
-}
-
-//
-//
-//
-
-__kernel
-SKC_RASTERIZE_KERNEL_ATTRIBS
-void
-skc_kernel_rasterize_cubics(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __global float8 const * const transforms, // FIXME -- __constant
- __global float4 const * const clips, // FIXME -- __constant
- __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
- skc_uint const count)
-{
- //
- // declare shared memory block
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- __local struct skc_subgroup_smem volatile smem[1];
-#else
- __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
- __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
-#endif
-
- //
- // this is a subgroup/warp-centric kernel
- //
- // which subgroup in the grid is this?
- //
- // TAKE NOTE: the Intel GEN compiler appears to be recognizing
- // get_group_id(0) as a uniform but the alternative calculation used
- // when there are multiple subgroups per workgroup is not
- // cooperating and driving spillage elsewhere.
- //
-#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
- uint const cmd_idx = get_group_id(0);
-#else
- uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
-#endif
-
- //
- // if worksgroups are multi-subgroup then there may be excess
- // subgroups in the final workgroup
- //
- if (cmd_idx >= count)
- return;
-
-#if 0
- if (get_sub_group_local_id() == 0)
- printf("cmd_idx = %u\n",cmd_idx);
-#endif
-
- //
- // load a single command for this subgroup
- //
- union skc_cmd_rasterize const cmd = cmds[cmd_idx];
-
- //
- // get first block node command word and its subblock
- //
- skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
- skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
- skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
-
- //
- // load transform -- uniform across subgroup
- //
- // v8: { sx shx tx shy sy ty w0 w1 }
- //
- // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
- //
- // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
- //
- // Coordinates are scaled to subpixel resolution. All that matters
- // is that continuity is maintained between end path element
- // endpoints.
- //
- // It's the responsibility of the host to ensure that the transforms
- // are properly scaled either via intitializing a transform stack
- // with the subpixel resolution scaled identity or scaling the
- // transform before its loaded by a rasterization grid.
- //
- // FIXME -- horizontal load might be better than this broadcast load
- //
- union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
- union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
- skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
-
- skc_rasterize_cubics(bp_atomics,
- bp_elems,
- bp_ids,
- bp_mask,
- cohort_atomics,
- sk_extent,
- smem,
- &nodeword,&id,
- &tv,&cv,cohort);
-}
-
-//
-//
-//
-
-__kernel
-SKC_RASTERIZE_KERNEL_ATTRIBS
-void
-skc_kernel_rasterize_rat_quads(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __global float8 const * const transforms, // FIXME -- __constant
- __global float4 const * const clips, // FIXME -- __constant
- __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
- skc_uint const count)
-{
- ;
-}
-
-//
-//
-//
-
-__kernel
-SKC_RASTERIZE_KERNEL_ATTRIBS
-void
-skc_kernel_rasterize_rat_cubics(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global union skc_bp_elem * const bp_elems,
- __global uint * const bp_ids,
- skc_uint const bp_mask,
-
- __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
- __global skc_ttsk_s_t * const sk_extent,
-
- __global float8 const * const transforms, // FIXME -- __constant
- __global float4 const * const clips, // FIXME -- __constant
- __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
- skc_uint const count)
-{
- ;
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "tile.h"
+#include "common.h"
+#include "atomic_cl.h"
+#include "block_pool_cl.h"
+#include "raster_builder_cl_12.h"
+#include "device_cl_12.h"
+
+// #define SKC_ARCH_AVX2
+// #define SKC_RASTERIZE_SIMD_USES_SMEM
+
+#define PRINTF_ENABLE 0
+#define PRINTF_BLOCK_COUNT 0
+
+//
+// NOTE:
+//
+// ON SIMD DEVICES THE BIN COUNT MUST BE POW2 SO THAT WE CAN LOAD IT
+// AS A VECTOR AND PERFORM A SWIZZLE/SHUFFLE
+//
+// NOTE:
+//
+// IGNORE FOR NOW ANY AVX2 CODE SNIPPETS. THEY WILL BE MOVED ASAP.
+//
+//
+
+#if 0 // SKC_ARCH_AVX2
+
+// #define SKC_RASTERIZE_SUBGROUP_SIZE 1
+// #define SKC_RASTERIZE_VECTOR_SIZE_LOG2 3
+// #define SKC_RASTERIZE_WORKGROUP_COUNT_SUBGROUP 1
+
+// #define SKC_TTXB_WORDS 8
+
+// #define SKC_RASTERIZE_FLOAT float8
+// #define SKC_RASTERIZE_UINT uint8
+// #define SKC_RASTERIZE_INT int8
+// #define SKC_RASTERIZE_PREDICATE int8
+
+// #define SKC_RASTERIZE_BIN_BLOCK uint16
+// #define SKC_RASTERIZE_BIN uint8
+
+// #define SKC_RASTERIZE_POOL uint8
+// #define SKC_RASTERIZE_POOL_SCALE 6
+
+// #define SKC_RASTERIZE_TILE_HASH_X_BITS 1
+// #define SKC_RASTERIZE_TILE_HASH_Y_BITS 2
+
+// #define SKC_RASTERIZE_VECTOR_EXPAND() SKC_EXPAND_8()
+
+#endif
+
+//
+// SIMT
+//
+
+#define SKC_RASTERIZE_BLOCK_ID_V_SIZE SKC_RASTERIZE_SUBGROUP_SIZE
+#define SKC_RASTERIZE_TTSK_V_SIZE SKC_RASTERIZE_SUBGROUP_SIZE
+#define SKC_RASTERIZE_TTSK_V_MASK (SKC_RASTERIZE_TTSK_V_SIZE - 1)
+
+//
+//
+//
+
+#define SKC_RASTERIZE_VECTOR_SIZE (1 << SKC_RASTERIZE_VECTOR_SIZE_LOG2)
+#define SKC_RASTERIZE_ELEMS_PER_SUBGROUP (SKC_RASTERIZE_SUBGROUP_SIZE * SKC_RASTERIZE_VECTOR_SIZE)
+
+//
+//
+//
+
+#define SKC_RASTERIZE_YX_INIT 0x7FFF7FFF // { +32767, +32767 }
+#define SKC_RASTERIZE_YX_INVALID 0x80008000 // { -32768, -32768 }
+
+//
+//
+//
+
+#define SKC_RASTERIZE_TILE_HASH_X_MASK SKC_BITS_TO_MASK(SKC_RASTERIZE_TILE_HASH_X_BITS)
+#define SKC_RASTERIZE_TILE_HASH_Y_MASK SKC_BITS_TO_MASK(SKC_RASTERIZE_TILE_HASH_Y_BITS)
+#define SKC_RASTERIZE_TILE_HASH_BITS (SKC_RASTERIZE_TILE_HASH_X_BITS + SKC_RASTERIZE_TILE_HASH_Y_BITS)
+#define SKC_RASTERIZE_TILE_HASH_BIN_COUNT (1 << SKC_RASTERIZE_TILE_HASH_BITS)
+#define SKC_RASTERIZE_TILE_HASH_BIN_BITS (SKC_RASTERIZE_TILE_HASH_BITS + 1) // FIXME -- LOG2_RU(BIN_COUNT)
+#define SKC_RASTERIZE_TILE_HASH_BIN_MASK SKC_BITS_TO_MASK(SKC_RASTERIZE_TILE_HASH_BIN_BITS)
+
+//
+// Norbert Juffa notes: "GPU Pro Tip: Lerp Faster in C++"
+//
+// https://devblogs.nvidia.com/parallelforall/lerp-faster-cuda/
+//
+// Lerp in two fma/mad ops:
+//
+// t * b + ((-t) * a + a)
+//
+// Note: OpenCL documents mix() as being implemented as:
+//
+// a + (b - a) * t
+//
+// But this may be a native instruction on some devices. For example,
+// on GEN9 there is an LRP "linear interoplation" opcode but it
+// doesn't appear to support half floats.
+//
+// Feel free to toggle this option and then benchmark and inspect the
+// generated code. We really want the double FMA to be generated when
+// there isn't support for a LERP/MIX operation.
+//
+
+#if 1
+#define SKC_LERP(a,b,t) mad(t,b,mad(-(t),a,a))
+#else
+#define SKC_LERP(a,b,t) mix(a,b,t)
+#endif
+
+//
+// There is no integer MAD in OpenCL with "don't care" overflow
+// semantics.
+//
+// FIXME -- verify if the platform needs explicit MAD operations even
+// if a "--fastmath" option is available at compile time. It might
+// make sense to explicitly use MAD calls if the platform requires it.
+//
+
+#if 1
+#define SKC_MAD_UINT(a,b,c) ((a) * (b) + (c))
+#else
+#define SKC_MAD_UINT(a,b,c) mad_sat(a,b,c)
+#endif
+
+//
+//
+//
+
+#define SKC_RASTERIZE_SEGMENT(id) (id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane())
+
+//
+//
+//
+
+union skc_bp_elem
+{
+ skc_uint u32;
+ skc_tagged_block_id_t tag_id;
+ skc_float coord;
+};
+
+//
+//
+//
+
+struct skc_subgroup_smem
+{
+ //
+ // SIMT subgroup scratchpad for max scan -- also shared with 'winner' member
+ //
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE > 1 ) || defined ( SKC_RASTERIZE_SIMD_USES_SMEM )
+ struct {
+ union {
+
+ skc_uint winner;
+
+ struct {
+ skc_uint scratch[SKC_RASTERIZE_SUBGROUP_SIZE];
+ } aN;
+
+ struct {
+ SKC_RASTERIZE_UINT scratch[SKC_RASTERIZE_SUBGROUP_SIZE];
+ } vN;
+ };
+ } subgroup;
+#endif
+
+ //
+ // work-in-progress TTSB blocks and associated YX keys
+ //
+ union {
+ struct {
+ // FIXME -- some typedefs are valid here
+ skc_uint ttsb [SKC_RASTERIZE_TILE_HASH_BIN_COUNT][SKC_DEVICE_SUBBLOCK_WORDS];
+ skc_uint yx [SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
+ skc_uint id [SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
+ skc_uint count[SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
+ } aN;
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ struct {
+ SKC_RASTERIZE_BIN_BLOCK ttsb[SKC_RASTERIZE_TILE_HASH_BIN_COUNT];
+ SKC_RASTERIZE_BIN yx;
+ SKC_RASTERIZE_BIN id;
+ SKC_RASTERIZE_BIN count;
+ } vN;
+#endif
+ } bin;
+};
+
+//
+//
+//
+
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+#define skc_subgroup_lane() 0
+#else
+#define skc_subgroup_lane() get_sub_group_local_id()
+#endif
+
+//
+// replenish block ids
+//
+// note that you can't overrun the block id pool since it's a ring
+//
+
+static
+void
+skc_blocks_replenish(skc_uint * const blocks_next,
+ skc_block_id_v_t * const blocks,
+ __global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const bp_ids)
+{
+ //
+ // get a new vector of block ids -- this is kind of a narrow
+ // allocation but subblocks help stretch out the pool.
+ //
+ // FIXME -- there is now plenty of SMEM to allocate a LOT of block ids
+ //
+ skc_uint bp_idx = 0;
+
+ if (skc_subgroup_lane() == 0)
+ {
+ bp_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+SKC_BP_ATOMIC_OFFSET_READS,
+ SKC_RASTERIZE_BLOCK_ID_V_SIZE); // ring_reads
+#if 0
+ printf("r+: %8u + %u\n",bp_idx,SKC_RASTERIZE_BLOCK_ID_V_SIZE);
+#endif
+ }
+
+ bp_idx = (sub_group_broadcast(bp_idx,0) + skc_subgroup_lane()) & bp_mask;
+ *blocks = bp_ids[bp_idx];
+ *blocks_next = 0;
+}
+
+//
+//
+//
+
+static
+skc_block_id_t
+skc_blocks_get_next(skc_uint * const blocks_next,
+ skc_block_id_v_t * const blocks,
+ __global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const bp_ids)
+{
+ // replenish?
+ if (*blocks_next == SKC_RASTERIZE_BLOCK_ID_V_SIZE)
+ {
+ skc_blocks_replenish(blocks_next,blocks,bp_atomics,bp_mask,bp_ids);
+ }
+
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE > 1 )
+ //
+ // SIMT
+ //
+ skc_block_id_t id = sub_group_broadcast(*blocks,*blocks_next);
+
+#else
+ //
+ // SIMD
+ //
+ skc_block_id_t id = blocks->s0;
+
+ skc_shuffle_down_1(*blocks);
+
+#endif
+
+ *blocks_next += 1;
+
+ return id;
+}
+
+//
+// subblock allocator
+//
+
+#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
+
+static
+skc_block_id_t
+skc_subblocks_get_next(skc_block_id_t * const subblocks,
+ skc_uint * const blocks_next,
+ skc_block_id_v_t * const blocks,
+ __global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const bp_ids)
+{
+ if ((*subblocks & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
+ {
+ *subblocks = skc_blocks_get_next(blocks_next,blocks,bp_atomics,bp_mask,bp_ids);
+ }
+
+ skc_block_id_t const sb_id = *subblocks;
+
+ *subblocks += 1;
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("= %u\n",sb_id);
+#endif
+
+ return sb_id;
+}
+
+
+#define SKC_SUBBLOCKS_BLOCKS_PROTO() skc_block_id_t * const subblocks, skc_block_id_t * const blocks
+#define SKC_SUBBLOCKS_BLOCKS_ARGS() subblocks, blocks
+
+#else
+
+#define SKC_SUBBLOCKS_BLOCKS_PROTO() skc_block_id_t * const blocks
+#define SKC_SUBBLOCKS_BLOCKS_ARGS() blocks
+
+#endif
+
+//
+//
+//
+
+static
+skc_block_id_t
+skc_ttsk_v_append(SKC_SUBBLOCKS_BLOCKS_PROTO(),
+ skc_uint * const blocks_next,
+ __global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const bp_ids,
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ skc_ttsk_v_t * const sk_v,
+ skc_uint * const sk_v_next,
+ __global skc_ttsk_s_t * const sk_extent,
+ skc_uint const new_yx)
+{
+#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
+ skc_block_id_t const new_id = skc_subblocks_get_next(subblocks,
+ blocks_next,
+ blocks,
+ bp_atomics,
+ bp_mask,
+ bp_ids);
+#else
+ skc_block_id_t const new_id = skc_blocks_get_next(blocks_next,
+ blocks,
+ bp_atomics,
+ bp_mask, // pow2 modulo mask for block pool ring
+ bp_ids);
+#endif
+
+ if (get_sub_group_local_id() == (*sk_v_next & SKC_RASTERIZE_TTSK_V_MASK))
+ {
+ sk_v->lo = new_id;
+ sk_v->hi = (sk_v->hi & SKC_TTRK_HI_MASK_COHORT) | new_yx;
+#if 0
+ printf("@ ( %3u, %3u ) %u\n",
+ (new_yx >> 12) & 0xFFF,
+ (new_yx ) & 0xFFF,
+ new_id);
+#endif
+ }
+
+ *sk_v_next += 1;
+
+ if (*sk_v_next == SKC_RASTERIZE_TTSK_V_SIZE)
+ {
+ *sk_v_next = 0;
+
+ skc_uint sk_idx = 0;
+
+ if (skc_subgroup_lane() == 0)
+ {
+ sk_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE
+ (cohort_atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_KEYS,SKC_RASTERIZE_TTSK_V_SIZE);
+#if 0
+ printf("+ %u\n",sk_idx);
+#endif
+ }
+
+ sk_idx = sub_group_broadcast(sk_idx,0) + skc_subgroup_lane();
+
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE > SKC_RASTERIZE_TTSK_V_SIZE )
+ if (skc_subgroup_lane() < SKC_RASTERIZE_TTSK_V_SIZE)
+#endif
+ {
+ sk_extent[sk_idx] = *sk_v;
+#if 0
+ printf("> %u : %v2u\n",sk_idx,*sk_v);
+#endif
+ }
+ }
+
+ return new_id;
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_FLOAT
+skc_subgroup_scan_inclusive_add_float(SKC_RASTERIZE_FLOAT const v)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+ // Note that there isn't a built-in horizontal scan for vectors so
+ // we'll define some here for various widths.
+ //
+ // FIXME -- a scalar version might be faster so put in a
+ // compile-time switch to selection between implementations
+ //
+
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return v;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
+ // 01
+ // 0 +
+ // --
+ // 01
+ SKC_RASTERIZE_FLOAT const w = mad(v.s10,(SKC_RASTERIZE_FLOAT)(0,1),v);
+ return w;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
+ // 0123
+ // 012 +
+ // ----
+ // 0123
+ // 01 +
+ // ----
+ // 0123
+ //
+ SKC_RASTERIZE_FLOAT const w = mad(v.s3012,(SKC_RASTERIZE_FLOAT)(0,1,1,1),v);
+ SKC_RASTERIZE_FLOAT const x = mad(w.s2301,(SKC_RASTERIZE_FLOAT)(0,0,1,1),w);
+ return x;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
+ // 01234567
+ // 0123456 +
+ // --------
+ // 01234567
+ // 012345 +
+ // --------
+ // 01234567
+ // 0123 +
+ // --------
+ // 01234567
+ //
+ SKC_RASTERIZE_FLOAT const w = mad(v.s70123456,(SKC_RASTERIZE_FLOAT)(0,1,1,1,1,1,1,1),v);
+ SKC_RASTERIZE_FLOAT const x = mad(w.s67012345,(SKC_RASTERIZE_FLOAT)(0,0,1,1,1,1,1,1),w);
+ SKC_RASTERIZE_FLOAT const y = mad(x.s45670123,(SKC_RASTERIZE_FLOAT)(0,0,0,0,1,1,1,1),x);
+ return y;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
+ // 0123456789abcdef
+ // 0123456789abcde +
+ // ----------------
+ // 0123456789abcdef
+ // 0123456789abcd +
+ // ----------------
+ // 0123456789abcdef
+ // 0123456789ab +
+ // ----------------
+ // 0123456789abcdef
+ // 01234567 +
+ // ----------------
+ // 0123456789abcdef
+ //
+ SKC_RASTERIZE_FLOAT const w = mad(v.sf0123456789abcde,(SKC_RASTERIZE_FLOAT)(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),v);
+ SKC_RASTERIZE_FLOAT const x = mad(w.sef0123456789abcd,(SKC_RASTERIZE_FLOAT)(0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1),w);
+ SKC_RASTERIZE_FLOAT const y = mad(x.scdef0123456789ab,(SKC_RASTERIZE_FLOAT)(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1),x);
+ SKC_RASTERIZE_FLOAT const z = mad(y.s89abcdef01234567,(SKC_RASTERIZE_FLOAT)(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1),y);
+ return z;
+
+#endif
+
+#else
+ //
+ // SIMT
+ //
+
+ return sub_group_scan_inclusive_add(v);
+
+#endif
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_UINT
+skc_subgroup_scan_inclusive_add_uint(SKC_RASTERIZE_UINT const v)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+ // Note that there isn't a built-in horizontal scan for vectors so
+ // we'll define some here for various widths.
+ //
+ // FIXME -- a scalar version might be faster so put in a
+ // compile-time switch to selection between implementations
+ //
+
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return v;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
+ // 01
+ // 0 +
+ // --
+ // 01
+ SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.s10,(SKC_RASTERIZE_UINT)(0,1),v);
+ return w;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
+ // 0123
+ // 012 +
+ // ----
+ // 0123
+ // 01 +
+ // ----
+ // 0123
+ //
+ SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.s3012,(SKC_RASTERIZE_UINT)(0,1,1,1),v);
+ SKC_RASTERIZE_UINT const x = SKC_MAD_UINT(w.s2301,(SKC_RASTERIZE_UINT)(0,0,1,1),w);
+ return x;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
+ // 01234567
+ // 0123456 +
+ // --------
+ // 01234567
+ // 012345 +
+ // --------
+ // 01234567
+ // 0123 +
+ // --------
+ // 01234567
+ //
+ SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.s70123456,(SKC_RASTERIZE_UINT)(0,1,1,1,1,1,1,1),v);
+ SKC_RASTERIZE_UINT const x = SKC_MAD_UINT(w.s67012345,(SKC_RASTERIZE_UINT)(0,0,1,1,1,1,1,1),w);
+ SKC_RASTERIZE_UINT const y = SKC_MAD_UINT(x.s45670123,(SKC_RASTERIZE_UINT)(0,0,0,0,1,1,1,1),x);
+ return y;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
+ // 0123456789abcdef
+ // 0123456789abcde +
+ // ----------------
+ // 0123456789abcdef
+ // 0123456789abcd +
+ // ----------------
+ // 0123456789abcdef
+ // 0123456789ab +
+ // ----------------
+ // 0123456789abcdef
+ // 01234567 +
+ // ----------------
+ // 0123456789abcdef
+ //
+ SKC_RASTERIZE_UINT const w = SKC_MAD_UINT(v.sf0123456789abcde,(SKC_RASTERIZE_UINT)(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),v);
+ SKC_RASTERIZE_UINT const x = SKC_MAD_UINT(w.sef0123456789abcd,(SKC_RASTERIZE_UINT)(0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1),w);
+ SKC_RASTERIZE_UINT const y = SKC_MAD_UINT(x.scdef0123456789ab,(SKC_RASTERIZE_UINT)(0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1),x);
+ SKC_RASTERIZE_UINT const z = SKC_MAD_UINT(y.s89abcdef01234567,(SKC_RASTERIZE_UINT)(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1),y);
+ return z;
+
+#endif
+
+#else
+ //
+ // SIMT
+ //
+
+ return sub_group_scan_inclusive_add(v);
+
+#endif
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_UINT
+skc_subgroup_scan_inclusive_max(SKC_RASTERIZE_UINT const v)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+ // Note that there isn't a built-in horizontal scan for vectors so
+ // we'll define some here for various widths.
+ //
+ // FIXME -- a scalar version might be faster so put in a
+ // compile-time switch to selection between implementations
+ //
+
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return v;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
+ // 01
+ // 00 max
+ // --
+ // 01
+ SKC_RASTERIZE_UINT const w = max(v.s00,v);
+ return w;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
+ // 0123
+ // 0012 +
+ // ----
+ // 0123
+ // 0101 +
+ // ----
+ // 0123
+ //
+ SKC_RASTERIZE_UINT const w = max(v.s0012,v);
+ SKC_RASTERIZE_UINT const x = max(w.s0101,w);
+ return x;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
+ // 01234567
+ // 00123456 +
+ // --------
+ // 01234567
+ // 01012345 +
+ // --------
+ // 01234567
+ // 01230123 +
+ // --------
+ // 01234567
+ //
+ SKC_RASTERIZE_UINT const w = max(v.s00123456,v);
+ SKC_RASTERIZE_UINT const x = max(w.s01012345,w);
+ SKC_RASTERIZE_UINT const y = max(x.s01230123,x);
+ return y;
+
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
+ // 0123456789abcdef
+ // 00123456789abcde +
+ // ----------------
+ // 0123456789abcdef
+ // 010123456789abcd +
+ // ----------------
+ // 0123456789abcdef
+ // 01230123456789ab +
+ // ----------------
+ // 0123456789abcdef
+ // 0123456701234567 +
+ // ----------------
+ // 0123456789abcdef
+ //
+ SKC_RASTERIZE_UINT const w = max(v.s00123456789abcde,v);
+ SKC_RASTERIZE_UINT const x = max(w.s010123456789abcd,w);
+ SKC_RASTERIZE_UINT const y = max(x.s01230123456789ab,x);
+ SKC_RASTERIZE_UINT const z = max(y.s0123456701234567,y);
+ return z;
+
+#endif
+
+#else
+ //
+ // SIMT
+ //
+
+ return sub_group_scan_inclusive_max(v);
+
+#endif
+}
+
+//
+//
+//
+
+static
+float
+skc_subgroup_last_float(SKC_RASTERIZE_FLOAT const v)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return v;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
+ return v.s1;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
+ return v.s3;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
+ return v.s7;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
+ return v.sf;
+#endif
+
+#else
+ //
+ // SIMT
+ //
+ return sub_group_broadcast(v,SKC_RASTERIZE_SUBGROUP_SIZE-1);
+
+#endif
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_UINT
+skc_subgroup_last_uint(SKC_RASTERIZE_UINT const v)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return v;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
+ return v.s1;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
+ return v.s3;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
+ return v.s7;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
+ return v.sf;
+#endif
+
+#else
+ //
+ // SIMT
+ //
+ return sub_group_broadcast(v,SKC_RASTERIZE_SUBGROUP_SIZE-1);
+
+#endif
+}
+
+//
+//
+//
+
+static
+float
+skc_subgroup_first(SKC_RASTERIZE_FLOAT const v)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return v;
+#else
+ return v.s0;
+#endif
+
+#else
+ //
+ // SIMT
+ //
+ return sub_group_broadcast(v,0);
+
+#endif
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_FLOAT
+skc_subgroup_shuffle(SKC_RASTERIZE_FLOAT const v,
+ SKC_RASTERIZE_UINT const i)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return v;
+#else
+ return shuffle(v,i);
+#endif
+
+#else
+ //
+ // SIMT
+ //
+ return intel_sub_group_shuffle(v,i);
+
+#endif
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_FLOAT
+skc_subgroup_shuffle_up_1(SKC_RASTERIZE_FLOAT const p, // previous
+ SKC_RASTERIZE_FLOAT const c) // current
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+ // FIXME -- there are alternative formulations here:
+ //
+ // Option 1:
+ //
+ // select(c.rotate(+1),p.rotate(-1),(1,0,0,...))
+ //
+ // Option 2:
+ //
+ // p is a scalar
+ // t = c.rotate(+1)
+ // t.s0 = p;
+ //
+ // Option 3: ...
+ //
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return p;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
+ return shuffle2(p,c,(uint2)(1,2));
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
+ return shuffle2(p,c,(uint4)(3,4,5,6));
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
+ return shuffle2(p,c,(uint8)(7,8,9,10,11,12,13,14));
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
+ return shuffle2(p,c,(uint16)(15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30));
+#endif
+
+#else
+ //
+ // SIMT
+ //
+ return intel_sub_group_shuffle_up(p,c,1);
+
+#endif
+}
+
+//
+//
+//
+
+static
+bool
+skc_is_lane_first()
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1)
+ //
+ // SIMD
+ //
+ return true;
+#else
+ //
+ // SIMT
+ //
+ return get_sub_group_local_id() == 0;
+#endif
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_FLOAT
+skc_delta_offset()
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ return 1;
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 1 )
+ return (SKC_RASTERIZE_FLOAT)( 1, 2 );
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 2 )
+ return (SKC_RASTERIZE_FLOAT)( 1, 2, 3, 4 );
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 3 )
+ return (SKC_RASTERIZE_FLOAT)( 1, 2, 3, 4, 5, 6, 7, 8 );
+#elif ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 4 )
+ return (SKC_RASTERIZE_FLOAT)( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 );
+#endif
+
+#else
+ //
+ // SIMT
+ //
+ return 1.0f + get_sub_group_local_id();
+
+#endif
+
+}
+
+//
+//
+//
+
+static
+int
+skc_subgroup_any(SKC_RASTERIZE_PREDICATE const p)
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+ return any(p);
+#else
+ //
+ // SIMT
+ //
+ return sub_group_any(p);
+#endif
+}
+
+//
+//
+//
+
+#define SKC_PATH_NODEWORD_IS_LAST(n) (((n) & SKC_DEVICE_BLOCK_WORDS_MASK) == SKC_DEVICE_BLOCK_WORDS_MASK)
+
+void
+skc_segment_next(__global union skc_bp_elem * const bp_elems,
+ skc_uint * const nodeword,
+ skc_block_id_t * const id)
+{
+ if ((++*id & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
+ {
+ if (SKC_PATH_NODEWORD_IS_LAST(++*nodeword))
+ {
+ *nodeword = SKC_TAGGED_BLOCK_ID_GET_ID(bp_elems[*nodeword].tag_id) * SKC_DEVICE_SUBBLOCK_WORDS;
+ }
+
+ skc_tagged_block_id_t const tag_id = bp_elems[*nodeword].tag_id;
+
+ *id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
+ }
+}
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_FLOAT
+skc_native_length(SKC_RASTERIZE_FLOAT const x, SKC_RASTERIZE_FLOAT const y)
+{
+ return native_sqrt(x * x + y * y);
+}
+
+//
+// Wang's Formula (1985)
+//
+
+#define SKC_WANG_PIXEL_RESL 0.25f // <-- this can be tuned
+
+#define SKC_WANG_EPSILON (SKC_WANG_PIXEL_RESL * SKC_SUBPIXEL_RESL_X_F32)
+
+#define SKC_WANG_CUBIC ((3.0f * 2.0f) / (8.0f * SKC_WANG_EPSILON))
+#define SKC_WANG_QUADRATIC ((2.0f ) / (8.0f * SKC_WANG_EPSILON))
+
+#define SKC_WANG_LENGTH(x,y) skc_native_length(x,y)
+#define SKC_WANG_SQRT(x) native_sqrt(x)
+
+//
+//
+//
+
+static
+SKC_RASTERIZE_FLOAT
+skc_wangs_formula_cubic(SKC_RASTERIZE_FLOAT const t0x, SKC_RASTERIZE_FLOAT const t0y,
+ SKC_RASTERIZE_FLOAT const t1x, SKC_RASTERIZE_FLOAT const t1y,
+ SKC_RASTERIZE_FLOAT const t2x, SKC_RASTERIZE_FLOAT const t2y,
+ SKC_RASTERIZE_FLOAT const t3x, SKC_RASTERIZE_FLOAT const t3y)
+{
+ //
+ // Return the number of evenly spaced (in the parametric sense) line
+ // segments that are guaranteed to be within "epsilon" error of the
+ // curve.
+ //
+ // We're then going to take multiples of the reciprocal of this
+ // number so that the segmentation can be distributed across the
+ // subgroup.
+ //
+ // Note, this can probably be slightly optimized per architecture
+ // but it's probably far from being a hotspot since it's all
+ // straight-line unpredicated code.
+ //
+ // The result is an integer ranging from [1.0,#segments]
+ //
+ // Note that even if all of the control points are coincident, the
+ // max(1.0f) will categorize this as a line of 1 segment.
+ //
+ // This is what we want! We want to convert cubics to lines as
+ // easily as possible and *then* cull lines that are either
+ // horizontal or zero length.
+ //
+ return max(1.0f,
+ ceil(SKC_WANG_SQRT(SKC_WANG_CUBIC *
+ SKC_WANG_LENGTH(max(fabs(t2x - 2.0f * t1x + t0x),
+ fabs(t3x - 2.0f * t2x + t1x)),
+ max(fabs(t2y - 2.0f * t1y + t0y),
+ fabs(t3y - 2.0f * t2y + t1y))))));
+}
+
+static
+SKC_RASTERIZE_FLOAT
+skc_wangs_formula_quadratic(SKC_RASTERIZE_FLOAT const t0x, SKC_RASTERIZE_FLOAT const t0y,
+ SKC_RASTERIZE_FLOAT const t1x, SKC_RASTERIZE_FLOAT const t1y,
+ SKC_RASTERIZE_FLOAT const t2x, SKC_RASTERIZE_FLOAT const t2y)
+{
+ return max(1.0f,
+ ceil(SKC_WANG_SQRT(SKC_WANG_QUADRATIC *
+ SKC_WANG_LENGTH(fabs(t2x - 2.0f * t1x + t0x),
+ fabs(t2y - 2.0f * t1y + t0y)))));
+}
+
+//
+// rational curves
+//
+
+static
+SKC_RASTERIZE_FLOAT
+skc_wangs_formula_cubic_rat()
+{
+ return 0.0f;
+}
+
+static
+SKC_RASTERIZE_FLOAT
+skc_wangs_formula_quad_rat()
+{
+ return 0.0f;
+}
+
+//
+// flush any work-in-progress blocks and return unused block ids
+//
+
+static
+void
+skc_finalize(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ skc_block_id_v_t * const blocks,
+ skc_uint const blocks_next,
+ skc_ttsk_v_t * const sk_v,
+ skc_uint const sk_v_next,
+ __global skc_ttsk_s_t * const sk_extent,
+ __local struct skc_subgroup_smem volatile * const smem)
+{
+ //
+ // flush non-empty bins
+ //
+ // FIXME -- accelerate this iteration/search with a subgroup operation
+ //
+ for (skc_uint ii=0; ii<SKC_RASTERIZE_TILE_HASH_BIN_COUNT; ii++)
+ {
+ if (smem->bin.aN.count[ii] > 0)
+ {
+ skc_block_id_v_t const id = smem->bin.aN.id[ii];
+ skc_uint const idx = id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
+ skc_uint const tts = smem->bin.aN.ttsb[ii][skc_subgroup_lane()];
+#if 0
+ printf("???????? : [ %10u = %10u : %08X ]\n",id,idx,tts);
+#endif
+ bp_elems[idx].u32 = tts;
+ }
+
+ //
+ // FIXME -- vectorize with vstoreN()
+ //
+ }
+
+ //
+ // return remaining block ids back to the pool
+ //
+ skc_uint const blocks_rem = SKC_RASTERIZE_BLOCK_ID_V_SIZE - blocks_next;
+
+ if (blocks_rem > 0)
+ {
+ skc_uint bp_idx = 0;
+
+ if (skc_subgroup_lane() == 0)
+ {
+ bp_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+SKC_BP_ATOMIC_OFFSET_WRITES,blocks_rem);
+
+#if 0
+ printf("r-: %8u + %u\n",bp_idx,blocks_rem);
+#endif
+ }
+
+ bp_idx = (sub_group_broadcast(bp_idx,0) + skc_subgroup_lane() - blocks_next) & bp_mask;
+
+ if (skc_subgroup_lane() >= blocks_next)
+ {
+ bp_ids[bp_idx] = *blocks;
+ }
+ }
+
+ //
+ // flush work-in-progress ryx keys
+ //
+ if (sk_v_next > 0)
+ {
+ skc_uint sk_idx = 0;
+
+ if (skc_subgroup_lane() == 0)
+ {
+ sk_idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE
+ (cohort_atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_KEYS,sk_v_next);
+#if 0
+ printf("* %u\n",sk_idx);
+#endif
+ }
+
+ sk_idx = sub_group_broadcast(sk_idx,0) + skc_subgroup_lane();
+
+ if (skc_subgroup_lane() < sk_v_next)
+ {
+ sk_extent[sk_idx] = *sk_v;
+ }
+ }
+}
+
+//
+// If there are lanes that were unable to append to a bin because
+// their hashes collided with a bin's current ryx key then those bins
+// must be ejected.
+//
+// Note that we do not eject "full" bins because lazily waiting for a
+// collision results in simpler code.
+//
+
+static
+void
+skc_flush(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ skc_block_id_t * const subblocks,
+ skc_block_id_v_t * const blocks,
+ skc_uint * const blocks_next,
+ skc_ttsk_v_t * const sk_v,
+ skc_uint * const sk_v_next,
+ __global skc_ttsk_s_t * const sk_extent,
+ __local struct skc_subgroup_smem volatile * const smem,
+ SKC_RASTERIZE_UINT const hash,
+ SKC_RASTERIZE_UINT const yx,
+ SKC_RASTERIZE_PREDICATE is_collision) // pass by value
+{
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+
+ //
+ // FIXME -- this code is now stale with the changes to the
+ // subblock/block allocation strategy
+ //
+
+ //
+ // get local TTSB ID queue count
+ //
+ skc_uint ttsb_id_count = smem->pool.count; // scalar
+
+ // init hash bit mask
+ skc_uint component_mask = 0;
+
+ for (int cc=0; cc<SKC_RASTERIZE_VECTOR_SIZE; cc++)
+ {
+ // if no collision continue
+ if (((int*)&is_collision)[cc] == 0)
+ continue;
+
+ uint const winner = ((uint*)&hash)[cc];
+ uint const component_bit = 1u << winner;
+
+ // if already processed this hash then continue
+ if (component_mask & component_bit)
+ continue;
+
+ // update component mask
+ component_mask |= component_bit;
+
+ //
+ // new winner requires ejecting the old TTSB
+ //
+ if (smem->bin.aN.count[winner] > 0)
+ {
+ skc_uint const elem_idx = smem->bin.aN.id[winner] * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
+
+ bp_elems[elem_idx].u32 = smem->bin.aN.ttsb[winner][skc_subgroup_lane()];
+ }
+
+ //
+ // ensure there is at least one TTSK and TTSB ID
+ //
+ if (ttsb_id_count == SKC_RASTERIZE_POOL_SIZE)
+ {
+ //
+ // update remaining count
+ //
+ ttsb_id_count = 0;
+
+ //
+ // flush accumulated ttsk_ryx keys
+ //
+ uint const idx = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE
+ (cohort_atomics+SKC_RASTER_COHORT_ATOMIC_OFFSET_KEYS,SKC_RASTERIZE_POOL_SIZE); // ttsk_ryx_count
+
+#if 0
+ printf("# %u\n",idx);
+#endif
+
+ for (uint ii=0; ii<SKC_RASTERIZE_POOL_SIZE; ii+=SKC_RASTERIZE_SUBGROUP_SIZE)
+ {
+ ttsk_ryx[idx + ii] = skc_make_ttsk_ryx(smem,SKC_CMD_RASTERIZE_GET_COHORT(cmd),ii);
+ }
+
+ //
+ // allocate more ttsb ids from pool
+ //
+ uint const id = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+0,SKC_RASTERIZE_POOL_SIZE); // ring_reads
+
+ for (uint ii=0; ii<SKC_RASTERIZE_POOL_SIZE; ii+=SKC_RASTERIZE_SUBGROUP_SIZE)
+ smem->pool.aN.id[ii] = bp_ids[id + ii];
+ }
+
+ //
+ // invalidate the winning block
+ //
+
+ //
+ // update bin with winning yx, new ttsb id and zero count
+ //
+ // all lanes are loading/storing from/to the same index
+ //
+ smem->bin.vN.ttsb [winner] = ( SKC_TTS_INVALID );
+ smem->bin.aN.id [winner] = smem->pool.aN.id[ttsb_id_count];
+ smem->bin.aN.yx [winner] = smem->pool.aN.yx[ttsb_id_count] = ((uint*)&yx)[cc];
+ smem->bin.aN.count[winner] = 0;
+
+ //
+ // update count
+ //
+ ttsb_id_count += 1;
+ }
+
+ //
+ // save count
+ //
+ smem->pool.count = ttsb_id_count;
+
+#else
+ //
+ // SIMT
+ //
+
+ do {
+ //
+ // only one lane will win!
+ //
+ if (is_collision)
+ smem->subgroup.winner = hash;
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ //
+ // which bin is being ejected?
+ //
+ skc_uint const winner = smem->subgroup.winner;
+
+ //
+ // which colliding hash is taking over the bin?
+ //
+ SKC_RASTERIZE_PREDICATE const is_winner = is_collision && (hash == winner);
+
+ //
+ // all lanes with the same hash will try to store but only one
+ // lane will win
+ //
+ if (is_winner)
+ smem->subgroup.winner = yx;
+
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ //
+ // flush this block to the pool
+ //
+ if (smem->bin.aN.count[winner] > 0)
+ {
+ skc_block_id_v_t const id = smem->bin.aN.id[winner];
+ skc_uint const idx = id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
+ skc_uint const tts = smem->bin.aN.ttsb[winner][skc_subgroup_lane()];
+#if 0
+ printf("%08X : [ %10u = %10u : %08X ]\n",yx,id,idx,tts);
+#endif
+ bp_elems[idx].u32 = tts;
+ }
+
+ //
+ // append new ttsk
+ //
+ skc_uint const new_yx = smem->subgroup.winner;
+ skc_block_id_t const new_id = skc_ttsk_v_append(SKC_SUBBLOCKS_BLOCKS_ARGS(),
+ blocks_next,
+ bp_atomics,
+ bp_mask, // pow2 modulo mask for block pool ring
+ bp_ids,
+ cohort_atomics,
+ sk_v,
+ sk_v_next,
+ sk_extent,
+ new_yx);
+
+#if 0
+ if (get_sub_group_local_id() == 0) {
+ printf(">>> %9u\n",new_id);
+ }
+#endif
+
+ //
+ // update bin with winning yx, new ttsb id and zero count
+ //
+ smem->bin.aN.ttsb [winner][skc_subgroup_lane()] = SKC_TTS_INVALID;
+ smem->bin.aN.yx [winner] = new_yx;
+ smem->bin.aN.id [winner] = new_id;
+ smem->bin.aN.count[winner] = 0;
+
+ //
+ // remove all lanes matching this hash
+ //
+ is_collision = is_collision && !is_winner;
+
+ //
+ // exit if nothing left to do
+ //
+ } while (sub_group_any(is_collision));
+
+#endif
+}
+
+//
+// scatter scan max
+//
+static
+SKC_RASTERIZE_UINT
+skc_scatter_scan_max(__local struct skc_subgroup_smem volatile * const smem,
+ SKC_RASTERIZE_FLOAT const iss,
+ SKC_RASTERIZE_FLOAT const ess)
+{
+ //
+ // prefix sums determine which lanes we're going to work on next
+ //
+ SKC_RASTERIZE_PREDICATE const is_scratch_store = (iss > 0.0f) && (ess < (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP);
+ SKC_RASTERIZE_UINT const scratch_idx = SKC_CONVERT(SKC_RASTERIZE_UINT)(max(ess,0.0f));
+
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+#ifdef SKC_RASTERIZE_SIMD_USES_SMEM
+ //
+ // SIMD APPROACH 1: SIMT'ISH
+ //
+
+ // zero the volatile smem scratchpad using vector syntax
+ smem->subgroup.vN.scratch[0] = ( 0 );
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (is_scratch_store C) \
+ smem->subgroup.aN.scratch[scratch_idx C] = I;
+
+ SKC_RASTERIZE_VECTOR_EXPAND();
+
+ // propagate lanes to right using max scan
+ SKC_RASTERIZE_UINT const scratch = smem->subgroup.vN.scratch[0];
+ SKC_RASTERIZE_UINT const source = skc_subgroup_scan_inclusive_max(scratch);
+
+#else
+ //
+ // SIMD APPROACH 2: SCALAR'ISH
+ //
+
+ SKC_RASTERIZE_UINT source = ( 0 );
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (is_scratch_store C) \
+ ((uint *)&source)[scratch_idx C] = I;
+
+ SKC_RASTERIZE_VECTOR_EXPAND();
+
+ for (uint ii=1; ii<SKC_RASTERIZE_ELEMS_PER_SUBGROUP; ii++)
+ ((uint *)&source)[ii] = max(((uint *)&source)[ii-1],((uint *)&source)[ii]);
+#endif
+
+#else
+ //
+ // SIMT
+ //
+
+ //
+ // zero the volatile smem scratchpad using vector syntax
+ //
+ smem->subgroup.vN.scratch[skc_subgroup_lane()] = ( 0 );
+
+ //
+ // store source lane at starting lane
+ //
+ if (is_scratch_store)
+ smem->subgroup.aN.scratch[scratch_idx] = skc_subgroup_lane();
+
+ //
+ // propagate lanes to right using max scan
+ //
+ SKC_RASTERIZE_UINT const scratch = smem->subgroup.vN.scratch[skc_subgroup_lane()];
+ SKC_RASTERIZE_UINT const source = skc_subgroup_scan_inclusive_max(scratch);
+#endif
+
+ return source;
+}
+
+//
+// sliver lines into subpixels
+//
+
+static
+void
+skc_sliver(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ skc_block_id_t * const subblocks,
+ skc_block_id_v_t * const blocks,
+ skc_uint * const blocks_next,
+ skc_ttsk_v_t * const sk_v,
+ skc_uint * const sk_v_next,
+ __global skc_ttsk_s_t * const sk_extent,
+ __local struct skc_subgroup_smem volatile * const smem,
+ SKC_RASTERIZE_FLOAT const l0x,
+ SKC_RASTERIZE_FLOAT const l0y,
+ SKC_RASTERIZE_FLOAT const l1x,
+ SKC_RASTERIZE_FLOAT const l1y)
+{
+ //
+ // Y-SLIVERING
+ // -----------
+ //
+ // immediately sliver all multi-pixel lines in into 1-pixel high
+ // lines
+ //
+ // note this implicitly squelches horizontal lines
+ //
+ // there is another test for horizontal lines after x-slivering
+ // is complete
+ //
+
+ //
+ // will we need to flip the sign of y_delta ?
+ //
+ SKC_RASTERIZE_PREDICATE const y_lt = (l0y <= l1y);
+ SKC_RASTERIZE_UINT const dy_xor = y_lt ? 0 : 0x80000000;
+
+ //
+ // save 1/dy
+ //
+ SKC_RASTERIZE_FLOAT const y_denom = native_recip(l1y - l0y);
+
+ //
+ // how many non-horizontal subpixel y-axis slivers are there?
+ //
+ SKC_RASTERIZE_FLOAT const y_min = floor(fmin(l0y,l1y) * SKC_SUBPIXEL_Y_SCALE_DOWN);
+ SKC_RASTERIZE_FLOAT const y_max = ceil (fmax(l0y,l1y) * SKC_SUBPIXEL_Y_SCALE_DOWN);
+ SKC_RASTERIZE_FLOAT const y_base = y_lt ? y_min : y_max;
+ SKC_RASTERIZE_FLOAT y_segs = y_max - y_min;
+
+ //
+ // inclusive subgroup scan of y_segs
+ //
+ SKC_RASTERIZE_FLOAT y_iss = skc_subgroup_scan_inclusive_add_float(y_segs);
+ SKC_RASTERIZE_FLOAT y_ess = y_iss - y_segs;
+ float y_rem = skc_subgroup_last_float(y_iss);
+
+ //
+ // if this is a horizontal line then tweak y_iss so "is_scratch_store" always fails
+ //
+ if (y_segs == 0.0f)
+ y_iss = 0.0f;
+
+#if 0
+ printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } (* %5.0f / %5.0f / %5.0f / %5.0f *) }, \n",a0x,a0y,a1x,a1y,y_segs,y_iss,y_ess,y_rem);
+#endif
+
+ //
+ // these values don't matter on first iteration
+ //
+ SKC_RASTERIZE_FLOAT n1x_prev = 0;
+ SKC_RASTERIZE_FLOAT n1y_prev = 0;
+
+ //
+ // loop until done
+ //
+ while (y_rem > 0.0f)
+ {
+ //
+ // distribute work across lanes
+ //
+ SKC_RASTERIZE_UINT const y_source = skc_scatter_scan_max(smem,y_iss,y_ess);
+
+ //
+ // get line at y_source line
+ //
+ SKC_RASTERIZE_FLOAT const m0x = skc_subgroup_shuffle(l0x,y_source);
+ SKC_RASTERIZE_FLOAT const m0y = skc_subgroup_shuffle(l0y,y_source);
+ SKC_RASTERIZE_FLOAT const m1x = skc_subgroup_shuffle(l1x,y_source);
+ SKC_RASTERIZE_FLOAT const m1y = skc_subgroup_shuffle(l1y,y_source);
+
+ //
+ // every lane will create a 1 pixel tall line "sliver"
+ //
+ // FIXME -- this gets expanded on SIMD
+ //
+ // if numerator == 1 then this is the first lane
+ // if numerator == s then this is the last lane
+ //
+ SKC_RASTERIZE_FLOAT const y_delta = skc_delta_offset() - skc_subgroup_shuffle(y_ess,y_source);
+ SKC_RASTERIZE_FLOAT const y_count = skc_subgroup_shuffle(y_segs,y_source);
+
+ SKC_RASTERIZE_PREDICATE const is_y_first = (y_delta == 1.0f);
+ SKC_RASTERIZE_PREDICATE const is_y_last = (y_delta >= y_count);
+
+ // toggle y_delta sign
+ SKC_RASTERIZE_FLOAT const y_offset = as_float((as_uint(y_delta) ^ intel_sub_group_shuffle(dy_xor,y_source)));
+
+ //
+ // calculate "right" line segment endpoint
+ //
+ SKC_RASTERIZE_FLOAT n1y = (y_offset + skc_subgroup_shuffle(y_base,y_source)) * SKC_SUBPIXEL_Y_SCALE_UP;
+ SKC_RASTERIZE_FLOAT const n_t = (n1y - m0y) * skc_subgroup_shuffle(y_denom,y_source);
+ SKC_RASTERIZE_FLOAT n1x = round(SKC_LERP(m0x,m1x,n_t));
+
+ //
+ // override c1 if this is last point
+ //
+ n1y = select(n1y,m1y,is_y_last);
+ n1x = select(n1x,m1x,is_y_last);
+
+ //
+ // shuffle up "left" line segment endpoint
+ //
+ // NOTE: Intel's shuffle_up is unique with its elegant
+ // "previous" argument so don't get used to it
+ //
+ SKC_RASTERIZE_FLOAT n0y = skc_subgroup_shuffle_up_1(n1y_prev,n1y);
+ SKC_RASTERIZE_FLOAT n0x = skc_subgroup_shuffle_up_1(n1x_prev,n1x);
+
+ //
+ // override shuffle up if this is the first line segment
+ //
+ n0y = select(n0y,m0y,is_y_first);
+ n0x = select(n0x,m0x,is_y_first);
+
+ //
+ // save previous right endpoint
+ //
+ n1x_prev = n1x;
+ n1y_prev = n1y;
+
+ //
+ // decrement by subgroup size
+ //
+ y_iss -= (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ y_ess -= (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ y_rem -= (float)SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+
+#if 0
+ //
+ // debug
+ //
+ if (n0y != n1y) {
+ printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",n0x,n0y,n1x,n1y);
+ }
+#endif
+
+ //
+ // X-SLIVERING
+ // -----------
+ //
+ // now sliver 1-pixel high lines into at either vertical or
+ // 1-pixel wide lines
+ //
+ // save original direction and work with increasing x
+ //
+ SKC_RASTERIZE_PREDICATE const x_lt = (n0x <= n1x);
+ SKC_RASTERIZE_UINT const dx_xor = x_lt ? 0 : 0x80000000;
+
+ //
+ // save 1/dy
+ //
+ SKC_RASTERIZE_FLOAT const x_denom = native_recip(n1x - n0x);
+
+ //
+ // how many non-horizontal subpixel y-axis slivers are there?
+ //
+ SKC_RASTERIZE_FLOAT const x_min = floor(fmin(n0x,n1x) * SKC_SUBPIXEL_X_SCALE_DOWN);
+ SKC_RASTERIZE_FLOAT const x_max = ceil (fmax(n0x,n1x) * SKC_SUBPIXEL_X_SCALE_DOWN);
+ SKC_RASTERIZE_FLOAT const x_base = x_lt ? x_min : x_max;
+ SKC_RASTERIZE_FLOAT const x_segs = fmax(x_max - x_min,1.0f);
+
+ //
+ // inclusive subgroup scan of y_segs
+ //
+ SKC_RASTERIZE_FLOAT x_iss = skc_subgroup_scan_inclusive_add_float(x_segs);
+ SKC_RASTERIZE_FLOAT x_ess = x_iss - x_segs;
+ float x_rem = skc_subgroup_last_float(x_iss);
+
+ //
+ // if this is a horizontal line then tweak x_iss so "is_scratch_store" always fails
+ //
+ //if (x_segs == 0.0f)
+ // x_iss = 0.0f;
+
+ //
+ // these values don't matter on first iteration
+ //
+ SKC_RASTERIZE_FLOAT p1x_prev = 0;
+ SKC_RASTERIZE_FLOAT p1y_prev = 0;
+
+ //
+ // loop until done
+ //
+ while (x_rem > 0)
+ {
+ //
+ // distribute work across lanes
+ //
+ SKC_RASTERIZE_UINT const x_source = skc_scatter_scan_max(smem,x_iss,x_ess);
+
+ //
+ // get line at y_source line
+ //
+ SKC_RASTERIZE_FLOAT const o0x = skc_subgroup_shuffle(n0x,x_source);
+ SKC_RASTERIZE_FLOAT const o0y = skc_subgroup_shuffle(n0y,x_source);
+ SKC_RASTERIZE_FLOAT const o1x = skc_subgroup_shuffle(n1x,x_source);
+ SKC_RASTERIZE_FLOAT const o1y = skc_subgroup_shuffle(n1y,x_source);
+
+ //
+ // every lane will create a 1 pixel tall line "sliver"
+ //
+ // FIXME -- this gets expanded on SIMD
+ //
+ // if numerator == 1 then this is the first lane
+ // if numerator == s then this is the last lane
+ //
+ SKC_RASTERIZE_FLOAT const x_delta = skc_delta_offset() - skc_subgroup_shuffle(x_ess,x_source);
+ SKC_RASTERIZE_FLOAT const x_count = skc_subgroup_shuffle(x_segs,x_source);
+
+ SKC_RASTERIZE_PREDICATE const is_x_first = (x_delta == 1.0f);
+ SKC_RASTERIZE_PREDICATE const is_x_last = (x_delta >= x_count);
+
+ // toggle x_delta sign
+ SKC_RASTERIZE_FLOAT const x_offset = as_float((as_uint(x_delta) ^ intel_sub_group_shuffle(dx_xor,x_source)));
+
+ //
+ // calculate "right" line segment endpoint
+ //
+ SKC_RASTERIZE_FLOAT p1x = (x_offset + skc_subgroup_shuffle(x_base,x_source)) * SKC_SUBPIXEL_X_SCALE_UP;
+ SKC_RASTERIZE_FLOAT const p_t = (p1x - o0x) * skc_subgroup_shuffle(x_denom,x_source);
+ SKC_RASTERIZE_FLOAT p1y = round(SKC_LERP(o0y,o1y,p_t));
+
+ //
+ // override c1 if this is last point
+ //
+ p1x = select(p1x,o1x,is_x_last);
+ p1y = select(p1y,o1y,is_x_last);
+
+ //
+ // shuffle up "left" line segment endpoint
+ //
+ // NOTE: Intel's shuffle_up is unique with its elegant
+ // "previous" argument so don't get used to it
+ //
+ SKC_RASTERIZE_FLOAT p0x = skc_subgroup_shuffle_up_1(p1x_prev,p1x);
+ SKC_RASTERIZE_FLOAT p0y = skc_subgroup_shuffle_up_1(p1y_prev,p1y);
+
+ //
+ // override shuffle up if this is the first line segment
+ //
+ p0x = select(p0x,o0x,is_x_first);
+ p0y = select(p0y,o0y,is_x_first);
+
+ //
+ // save previous right endpoint
+ //
+ p1x_prev = p1x;
+ p1y_prev = p1y;
+
+ //
+ // decrement by subgroup size
+ //
+ x_iss -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ x_ess -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ x_rem -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+
+ //
+ // only non-horizontal subpixel lines are valid
+ //
+ SKC_RASTERIZE_PREDICATE is_active = (p0y != p1y);
+
+ //
+ // if no lanes are active then continue
+ //
+ // FIXME -- THIS SIMPLE SUB_GROUP_ANY TEST SIGNIFICANTLY
+ // IMPACTS PERFORMANCE (+12% ?)
+ //
+ // IT SHOULDN'T !!!
+ //
+#if 0
+ if (!skc_subgroup_any(is_active))
+ continue;
+#endif
+
+ //
+ // Option 1: use SLM for explicitly managed coalesced stores
+ //
+ // 1. which tile does this line belong?
+ // 2. hash tile coordinates
+ // 3. lookup hash
+ // 4. if tile matches then SLM append keys
+ // 5. if tile doesn't match
+ // a. flush
+ // b. create new TTSK_RYX
+ // c. obtain TTSB block from pool
+ // d. goto 3.
+ //
+
+ //
+ // Option 2: rely on L1/L2/L3 to mitigate non-coalesced stores
+ //
+ // 1. which tile does this line belong?
+ // 2. hash tile coordinates
+ // 3. lookup hash
+ // 4. if tile matches then GMEM append keys
+ // 5. if tile doesn't match
+ // a. flush (and invalidate empty elems)
+ // b. create new TTSK_RYX
+ // c. obtain TTSB block from pool
+ // d. goto 3.
+ //
+
+ //
+ // The virtual rasterization surface is very large and
+ // signed: +/- ~64K-256K, depending on the architecture.
+ //
+ // Rasters must be clipped to the virtual surface and,
+ // optionally, clipped even further on a per raster
+ // basis.
+ //
+
+ //
+ // Clip to the per-raster clip
+ //
+
+ /*
+
+ CLIP HERE
+
+ */
+
+ //
+ // Hash the tile coordinates
+ //
+ // This table lists nominal values for each architecture.
+ // We want to choose values that are naturally fit the
+ // "width" of the architecture.
+ //
+ // SIMD RANGE BITS MAX RANGE MAX BINS HASH BITS
+ // ---- ------- ---- --------- -------- ---------
+ // 4 [0, 4] 3 [0, 7] 10 mod(10) <-- SSE42, ?
+ // 8 [0, 8] 4 [0, 15] 8 3 <-- GEN*,AVX*
+ // 16 [0, 16] 5 [0, 31] 6 mod(6) <-- GEN*,?
+ // 32 [0, 32] 6 [0, 63] 5 mod(5) <-- CUDA,PowerVR,Adreno,GEN*
+ // 64 [0, 64] 7 [0,127] 4 2 <-- AMD Radeon
+ //
+ // NOTE: When possible, bias the hash toward using more y
+ // bits because of:
+ //
+ // 1. the 90 degree counter-clockwise rotation that we put
+ // in place to offset the render-time clockwise
+ // rotation
+ //
+ // 2. the likely presence of left-to-right or
+ // right-to-left glyphs.
+ //
+ // For power-of-two bins, the hash is easy.
+ //
+ // For non-power-of-two, we may want to either implement a
+ // fast mod (compiler should do this for us... hahahaha) or
+ // drop down to the next power-of-two.
+ //
+
+ //
+ // FIXME -- this snarl is not good -- can probably reduce
+ // some of the sign casting but some is there to vectorize a
+ // scalar
+ //
+ SKC_RASTERIZE_INT const z0y = SKC_CONVERT(SKC_RASTERIZE_INT)(p0y);
+ SKC_RASTERIZE_INT const z1y = SKC_CONVERT(SKC_RASTERIZE_INT)(p1y);
+
+ SKC_RASTERIZE_INT const z0x = SKC_CONVERT(SKC_RASTERIZE_INT)(p0x);
+ SKC_RASTERIZE_INT const z1x = SKC_CONVERT(SKC_RASTERIZE_INT)(p1x);
+
+ SKC_RASTERIZE_INT const min_y = min(z0y,z1y);
+ SKC_RASTERIZE_INT const max_y = max(z0y,z1y);
+
+ SKC_RASTERIZE_INT const tile_y = min_y >> SKC_SUBTILE_RESL_Y_LOG2;
+
+ SKC_RASTERIZE_UINT const ty = SKC_AS(SKC_RASTERIZE_UINT)(min_y) & SKC_SUBTILE_MASK_Y;
+ SKC_RASTERIZE_INT dy = SKC_AS(SKC_RASTERIZE_INT)(z1y - z0y);
+
+ //
+ // map [+1,+32] to [ 0,+31]
+ // map [-1,-32] to [-1,-32]
+ //
+ SKC_RASTERIZE_INT dys = (dy + (~dy >> 31)) << 26;
+
+ SKC_RASTERIZE_INT const min_x = min(z0x,z1x);
+ SKC_RASTERIZE_INT const max_x = max(z0x,z1x);
+ SKC_RASTERIZE_INT const tile_x = min_x >> SKC_SUBTILE_RESL_X_LOG2;
+
+ SKC_RASTERIZE_UINT const tx = SKC_AS(SKC_RASTERIZE_UINT)(min_x) & SKC_SUBTILE_MASK_X;
+ SKC_RASTERIZE_UINT const sx = SKC_AS(SKC_RASTERIZE_UINT)(max_x - min_x);
+
+ SKC_RASTERIZE_UINT const tts = dys | (ty << 16) | (sx << 10) | tx;
+
+ SKC_RASTERIZE_UINT const hash = (((SKC_AS(SKC_RASTERIZE_UINT)(tile_y) & SKC_RASTERIZE_TILE_HASH_Y_MASK) << SKC_RASTERIZE_TILE_HASH_X_BITS) |
+ (SKC_AS(SKC_RASTERIZE_UINT)(tile_x) & SKC_RASTERIZE_TILE_HASH_X_MASK));
+
+ SKC_RASTERIZE_UINT const yx = (((SKC_AS(SKC_RASTERIZE_UINT)(tile_y) & 0xFFF) << 12) | (SKC_AS(SKC_RASTERIZE_UINT)(tile_x) & 0xFFF));
+
+#if 0
+ printf("(%3u, %3u)\n",tile_y,tile_x);
+#endif
+
+#if 0
+ if (is_active)
+ printf("( %3u, %3u ) : [ %3u, %3u, %3d, %3d, %3u ]\n",tile_y,tile_x,ty,tx,dy,((int)dys)>>26,sx);
+#endif
+
+ //
+ // debug
+ //
+#if 0 // PRINTF_ENABLE
+
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (is_active C) \
+ printf("{ { %5d, %5d }, { %5d, %5d } (* %2u *) },\n",z0x C,z0y C,z1x C,z1y C,hash C);
+
+ SKC_RASTERIZE_VECTOR_EXPAND();
+#else
+ if (is_active)
+ printf("{ { %5d, %5d }, { %5d, %5d } } (* %2u *),\n",z0x,z0y,z1x,z1y,hash);
+#endif
+
+#endif
+ //
+ // flush all active lanes
+ //
+ while (true)
+ {
+ //
+ // either gather load or vector load+shuffle the yx keys
+ //
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ SKC_RASTERIZE_BIN const yx_bin = smem->bin.vN.yx;
+ SKC_RASTERIZE_UINT const yx_cur = shuffle(yx_bin,hash);
+#else
+ SKC_RASTERIZE_UINT const yx_cur = smem->bin.aN.yx[hash];
+#endif
+
+ //
+ // does yx for lane match yx for hash?
+ //
+ SKC_RASTERIZE_UINT const active_yx = is_active ? yx : SKC_RASTERIZE_YX_INVALID;
+ SKC_RASTERIZE_PREDICATE const is_match = (yx_cur == active_yx);
+
+ //
+ // OpenCL spec: "When casting a bool to a vector integer
+ // data type, the vector components will be set to -1
+ // (i.e. all bits set) if the vector bool value is true
+ // and 0 otherwise.
+ //
+#if ( SKC_RASTERIZE_VECTOR_SIZE_LOG2 == 0 )
+ SKC_RASTERIZE_UINT const h_match = (SKC_RASTERIZE_UINT)is_match;
+#else
+ SKC_RASTERIZE_UINT const h_match = abs(is_match); // {-1,0} -> {+1,0}
+#endif
+ //
+ // how many new elements for each matching hash bin?
+ //
+ SKC_RASTERIZE_UINT const h_shl = hash * SKC_RASTERIZE_TILE_HASH_BIN_BITS;
+ SKC_RASTERIZE_UINT const h = h_match << h_shl;
+
+ //
+ // prefix sum all of the bins in parallel
+ //
+ SKC_RASTERIZE_UINT const h_iss = skc_subgroup_scan_inclusive_add_uint(h);
+ SKC_RASTERIZE_UINT const h_total = skc_subgroup_last_uint(h_iss);
+
+ //
+ // current bin counts
+ //
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ SKC_RASTERIZE_BIN const count_bin = smem->bin.vN.count;
+ SKC_RASTERIZE_UINT const count_cur = shuffle(count_bin,hash);
+#else
+ SKC_RASTERIZE_UINT const count_cur = smem->bin.aN.count[hash];
+#endif
+
+ //
+ // calculate where each cache-hit and in-bounds tts should be stored
+ //
+ SKC_RASTERIZE_UINT const ttsb_index = (h_iss >> h_shl & SKC_RASTERIZE_TILE_HASH_BIN_MASK) + count_cur - 1;
+ SKC_RASTERIZE_UINT const count_new = (h_total >> h_shl & SKC_RASTERIZE_TILE_HASH_BIN_MASK) + count_cur;
+
+ //
+ // which lanes can append to a matching bin?
+ //
+ SKC_RASTERIZE_PREDICATE const is_append = is_match && (ttsb_index < SKC_DEVICE_SUBBLOCK_WORDS);
+
+ //
+ // scatter append tts elements to bin blocks
+ //
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1)
+ //
+ // SIMD
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (is_append C) \
+ { \
+ smem->bin.aN.ttsb [hash C][ttsb_index C] = tts C; \
+ smem->bin.aN.count[hash C] = count_new C; \
+ }
+
+ SKC_RASTERIZE_VECTOR_EXPAND();
+#else
+ //
+ // SIMT
+ //
+ if (is_append)
+ {
+ smem->bin.aN.ttsb [hash][ttsb_index] = tts;
+ smem->bin.aN.count[hash] = count_new; // it's ok if this is > SKC_DEVICE_SUBBLOCK_WORDS
+ }
+#endif
+ //
+ // try to keep predicate updates SIMD-friendly and
+ // outside of predicated code paths -- this is not
+ // always how we would normally do things on SIMT but
+ // either approach is acceptable
+ //
+
+ //
+ // mask off lanes/components that successfully appended
+ //
+ is_active = is_active && !is_append;
+
+ //
+ // are there any active lanes left?
+ //
+ if (!skc_subgroup_any(is_active))
+ break;
+
+ //
+ // There are active lanes that couldn't be appended to a
+ // bin because their hashes collided with the bin's
+ // current ryx key then those bins must be ejected.
+ //
+ // Note that we do not eject "full" bins because lazily
+ // waiting for a collision results in simpler code.
+ //
+ skc_flush(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ subblocks,
+ blocks,
+ blocks_next,
+ sk_v,
+ sk_v_next,
+ sk_extent,
+ smem,
+ hash,
+ yx,
+ is_active);
+ }
+ }
+ }
+}
+
+//
+// INITIALIZE SMEM
+//
+// Note that SIMD/SIMT have nearly the same syntax.
+//
+static
+void
+skc_smem_init(__local struct skc_subgroup_smem volatile * const smem)
+{
+ //
+ // initialize smem bins
+ //
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+ smem->bin.vN.yx = ( SKC_RASTERIZE_YX_INIT );
+ smem->bin.vN.count = ( 0 );
+#else
+ //
+ // SIMT
+ //
+ int idx = skc_subgroup_lane();
+
+#if ( SKC_RASTERIZE_TILE_HASH_BIN_COUNT < SKC_RASTERIZE_ELEMS_PER_SUBGROUP )
+ if (idx < SKC_RASTERIZE_TILE_HASH_BIN_COUNT)
+#elif ( SKC_RASTERIZE_TILE_HASH_BIN_COUNT > SKC_RASTERIZE_ELEMS_PER_SUBGROUP )
+ for (; idx<SKC_RASTERIZE_TILE_HASH_BIN_COUNT; idx+=SKC_RASTERIZE_SUBGROUP_SIZE)
+#endif
+ {
+ smem->bin.aN.yx [idx] = ( SKC_RASTERIZE_YX_INIT );
+ smem->bin.aN.count[idx] = ( 0 );
+ }
+#endif
+}
+
+//
+// RASTERIZE CUBIC KERNEL
+//
+
+static
+void
+skc_rasterize_cubics(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __local struct skc_subgroup_smem volatile * const smem,
+
+ skc_uint * const nodeword,
+ skc_block_id_t * const id,
+
+ union skc_transform const * const tv,
+ union skc_path_clip const * const cv,
+ skc_uint const cohort)
+{
+ //
+ // the initial segment idx and segments-per-block constant determine
+ // how many block ids will need to be loaded
+ //
+ SKC_RASTERIZE_FLOAT const c0x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c0y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c1x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c1y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c2x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c2y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c3x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c3y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ //
+ // apply transform
+ //
+ // note that we only care if the end points are rounded to subpixel precision
+ //
+ // FIXME -- transformation is currently affine-only support perspective later
+ //
+ // the affine transformation requires 8 FMA + 2 ROUND operations
+ //
+ SKC_RASTERIZE_FLOAT const b0x = round(c0x * tv->sx + c0y * tv->shx + tv->tx);
+ SKC_RASTERIZE_FLOAT const b0y = round(c0x * tv->shy + c0y * tv->sy + tv->ty);
+
+ SKC_RASTERIZE_FLOAT const t1x = c1x * tv->sx + c1y * tv->shx + tv->tx;
+ SKC_RASTERIZE_FLOAT const t1y = c1x * tv->shy + c1y * tv->sy + tv->ty;
+
+ SKC_RASTERIZE_FLOAT const t2x = c2x * tv->sx + c2y * tv->shx + tv->tx;
+ SKC_RASTERIZE_FLOAT const t2y = c2x * tv->shy + c2y * tv->sy + tv->ty;
+
+ SKC_RASTERIZE_FLOAT const t3x = round(c3x * tv->sx + c3y * tv->shx + tv->tx);
+ SKC_RASTERIZE_FLOAT const t3y = round(c3x * tv->shy + c3y * tv->sy + tv->ty);
+
+ //
+ //
+ //
+#if PRINTF_ENABLE
+
+#if ( SKC_RASTERIZE_SUBGROUP_SIZE == 1 )
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ printf("{ { %.02f, %.02f }, { %.02f, %.02f }," \
+ " { %.02f, %.02f }, { %.02f, %.02f } },\n", \
+ b0x C,b0y C,t1x C,t1y C, \
+ t2x C,t2y C,t3x C,t3y C);
+
+ SKC_RASTERIZE_VECTOR_EXPAND();
+
+#else
+
+ printf("{ { %.02f, %.02f }, { %.02f, %.02f }, { %.02f, %.02f }, { %.02f, %.02f } },\n",
+ b0x,b0y,t1x,t1y,t2x,t2y,t3x,t3y);
+
+#endif
+
+#endif
+
+ //
+ // OLD APPROACH
+ // ------------
+ //
+ // The Spinel CUDA rasterizer was significantly more complex and
+ // performed a few different tasks that are probably best kept
+ // separate.
+ //
+ // The Spinel rasterizer Bezier held 4-element x and y coordinates
+ // in adjacent lanes. This simplified intermingling of single lane
+ // 4-coordinate line segments with two-lane cubic Beziers.
+ //
+ // After transformation of the input segments, the Spinel rasterizer
+ // would test cubics for flatness and, if flat, collapse the
+ // adjacent lanes into a single line lane and an empty lane.
+ //
+ // Any lines would then be appended to a line queue.
+ //
+ // Any cubics would then be subdivided.
+ //
+ // The reclassification process would be repeated.
+ //
+ // NEW APPROACH
+ // ------------
+ //
+ // Assume we're only working with cubics in this kernel.
+ //
+ // Optimization: if the line segment is a special case -- a cusp,
+ // has 1+ inflections, or a loop -- it might be beneficial to
+ // subdivide the control cage 1+ times in order to separate the
+ // flatter segments the high-velocity region(s).
+ //
+ // This means we want to split using [a,b] formulation to _directly_
+ // subdivide producing a new control cage.
+ //
+ // Wang's Formula is still useful even if we subdivide once or twice
+ // as it's so cheap that it might give some useful hints about where
+ // the high-velocity sections of curve reside.
+ //
+ // But it seems like using Wang's and directly flattening to line
+ // segments without any subdivision is good enough for the limited
+ // set of test cases that I've tried.
+ //
+ // So... use Wang's Formula to estimate how many line segment are
+ // required to properly flatten the cubics.
+ //
+ // Then use inclusive/exclusive scans to put all the lanes to work:
+ //
+ // 1. segmenting cubics to line segments
+ //
+ // 2. slivering line segments into 1-pixel high line segments
+ //
+ // 3. slivering 1-pixel high line segments into 1-pixel wide line
+ // segments
+ //
+ // MORE BACKGROUND ON NEW APPROACH
+ // -------------------------------
+ //
+ // Two options for handling line segments:
+ //
+ // 1. append the line segments onto an SLM array until enough
+ // work has been accrued (Spinel does this)
+ //
+ // 2. immediately sliver the potentially multi-pixel line
+ // segments into subpixel lines
+ //
+ // The advantage of (1) is that it guarantees the slivering
+ // process will, on average, always be emitting a full subgroup
+ // of subpixel lines.
+ //
+ // The advantage of (2) is that it reduces code complexity and
+ // leaves more room for SLM tile bins. The difference between Spinel
+ // and Skia Compute is that Wang's Formula guarantees there will be
+ // a full subgroup of multi-pixel lines unless this is the final
+ // iteration of the warp of multi-pixel lines.
+ //
+ // Note that wider GPU architectures might benefit from (1) and
+ // other work accumulation strategies because it will minimize
+ // partial warp workloads in the final iteration of each stage. It
+ // also minimizes the sunk cost of the uniform control logic steps.
+ //
+ // So let's implement (2) for now...
+ //
+
+ //
+ // And... begin!
+ //
+ // Estimate how many line segments are in quad/cubic curve.
+ //
+ // Wang's Formula will return zero if the control points are
+ // collinear but we bump it up to 1.0f.
+ //
+ SKC_RASTERIZE_FLOAT const s_segs = skc_wangs_formula_cubic(b0x,b0y,t1x,t1y,t2x,t2y,t3x,t3y);
+
+ //
+ // if there are free registers then precalculate the reciprocal for
+ // each estimated segments since it will never change
+ //
+ SKC_RASTERIZE_FLOAT const s_denom = native_recip(s_segs);
+
+
+ //
+ // inclusive add scan of estimated line segments
+ // exclusive add scan of estimated line segments
+ // total number of estimated line segments
+ //
+ SKC_RASTERIZE_FLOAT s_iss = skc_subgroup_scan_inclusive_add_float(s_segs);
+ SKC_RASTERIZE_FLOAT s_ess = s_iss - s_segs;
+ float s_rem = skc_subgroup_last_float(s_iss); // scalar
+
+ //
+ // Precompute cubic polynomial coefficients from transformed control
+ // cage so we can shuffle them in on each iteration of the outer
+ // loop and then evaluate the polynomial in Horner form.
+ //
+ // | 1 0 0 0 | | c0 |
+ // | | | |
+ // | -3 3 0 0 | | c1 |
+ // B(t) = [ 1 t^1 t^2 t^3 ] | | | |
+ // | 3 -6 3 0 | | c2 |
+ // | | | |
+ // | -1 3 -3 1 | | c3 |
+ //
+ //
+ SKC_RASTERIZE_FLOAT const b1x = mad(-3.0f,b0x,3.0f*t1x); // 2 - 1 MAD + MUL
+ SKC_RASTERIZE_FLOAT const b1y = mad(-3.0f,b0y,3.0f*t1y); // 2 - 1 MAD + MUL
+
+ SKC_RASTERIZE_FLOAT const b2x = mad(3.0f,b0x,mad(-6.0f,t1x,3.0f*t2x)); // 3 - 2 MAD + MUL
+ SKC_RASTERIZE_FLOAT const b2y = mad(3.0f,b0y,mad(-6.0f,t1y,3.0f*t2y)); // 3 - 2 MAD + MUL
+
+ SKC_RASTERIZE_FLOAT const b3x = mad(3.0f,t1x,mad(-3.0f,t2x,t3x)) - b0x; // 3 - 2 MAD + SUB
+ SKC_RASTERIZE_FLOAT const b3y = mad(3.0f,t1y,mad(-3.0f,t2y,t3y)) - b0y; // 3 - 2 MAD + SUB
+
+ //
+ // these values don't matter on the first iteration
+ //
+ SKC_RASTERIZE_FLOAT l1x_prev = 0;
+ SKC_RASTERIZE_FLOAT l1y_prev = 0;
+
+ //
+ // allocate and init in-register TTSK keys
+ //
+ skc_uint sk_v_next = 0;
+ skc_ttsk_v_t sk_v;
+
+ sk_v.hi = cohort;
+
+ //
+ // initialize smem
+ //
+ skc_smem_init(smem);
+
+ //
+ // initialize blocks / subblocks
+ //
+ skc_block_id_v_t blocks;
+ skc_uint blocks_next = SKC_RASTERIZE_BLOCK_ID_V_SIZE;
+
+#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
+ skc_block_id_t subblocks = 0;
+#endif
+
+ //
+ // loop until done
+ //
+ while (s_rem > 0)
+ {
+ //
+ // distribute work across lanes
+ //
+ SKC_RASTERIZE_UINT const s_source = skc_scatter_scan_max(smem,s_iss,s_ess);
+
+ //
+ // every lane has a fraction to work off of
+ //
+ // FIXME -- this gets expanded on SIMD
+ //
+ // if delta == 1 then this is the first lane
+ // if count == s_segs then this is the last lane
+ //
+ SKC_RASTERIZE_FLOAT const s_delta = skc_delta_offset() - skc_subgroup_shuffle(s_ess,s_source);
+ SKC_RASTERIZE_FLOAT const s_count = skc_subgroup_shuffle(s_segs,s_source);
+
+ SKC_RASTERIZE_PREDICATE const is_s_first = (s_delta == 1.0f);
+ SKC_RASTERIZE_PREDICATE const is_s_last = (s_delta >= s_count);
+
+ //
+ // init parametric t
+ //
+ SKC_RASTERIZE_FLOAT s_t = s_delta * skc_subgroup_shuffle(s_denom,s_source); // faster than native_recip(s_count)?
+
+ //
+ // if last then override to a hard 1.0f
+ //
+ s_t = is_s_last ? 1.0f : s_t;
+
+ //
+ // decrement by subgroup size
+ //
+ s_iss -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ s_ess -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ s_rem -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+
+ //
+ // now every lane knows what to do and the following lines will
+ // pump out up to SUBGROUP_SIZE line segments
+ //
+ // obtain the src vertices through shared or via a shuffle
+ //
+
+ //
+ // shuffle in the polynomial coefficients their source lane
+ //
+ SKC_RASTERIZE_FLOAT const s0x = skc_subgroup_shuffle(b0x,s_source);
+ SKC_RASTERIZE_FLOAT const s0y = skc_subgroup_shuffle(b0y,s_source);
+
+ SKC_RASTERIZE_FLOAT const s1x = skc_subgroup_shuffle(b1x,s_source);
+ SKC_RASTERIZE_FLOAT const s1y = skc_subgroup_shuffle(b1y,s_source);
+
+ SKC_RASTERIZE_FLOAT const s2x = skc_subgroup_shuffle(b2x,s_source);
+ SKC_RASTERIZE_FLOAT const s2y = skc_subgroup_shuffle(b2y,s_source);
+
+ SKC_RASTERIZE_FLOAT const s3x = skc_subgroup_shuffle(b3x,s_source);
+ SKC_RASTERIZE_FLOAT const s3y = skc_subgroup_shuffle(b3y,s_source);
+
+ //
+ // calculate "right" line segment endpoint using Horner form
+ //
+ SKC_RASTERIZE_FLOAT l1x = round(mad(mad(mad(s3x,s_t,s2x),s_t,s1x),s_t,s0x)); // 3 MAD + ROUND
+ SKC_RASTERIZE_FLOAT l1y = round(mad(mad(mad(s3y,s_t,s2y),s_t,s1y),s_t,s0y)); // 3 MAD + ROUND
+
+ //
+ // shuffle up "left" line segment endpoint
+ //
+ // NOTE: Intel's shuffle_up is unique with its elegant
+ // "previous" argument so don't get used to it
+ //
+ SKC_RASTERIZE_FLOAT l0x = skc_subgroup_shuffle_up_1(l1x_prev,l1x);
+ SKC_RASTERIZE_FLOAT l0y = skc_subgroup_shuffle_up_1(l1y_prev,l1y);
+
+ //
+ // save previous right endpoint
+ //
+ l1x_prev = l1x;
+ l1y_prev = l1y;
+
+ //
+ // override shuffle up if this is the first line segment
+ //
+ l0x = select(l0x,s0x,is_s_first);
+ l0y = select(l0y,s0y,is_s_first);
+
+ //
+ // sliver lines
+ //
+ skc_sliver(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ &subblocks,
+ &blocks,
+ &blocks_next,
+ &sk_v,
+ &sk_v_next,
+ sk_extent,
+ smem,
+ l0x,l0y,l1x,l1y);
+ }
+
+ //
+ // - flush work-in-progress blocks
+ // - return unused block ids
+ //
+ skc_finalize(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ &blocks,
+ blocks_next,
+ &sk_v,
+ sk_v_next,
+ sk_extent,
+ smem);
+}
+
+//
+// RASTERIZE QUAD KERNEL
+//
+
+static
+void
+skc_rasterize_quads(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __local struct skc_subgroup_smem volatile * const smem,
+
+ skc_uint * const nodeword,
+ skc_block_id_t * const id,
+
+ union skc_transform const * const tv,
+ union skc_path_clip const * const cv,
+ skc_uint const cohort)
+{
+ //
+ // the initial segment idx and segments-per-block constant determine
+ // how many block ids will need to be loaded
+ //
+ SKC_RASTERIZE_FLOAT const c0x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c0y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c1x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c1y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c2x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c2y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ //
+ // apply transform
+ //
+ // note that we only care if the end points are rounded to subpixel precision
+ //
+ // FIXME -- transformation is currently affine-only support perspective later
+ //
+ // the affine transformation requires 8 FMA + 2 ROUND operations
+ //
+ SKC_RASTERIZE_FLOAT const b0x = round(c0x * tv->sx + c0y * tv->shx + tv->tx);
+ SKC_RASTERIZE_FLOAT const b0y = round(c0x * tv->shy + c0y * tv->sy + tv->ty);
+
+ SKC_RASTERIZE_FLOAT const t1x = c1x * tv->sx + c1y * tv->shx + tv->tx;
+ SKC_RASTERIZE_FLOAT const t1y = c1x * tv->shy + c1y * tv->sy + tv->ty;
+
+ SKC_RASTERIZE_FLOAT const t2x = round(c2x * tv->sx + c2y * tv->shx + tv->tx);
+ SKC_RASTERIZE_FLOAT const t2y = round(c2x * tv->shy + c2y * tv->sy + tv->ty);
+
+ //
+ // Estimate how many line segments are in quad/cubic curve.
+ //
+ // Wang's Formula will return zero if the control points are
+ // collinear but we bump it up to 1.0f.
+ //
+ SKC_RASTERIZE_FLOAT const s_segs = skc_wangs_formula_quadratic(b0x,b0y,t1x,t1y,t2x,t2y);
+
+ //
+ // if there are free registers then precalculate the reciprocal for
+ // each estimated segments since it will never change
+ //
+ SKC_RASTERIZE_FLOAT const s_denom = native_recip(s_segs);
+
+
+ //
+ // inclusive add scan of estimated line segments
+ // exclusive add scan of estimated line segments
+ // total number of estimated line segments
+ //
+ SKC_RASTERIZE_FLOAT s_iss = skc_subgroup_scan_inclusive_add_float(s_segs);
+ SKC_RASTERIZE_FLOAT s_ess = s_iss - s_segs;
+ float s_rem = skc_subgroup_last_float(s_iss); // scalar
+
+ //
+ // Precompute quadratic polynomial coefficients from control cage so
+ // we can shuffle them in on each iteration of the outer loop and
+ // then evaluate the polynomial in Horner form.
+ //
+
+ // | 1 0 0 | | c0 |
+ // | | | |
+ // B(t) = [ 1 t^1 t^2 ] | -2 2 0 | | c1 |
+ // | | | |
+ // | 1 -2 1 | | c2 |
+ //
+ //
+ SKC_RASTERIZE_FLOAT const b1x = mad(-2.0f,b0x,2.0f*t1x); // 2 - 1 MAD + MUL
+ SKC_RASTERIZE_FLOAT const b1y = mad(-2.0f,b0y,2.0f*t1y); // 2 - 1 MAD + MUL
+
+ SKC_RASTERIZE_FLOAT const b2x = mad(-2.0f,t1x,b0x+t2x); // 2 - 1 MAD + ADD
+ SKC_RASTERIZE_FLOAT const b2y = mad(-2.0f,t1y,b0y+t2y); // 2 - 1 MAD + ADD
+
+ //
+ // these values don't matter on the first iteration
+ //
+ SKC_RASTERIZE_FLOAT l1x_prev = 0;
+ SKC_RASTERIZE_FLOAT l1y_prev = 0;
+
+ //
+ // allocate and init in-register TTSK keys
+ //
+ skc_uint sk_v_next = 0;
+ skc_ttsk_v_t sk_v;
+
+ sk_v.hi = cohort;
+
+ //
+ // initialize smem
+ //
+ skc_smem_init(smem);
+
+ //
+ // initialize blocks / subblocks
+ //
+ skc_block_id_v_t blocks;
+ skc_uint blocks_next = SKC_RASTERIZE_BLOCK_ID_V_SIZE;
+
+#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
+ skc_block_id_t subblocks = 0;
+#endif
+
+ //
+ // loop until done
+ //
+ while (s_rem > 0)
+ {
+ //
+ // distribute work across lanes
+ //
+ SKC_RASTERIZE_UINT const s_source = skc_scatter_scan_max(smem,s_iss,s_ess);
+
+ //
+ // every lane has a fraction to work off of
+ //
+ // FIXME -- this gets expanded on SIMD
+ //
+ // if delta == 1 then this is the first lane
+ // if count == s_segs then this is the last lane
+ //
+ SKC_RASTERIZE_FLOAT const s_delta = skc_delta_offset() - skc_subgroup_shuffle(s_ess,s_source);
+ SKC_RASTERIZE_FLOAT const s_count = skc_subgroup_shuffle(s_segs,s_source);
+
+ SKC_RASTERIZE_PREDICATE const is_s_first = (s_delta == 1.0f);
+ SKC_RASTERIZE_PREDICATE const is_s_last = (s_delta >= s_count);
+
+ //
+ // init parametric t
+ //
+ SKC_RASTERIZE_FLOAT s_t = s_delta * skc_subgroup_shuffle(s_denom,s_source); // faster than native_recip(s_count)?
+
+ //
+ // if last then override to a hard 1.0f
+ //
+ s_t = is_s_last ? 1.0f : s_t;
+
+ //
+ // decrement by subgroup size
+ //
+ s_iss -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ s_ess -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+ s_rem -= SKC_RASTERIZE_ELEMS_PER_SUBGROUP;
+
+ //
+ // now every lane knows what to do and the following lines will
+ // pump out up to SUBGROUP_SIZE line segments
+ //
+ // obtain the src vertices through shared or via a shuffle
+ //
+
+ //
+ // shuffle in the polynomial coefficients their source lane
+ //
+ SKC_RASTERIZE_FLOAT const s0x = skc_subgroup_shuffle(b0x,s_source);
+ SKC_RASTERIZE_FLOAT const s0y = skc_subgroup_shuffle(b0y,s_source);
+
+ SKC_RASTERIZE_FLOAT const s1x = skc_subgroup_shuffle(b1x,s_source);
+ SKC_RASTERIZE_FLOAT const s1y = skc_subgroup_shuffle(b1y,s_source);
+
+ SKC_RASTERIZE_FLOAT const s2x = skc_subgroup_shuffle(b2x,s_source);
+ SKC_RASTERIZE_FLOAT const s2y = skc_subgroup_shuffle(b2y,s_source);
+
+ //
+ // calculate "right" line segment endpoint using Horner form
+ //
+ SKC_RASTERIZE_FLOAT l1x = round(mad(mad(s2x,s_t,s1x),s_t,s0x)); // 2 MAD + ROUND
+ SKC_RASTERIZE_FLOAT l1y = round(mad(mad(s2y,s_t,s1y),s_t,s0y)); // 2 MAD + ROUND
+
+ //
+ // shuffle up "left" line segment endpoint
+ //
+ // NOTE: Intel's shuffle_up is unique with its elegant
+ // "previous" argument so don't get used to it
+ //
+ SKC_RASTERIZE_FLOAT l0x = skc_subgroup_shuffle_up_1(l1x_prev,l1x);
+ SKC_RASTERIZE_FLOAT l0y = skc_subgroup_shuffle_up_1(l1y_prev,l1y);
+
+ //
+ // save previous right endpoint
+ //
+ l1x_prev = l1x;
+ l1y_prev = l1y;
+
+ //
+ // override shuffle up if this is the first line segment
+ //
+ l0x = select(l0x,s0x,is_s_first);
+ l0y = select(l0y,s0y,is_s_first);
+
+ //
+ // sliver lines
+ //
+ skc_sliver(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ &subblocks,
+ &blocks,
+ &blocks_next,
+ &sk_v,
+ &sk_v_next,
+ sk_extent,
+ smem,
+ l0x,l0y,l1x,l1y);
+ }
+
+ //
+ // - flush work-in-progress blocks
+ // - return unused block ids
+ //
+ skc_finalize(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ &blocks,
+ blocks_next,
+ &sk_v,
+ sk_v_next,
+ sk_extent,
+ smem);
+}
+
+//
+// RASTERIZE LINE KERNEL
+//
+
+static
+void
+skc_rasterize_lines(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __local struct skc_subgroup_smem volatile * const smem,
+
+ skc_uint * const nodeword,
+ skc_block_id_t * const id,
+
+ union skc_transform const * const tv,
+ union skc_path_clip const * const cv,
+ skc_uint const cohort)
+{
+ //
+ // the initial segment idx and segments-per-block constant determine
+ // how many block ids will need to be loaded
+ //
+ SKC_RASTERIZE_FLOAT const c0x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c0y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c1x = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+ skc_segment_next(bp_elems,nodeword,id);
+
+ SKC_RASTERIZE_FLOAT const c1y = bp_elems[SKC_RASTERIZE_SEGMENT(*id)].coord;
+
+#if 0
+ // printf("%5u : { { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",(skc_uint)get_global_id(0),c0x,c0y,c1x,c1y);
+ printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",c0x,c0y,c1x,c1y);
+#endif
+
+ //
+ // apply transform
+ //
+ // note that we only care if the end points are rounded to subpixel precision
+ //
+ // FIXME -- transformation is currently affine-only
+ // FIXME -- support perspective later
+ //
+ // the affine transformation requires 8 FMA + 4 ROUND operations
+ //
+ SKC_RASTERIZE_FLOAT const l0x = round(c0x * tv->sx + c0y * tv->shx + tv->tx);
+ SKC_RASTERIZE_FLOAT const l0y = round(c0x * tv->shy + c0y * tv->sy + tv->ty);
+
+ SKC_RASTERIZE_FLOAT const l1x = round(c1x * tv->sx + c1y * tv->shx + tv->tx);
+ SKC_RASTERIZE_FLOAT const l1y = round(c1x * tv->shy + c1y * tv->sy + tv->ty);
+
+#if 0
+ printf("{ { %5.0f, %5.0f }, { %5.0f, %5.0f } },\n",l0x,l0y,l1x,l1y);
+#endif
+
+ //
+ // allocate and init in-register TTSK keys
+ //
+ skc_uint sk_v_next = 0;
+ skc_ttsk_v_t sk_v;
+
+ sk_v.hi = cohort;
+
+ //
+ // initialize smem
+ //
+ skc_smem_init(smem);
+
+ //
+ // initialize blocks / subblocks
+ //
+ skc_block_id_v_t blocks;
+ skc_uint blocks_next = SKC_RASTERIZE_BLOCK_ID_V_SIZE;
+
+#if SKC_DEVICE_BLOCK_WORDS_LOG2 > SKC_DEVICE_SUBBLOCK_WORDS_LOG2
+ skc_block_id_t subblocks = 0;
+#endif
+
+ //
+ // sliver lines
+ //
+ skc_sliver(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ &subblocks,
+ &blocks,
+ &blocks_next,
+ &sk_v,
+ &sk_v_next,
+ sk_extent,
+ smem,
+ l0x,l0y,l1x,l1y);
+
+ //
+ // - flush work-in-progress blocks
+ // - return unused block ids
+ //
+ skc_finalize(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ &blocks,
+ blocks_next,
+ &sk_v,
+ sk_v_next,
+ sk_extent,
+ smem);
+}
+
+//
+//
+//
+
+__kernel
+SKC_RASTERIZE_KERNEL_ATTRIBS
+void
+skc_kernel_rasterize_all(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __global float8 const * const transforms, // FIXME -- __constant
+ __global float4 const * const clips, // FIXME -- __constant
+ __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
+ skc_uint const count)
+{
+ //
+ // declare shared memory block
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ __local struct skc_subgroup_smem volatile smem[1];
+#else
+ __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
+ __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
+#endif
+
+ //
+ // this is a subgroup/warp-centric kernel
+ //
+ // which subgroup in the grid is this?
+ //
+ // TAKE NOTE: the Intel GEN compiler appears to be recognizing
+ // get_group_id(0) as a uniform but the alternative calculation used
+ // when there are multiple subgroups per workgroup is not
+ // cooperating and driving spillage elsewhere.
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ uint const cmd_idx = get_group_id(0);
+#else
+ uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
+#endif
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("+cmd_idx = %u\n",cmd_idx);
+#endif
+
+ //
+ // if worksgroups are multi-subgroup then there may be excess
+ // subgroups in the final workgroup
+ //
+ if (cmd_idx >= count)
+ return;
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("-cmd_idx = %u\n",cmd_idx);
+#endif
+
+ //
+ // load a single command for this subgroup
+ //
+ union skc_cmd_rasterize const cmd = cmds[cmd_idx];
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("[ %u ]< %u, %u, %u, %u >\n",
+ cmd_idx,
+ cmd.nodeword,
+ SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd),
+ SKC_CMD_RASTERIZE_GET_CLIP(cmd),
+ SKC_CMD_RASTERIZE_GET_COHORT(cmd));
+#endif
+
+ //
+ // get first block node command word and its subblock
+ //
+ skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
+ skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
+ skc_block_id_tag tag = SKC_TAGGED_BLOCK_ID_GET_TAG(tag_id);
+ skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
+
+ //
+ // load transform -- uniform across subgroup
+ //
+ // v8: { sx shx tx shy sy ty w0 w1 }
+ //
+ // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
+ //
+ // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
+ //
+ // Coordinates are scaled to subpixel resolution. All that matters
+ // is that continuity is maintained between end path element
+ // endpoints.
+ //
+ // It's the responsibility of the host to ensure that the transforms
+ // are properly scaled either via intitializing a transform stack
+ // with the subpixel resolution scaled identity or scaling the
+ // transform before its loaded by a rasterization grid.
+ //
+ // FIXME -- horizontal load might be better than this broadcast load
+ //
+ union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
+ union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
+ skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
+
+ switch (tag)
+ {
+ case SKC_BLOCK_ID_TAG_PATH_LINE:
+ skc_rasterize_lines(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ sk_extent,
+ smem,
+ &nodeword,&id,
+ &tv,&cv,cohort);
+ break;
+
+ case SKC_BLOCK_ID_TAG_PATH_QUAD:
+ skc_rasterize_quads(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ sk_extent,
+ smem,
+ &nodeword,&id,
+ &tv,&cv,cohort);
+ break;
+
+ case SKC_BLOCK_ID_TAG_PATH_CUBIC:
+ skc_rasterize_cubics(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ sk_extent,
+ smem,
+ &nodeword,&id,
+ &tv,&cv,cohort);
+ break;
+
+ case SKC_BLOCK_ID_TAG_PATH_RAT_QUAD:
+ break;
+ case SKC_BLOCK_ID_TAG_PATH_RAT_CUBIC:
+ break;
+
+ default:
+ break;
+ }
+}
+
+//
+//
+//
+
+__kernel
+SKC_RASTERIZE_KERNEL_ATTRIBS
+void
+skc_kernel_rasterize_lines(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __global float8 const * const transforms, // FIXME -- __constant
+ __global float4 const * const clips, // FIXME -- __constant
+ __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
+ skc_uint const count)
+{
+ //
+ // declare shared memory block
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ __local struct skc_subgroup_smem volatile smem[1];
+#else
+ __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
+ __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
+#endif
+
+ //
+ // this is a subgroup/warp-centric kernel
+ //
+ // which subgroup in the grid is this?
+ //
+ // TAKE NOTE: the Intel GEN compiler appears to be recognizing
+ // get_group_id(0) as a uniform but the alternative calculation used
+ // when there are multiple subgroups per workgroup is not
+ // cooperating and driving spillage elsewhere.
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ uint const cmd_idx = get_group_id(0);
+#else
+ uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
+#endif
+
+ //
+ // if worksgroups are multi-subgroup then there may be excess
+ // subgroups in the final workgroup
+ //
+ if (cmd_idx >= count)
+ return;
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("cmd_idx = %u\n",cmd_idx);
+#endif
+
+ //
+ // load a single command for this subgroup
+ //
+ union skc_cmd_rasterize const cmd = cmds[cmd_idx];
+
+ //
+ // get first block node command word and its subblock
+ //
+ skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
+ skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
+ skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
+
+ //
+ // load transform -- uniform across subgroup
+ //
+ // v8: { sx shx tx shy sy ty w0 w1 }
+ //
+ // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
+ //
+ // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
+ //
+ // Coordinates are scaled to subpixel resolution. All that matters
+ // is that continuity is maintained between end path element
+ // endpoints.
+ //
+ // It's the responsibility of the host to ensure that the transforms
+ // are properly scaled either via intitializing a transform stack
+ // with the subpixel resolution scaled identity or scaling the
+ // transform before its loaded by a rasterization grid.
+ //
+ // FIXME -- horizontal load might be better than this broadcast load
+ //
+ union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
+ union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
+ skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
+
+ skc_rasterize_lines(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ sk_extent,
+ smem,
+ &nodeword,&id,
+ &tv,&cv,cohort);
+}
+
+//
+//
+//
+
+//
+//
+//
+
+__kernel
+SKC_RASTERIZE_KERNEL_ATTRIBS
+void
+skc_kernel_rasterize_quads(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __global float8 const * const transforms, // FIXME -- __constant
+ __global float4 const * const clips, // FIXME -- __constant
+ __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
+ skc_uint const count)
+{
+ //
+ // declare shared memory block
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ __local struct skc_subgroup_smem volatile smem[1];
+#else
+ __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
+ __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
+#endif
+
+ //
+ // this is a subgroup/warp-centric kernel
+ //
+ // which subgroup in the grid is this?
+ //
+ // TAKE NOTE: the Intel GEN compiler appears to be recognizing
+ // get_group_id(0) as a uniform but the alternative calculation used
+ // when there are multiple subgroups per workgroup is not
+ // cooperating and driving spillage elsewhere.
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ uint const cmd_idx = get_group_id(0);
+#else
+ uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
+#endif
+
+ //
+ // if worksgroups are multi-subgroup then there may be excess
+ // subgroups in the final workgroup
+ //
+ if (cmd_idx >= count)
+ return;
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("cmd_idx = %u\n",cmd_idx);
+#endif
+
+ //
+ // load a single command for this subgroup
+ //
+ union skc_cmd_rasterize const cmd = cmds[cmd_idx];
+
+ //
+ // get first block node command word and its subblock
+ //
+ skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
+ skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
+ skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
+
+ //
+ // load transform -- uniform across subgroup
+ //
+ // v8: { sx shx tx shy sy ty w0 w1 }
+ //
+ // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
+ //
+ // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
+ //
+ // Coordinates are scaled to subpixel resolution. All that matters
+ // is that continuity is maintained between end path element
+ // endpoints.
+ //
+ // It's the responsibility of the host to ensure that the transforms
+ // are properly scaled either via intitializing a transform stack
+ // with the subpixel resolution scaled identity or scaling the
+ // transform before its loaded by a rasterization grid.
+ //
+ // FIXME -- horizontal load might be better than this broadcast load
+ //
+ union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
+ union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
+ skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
+
+ skc_rasterize_quads(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ sk_extent,
+ smem,
+ &nodeword,&id,
+ &tv,&cv,cohort);
+}
+
+//
+//
+//
+
+__kernel
+SKC_RASTERIZE_KERNEL_ATTRIBS
+void
+skc_kernel_rasterize_cubics(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __global float8 const * const transforms, // FIXME -- __constant
+ __global float4 const * const clips, // FIXME -- __constant
+ __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
+ skc_uint const count)
+{
+ //
+ // declare shared memory block
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ __local struct skc_subgroup_smem volatile smem[1];
+#else
+ __local struct skc_subgroup_smem volatile smem_wg[SKC_RASTERIZE_WORKGROUP_SUBGROUPS];
+ __local struct skc_subgroup_smem volatile * const smem = smem_wg + get_sub_group_id();
+#endif
+
+ //
+ // this is a subgroup/warp-centric kernel
+ //
+ // which subgroup in the grid is this?
+ //
+ // TAKE NOTE: the Intel GEN compiler appears to be recognizing
+ // get_group_id(0) as a uniform but the alternative calculation used
+ // when there are multiple subgroups per workgroup is not
+ // cooperating and driving spillage elsewhere.
+ //
+#if ( SKC_RASTERIZE_WORKGROUP_SUBGROUPS == 1 )
+ uint const cmd_idx = get_group_id(0);
+#else
+ uint const cmd_idx = get_group_id(0) * SKC_RASTERIZE_WORKGROUP_SUBGROUPS + get_sub_group_id();
+#endif
+
+ //
+ // if worksgroups are multi-subgroup then there may be excess
+ // subgroups in the final workgroup
+ //
+ if (cmd_idx >= count)
+ return;
+
+#if 0
+ if (get_sub_group_local_id() == 0)
+ printf("cmd_idx = %u\n",cmd_idx);
+#endif
+
+ //
+ // load a single command for this subgroup
+ //
+ union skc_cmd_rasterize const cmd = cmds[cmd_idx];
+
+ //
+ // get first block node command word and its subblock
+ //
+ skc_uint nodeword = cmd.nodeword; // nodeword has word-addressing
+ skc_tagged_block_id_t tag_id = bp_elems[nodeword].tag_id;
+ skc_block_id_t id = SKC_TAGGED_BLOCK_ID_GET_ID(tag_id);
+
+ //
+ // load transform -- uniform across subgroup
+ //
+ // v8: { sx shx tx shy sy ty w0 w1 }
+ //
+ // NOTE THAT WE'RE SCALING UP THE TRANSFORM BY:
+ //
+ // [ SKC_SUBPIXEL_RESL_X_F32, SKC_SUBPIXEL_RESL_Y_F32, 1.0f ]
+ //
+ // Coordinates are scaled to subpixel resolution. All that matters
+ // is that continuity is maintained between end path element
+ // endpoints.
+ //
+ // It's the responsibility of the host to ensure that the transforms
+ // are properly scaled either via intitializing a transform stack
+ // with the subpixel resolution scaled identity or scaling the
+ // transform before its loaded by a rasterization grid.
+ //
+ // FIXME -- horizontal load might be better than this broadcast load
+ //
+ union skc_transform const tv = { .f32v8 = transforms[SKC_CMD_RASTERIZE_GET_TRANSFORM(cmd)] }; // uniform load
+ union skc_path_clip const cv = { .f32v4 = clips [SKC_CMD_RASTERIZE_GET_CLIP(cmd) ] }; // uniform load
+ skc_uint const cohort = SKC_CMD_RASTERIZE_MASK_COHORT(cmd); // shifted
+
+ skc_rasterize_cubics(bp_atomics,
+ bp_elems,
+ bp_ids,
+ bp_mask,
+ cohort_atomics,
+ sk_extent,
+ smem,
+ &nodeword,&id,
+ &tv,&cv,cohort);
+}
+
+//
+//
+//
+
+__kernel
+SKC_RASTERIZE_KERNEL_ATTRIBS
+void
+skc_kernel_rasterize_rat_quads(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __global float8 const * const transforms, // FIXME -- __constant
+ __global float4 const * const clips, // FIXME -- __constant
+ __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
+ skc_uint const count)
+{
+ ;
+}
+
+//
+//
+//
+
+__kernel
+SKC_RASTERIZE_KERNEL_ATTRIBS
+void
+skc_kernel_rasterize_rat_cubics(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global union skc_bp_elem * const bp_elems,
+ __global uint * const bp_ids,
+ skc_uint const bp_mask,
+
+ __global SKC_ATOMIC_UINT volatile * const cohort_atomics,
+ __global skc_ttsk_s_t * const sk_extent,
+
+ __global float8 const * const transforms, // FIXME -- __constant
+ __global float4 const * const clips, // FIXME -- __constant
+ __global union skc_cmd_rasterize const * const cmds, // FIXME -- __constant
+ skc_uint const count)
+{
+ ;
+}
+
+//
+//
+//
diff --git a/src/compute/skc/rasters_alloc.cl b/src/compute/skc/platforms/cl_12/kernels/rasters_alloc.cl
index f8f76a7b39..0c7da7d0ad 100644
--- a/src/compute/skc/rasters_alloc.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/rasters_alloc.cl
@@ -1,144 +1,144 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "raster_builder_cl_12.h"
-#include "block_pool_cl.h"
-#include "atomic_cl.h"
-#include "raster.h"
-#include "tile.h"
-
-//
-// There is a fixed-size meta table per raster cohort that we use to
-// peform a mostly coalesced sizing and allocation of blocks.
-//
-// This code is simple and fast.
-//
-
-__kernel
-SKC_RASTERS_ALLOC_KERNEL_ATTRIBS
-void
-skc_kernel_rasters_alloc(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
- __global skc_block_id_t const * const bp_ids,
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t * const map,
- __global skc_uint * const metas,
- __global skc_uint const * const raster_ids, // FIXME -- CONSTANT
- skc_uint const count)
-{
- // access to the meta extent is linear
- skc_uint const gid = get_global_id(0);
- skc_bool const is_active = gid < count;
-
- //
- // init with defaults for all lanes
- //
- union skc_raster_cohort_meta_inout meta = { .in.u32v4 = { 0, 0, 0, 0 } };
- skc_uint raster_id = SKC_UINT_MAX;
- skc_uint extra_blocks = 0;
-
- if (is_active)
- {
- // load meta_in
- meta.in.u32v4 = vload4(gid,metas);
-
- // load raster_id as early as possible
- raster_id = raster_ids[gid];
-
-#if 0
- printf("%3u + %5u, %5u, %5u, %5u\n",
- gid,
- meta.in.blocks,
- meta.in.offset,
- meta.in.pk,
- meta.in.rk);
-#endif
-
- // how many blocks will the ttpb blocks consume?
- extra_blocks = ((meta.in.pk * SKC_TILE_RATIO + SKC_DEVICE_SUBBLOCKS_PER_BLOCK - SKC_TILE_RATIO) /
- SKC_DEVICE_SUBBLOCKS_PER_BLOCK);
-
- // total keys
- meta.out.keys += meta.in.pk;
-
- // how many blocks do we need to store the keys in the head and trailing nodes?
- skc_uint const hn = ((SKC_RASTER_HEAD_DWORDS + meta.out.keys + SKC_RASTER_NODE_DWORDS - 2) /
- (SKC_RASTER_NODE_DWORDS - 1));
- // increment blocks
- extra_blocks += hn;
-
- // how many nodes trail the head?
- meta.out.nodes = hn - 1;
-
- // update blocks
- meta.out.blocks += extra_blocks;
-
-#if 0
- printf("%3u - %5u, %5u, %5u, %5u\n",
- gid,
- meta.out.blocks,
- meta.out.offset,
- meta.out.nodes,
- meta.out.keys);
-#endif
- }
-
- //
- // allocate blocks from block pool
- //
- // first perform a prefix sum on the subgroup to reduce atomic
- // operation traffic
- //
- // note this idiom can be implemented with vectors, subgroups or
- // workgroups
- //
-
- skc_uint const prefix = SKC_RASTERS_ALLOC_INCLUSIVE_ADD(extra_blocks);
- skc_uint reads = 0;
-
- // last lane performs the block pool allocation with an atomic increment
- if (SKC_RASTERS_ALLOC_LOCAL_ID() == SKC_RASTERS_ALLOC_GROUP_SIZE - 1) {
- reads = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+SKC_BP_ATOMIC_OFFSET_READS,prefix); // ring_reads
- }
-
- // broadcast block pool base to all lanes
- reads = SKC_RASTERS_ALLOC_BROADCAST(reads,SKC_RASTERS_ALLOC_GROUP_SIZE - 1);
-
- // update base for each lane
- reads += prefix - extra_blocks;
-
- //
- // store meta header
- //
- if (is_active)
- {
- // store headers back to meta extent
- vstore4(meta.out.u32v4,gid,metas);
-
- // store reads
- metas[SKC_RASTER_COHORT_META_OFFSET_READS + gid] = reads;
-
- // get block_id of each raster head
- skc_block_id_t const block_id = bp_ids[reads & bp_mask];
-
- // update map
- map[raster_id] = block_id;
-
-#if 0
- printf("alloc: %u / %u\n",raster_id,block_id);
-#endif
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "tile.h"
+#include "raster.h"
+#include "atomic_cl.h"
+#include "block_pool_cl.h"
+#include "raster_builder_cl_12.h"
+#include "device_cl_12.h"
+
+//
+// There is a fixed-size meta table per raster cohort that we use to
+// peform a mostly coalesced sizing and allocation of blocks.
+//
+// This code is simple and fast.
+//
+
+__kernel
+SKC_RASTERS_ALLOC_KERNEL_ATTRIBS
+void
+skc_kernel_rasters_alloc(__global SKC_ATOMIC_UINT volatile * const bp_atomics,
+ __global skc_block_id_t const * const bp_ids,
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t * const map,
+ __global skc_uint * const metas,
+ __global skc_uint const * const raster_ids, // FIXME -- CONSTANT
+ skc_uint const count)
+{
+ // access to the meta extent is linear
+ skc_uint const gid = get_global_id(0);
+ skc_bool const is_active = gid < count;
+
+ //
+ // init with defaults for all lanes
+ //
+ union skc_raster_cohort_meta_inout meta = { .in.u32v4 = { 0, 0, 0, 0 } };
+ skc_uint raster_id = SKC_UINT_MAX;
+ skc_uint extra_blocks = 0;
+
+ if (is_active)
+ {
+ // load meta_in
+ meta.in.u32v4 = vload4(gid,metas);
+
+ // load raster_id as early as possible
+ raster_id = raster_ids[gid];
+
+#if 0
+ printf("%3u + %5u, %5u, %5u, %5u\n",
+ gid,
+ meta.in.blocks,
+ meta.in.offset,
+ meta.in.pk,
+ meta.in.rk);
+#endif
+
+ // how many blocks will the ttpb blocks consume?
+ extra_blocks = ((meta.in.pk * SKC_TILE_RATIO + SKC_DEVICE_SUBBLOCKS_PER_BLOCK - SKC_TILE_RATIO) /
+ SKC_DEVICE_SUBBLOCKS_PER_BLOCK);
+
+ // total keys
+ meta.out.keys += meta.in.pk;
+
+ // how many blocks do we need to store the keys in the head and trailing nodes?
+ skc_uint const hn = ((SKC_RASTER_HEAD_DWORDS + meta.out.keys + SKC_RASTER_NODE_DWORDS - 2) /
+ (SKC_RASTER_NODE_DWORDS - 1));
+ // increment blocks
+ extra_blocks += hn;
+
+ // how many nodes trail the head?
+ meta.out.nodes = hn - 1;
+
+ // update blocks
+ meta.out.blocks += extra_blocks;
+
+#if 0
+ printf("%3u - %5u, %5u, %5u, %5u\n",
+ gid,
+ meta.out.blocks,
+ meta.out.offset,
+ meta.out.nodes,
+ meta.out.keys);
+#endif
+ }
+
+ //
+ // allocate blocks from block pool
+ //
+ // first perform a prefix sum on the subgroup to reduce atomic
+ // operation traffic
+ //
+ // note this idiom can be implemented with vectors, subgroups or
+ // workgroups
+ //
+
+ skc_uint const prefix = SKC_RASTERS_ALLOC_INCLUSIVE_ADD(extra_blocks);
+ skc_uint reads = 0;
+
+ // last lane performs the block pool allocation with an atomic increment
+ if (SKC_RASTERS_ALLOC_LOCAL_ID() == SKC_RASTERS_ALLOC_GROUP_SIZE - 1) {
+ reads = SKC_ATOMIC_ADD_GLOBAL_RELAXED_DEVICE(bp_atomics+SKC_BP_ATOMIC_OFFSET_READS,prefix); // ring_reads
+ }
+
+ // broadcast block pool base to all lanes
+ reads = SKC_RASTERS_ALLOC_BROADCAST(reads,SKC_RASTERS_ALLOC_GROUP_SIZE - 1);
+
+ // update base for each lane
+ reads += prefix - extra_blocks;
+
+ //
+ // store meta header
+ //
+ if (is_active)
+ {
+ // store headers back to meta extent
+ vstore4(meta.out.u32v4,gid,metas);
+
+ // store reads
+ metas[SKC_RASTER_COHORT_META_OFFSET_READS + gid] = reads;
+
+ // get block_id of each raster head
+ skc_block_id_t const block_id = bp_ids[reads & bp_mask];
+
+ // update map
+ map[raster_id] = block_id;
+
+#if 0
+ printf("alloc: %u / %u\n",raster_id,block_id);
+#endif
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/rasters_reclaim.cl b/src/compute/skc/platforms/cl_12/kernels/rasters_reclaim.cl
index f0abdb0381..27411cfe96 100644
--- a/src/compute/skc/rasters_reclaim.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/rasters_reclaim.cl
@@ -1,442 +1,442 @@
-/*
- * Copyright 2017 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "block_pool_cl.h"
-#include "atomic_cl.h"
-#include "block.h"
-#include "raster.h"
-#include "common.h"
-#include "tile.h"
-
-//
-//
-//
-
-#define SKC_RASTERS_RECLAIM_SUBGROUP_SIZE_MASK (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
-
-#define SKC_RASTERS_RECLAIM_SUBGROUP_WORDS (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE * SKC_RASTERS_RECLAIM_LOCAL_ELEMS)
-
-#define SKC_RASTERS_RECLAIM_X (SKC_DEVICE_BLOCK_DWORDS / SKC_RASTERS_RECLAIM_SUBGROUP_WORDS)
-
-//
-//
-//
-
-#if ( SKC_RASTERS_RECLAIM_X == 1 )
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_1()
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 0
-
-#elif ( SKC_RASTERS_RECLAIM_X == 2 )
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_2()
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 1
-
-#elif ( SKC_RASTERS_RECLAIM_X == 4 )
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_4()
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 3
-
-#elif ( SKC_RASTERS_RECLAIM_X == 8 )
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_8()
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 7
-
-#elif ( SKC_RASTERS_RECLAIM_X == 16)
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_16()
-#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 15
-
-#else
-#error "MISSING SKC_RASTERS_RECLAIM_X"
-#endif
-
-#if ( SKC_PREFIX_SUBGROUP_SIZE == SKC_RASTERS_RECLAIM_SUBGROUP_SIZE )
-
-#define SKC_RASTERS_RECLAIM_STRIDE_H(L) (L)
-#define SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) (I * 2 * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-#define SKC_RASTERS_RECLAIM_STRIDE_V_HI(I) (SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) + SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-
-#elif ( SKC_PREFIX_SUBGROUP_SIZE > SKC_RASTERS_RECLAIM_SUBGROUP_SIZE ) // same as above when ratio equals 1
-
-#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO (SKC_PREFIX_SUBGROUP_SIZE / SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK (SKC_RASTERS_RECLAIM_SUBGROUP_RATIO - 1)
-#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_SCALE(I) ((I / SKC_RASTERS_RECLAIM_SUBGROUP_RATIO) * 2 * SKC_RASTERS_RECLAIM_SUBGROUP_RATIO + \
- (I & SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK))
-
-#define SKC_RASTERS_RECLAIM_STRIDE_H(L) (L)
-#define SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) (SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_SCALE(I) * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-#define SKC_RASTERS_RECLAIM_STRIDE_V_HI(I) (SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) + SKC_RASTERS_RECLAIM_SUBGROUP_RATIO * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-
-#elif ( SKC_PREFIX_SUBGROUP_SIZE < SKC_RASTERS_RECLAIM_SUBGROUP_SIZE ) // same as above when ratio equals 1
-
-#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE / SKC_PREFIX_SUBGROUP_SIZE)
-#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE / SKC_RASTERS_RECLAIM_SUBGROUP_RATIO - 1) // equal to prefix subgroup mask
-
-#define SKC_RASTERS_RECLAIM_STRIDE_H(L) (((L) & ~SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK) * 2 + ((L) & SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK))
-#define SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) (I * 2 * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-#define SKC_RASTERS_RECLAIM_STRIDE_V_HI(I) (SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) + SKC_RASTERS_RECLAIM_SUBGROUP_SIZE / SKC_RASTERS_RECLAIM_SUBGROUP_RATIO)
-
-#endif
-
-//
-// FIXME -- slate these for replacement
-//
-
-#define SKC_BROADCAST(E,S,I) \
- sub_group_broadcast(E,S - I * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-
-#define SKC_BROADCAST_LAST_HELPER(E,I) \
- sub_group_broadcast(E,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
-
-#define SKC_BROADCAST_LAST(E,I) \
- SKC_BROADCAST_LAST_HELPER(E,I)
-
-//
-// COMPILE-TIME PREDICATES
-//
-
-#define SKC_RASTERS_RECLAIM_ELEM_GTE(X,I) \
- SKC_GTE_MACRO(X,(I+1) * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-
-#define SKC_RASTERS_RECLAIM_ELEM_IN_RANGE(X,I) \
- (skc_bool)SKC_GTE_MACRO(X, I * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE) && \
- (skc_bool)SKC_LT_MACRO(X,(I+1) * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
-
-#define SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I) \
- SKC_RASTERS_RECLAIM_ELEM_GTE(SKC_RASTER_HEAD_DWORDS,I)
-
-#define SKC_RASTERS_RECLAIM_PARTIALLY_HEADER(I) \
- SKC_RASTERS_RECLAIM_ELEM_IN_RANGE(SKC_RASTER_HEAD_DWORDS,I)
-
-//
-// RUN-TIME PREDICATES
-//
-
-#define SKC_RASTERS_RECLAIM_IS_HEADER(I) \
- (get_sub_group_local_id() + I * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE < SKC_RASTER_HEAD_DWORDS)
-
-//
-// FIXME -- THIS BITFIELD SCAN APPROACH CAN BE PARAMETERIZED FOR ALL
-// POSSIBLE PRACTICAL POWER-OF-TWO SUBGROUP AND SUBBLOCKS-PER-BLOCK
-// COMBOS (NOT NECESSARILY POW2)
-//
-// FOR WIDER SUBGROUPS WITH BIG BLOCKS, WE WILL WANT TO USE A VECTOR
-// UINT TYPE INSTEAD OF A ULONG.
-//
-
-#define SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS SKC_RASTERS_RECLAIM_SUBGROUP_SIZE_LOG2
-#define SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE skc_uint
-
-//
-//
-//
-
-#define SKC_RASTERS_RECLAIM_PACKED_COUNT_MASK SKC_BITS_TO_MASK(SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS)
-
-#define SKC_RASTERS_RECLAIM_PACKED_COUNT_IS_BLOCK(E,I) \
- (((E) & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) \
- ? 0 : (1u << SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS * I))
-
-#define SKC_RASTERS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(S,C) \
- S = sub_group_scan_exclusive_add(C)
-
-#define SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(C,I) \
- (((C) >> (SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS * I)) & SKC_RASTERS_RECLAIM_PACKED_COUNT_MASK)
-
-//
-//
-//
-
-struct skc_reclaim
-{
- skc_raster_h aN[SKC_RECLAIM_ARRAY_SIZE];
-};
-
-__kernel
-SKC_RASTERS_RECLAIM_KERNEL_ATTRIBS
-void
-skc_kernel_rasters_reclaim(__global skc_block_id_t * const bp_ids, // block pool ids ring
- __global skc_uint * const bp_elems, // block pool blocks
- __global skc_uint volatile * const bp_atomics, // read/write atomics
- skc_uint const bp_mask, // pow2 modulo mask for block pool ring
- __global skc_block_id_t const * const map, // raster host-to-device map
- struct skc_reclaim const reclaim) // array of host raster ids
-{
-#if (__OPENCL_VERSION__ < 200)
- skc_uint const reclaim_stride = get_num_sub_groups();
-#else
- skc_uint const reclaim_stride = get_enqueued_num_sub_groups(); // 2.0 supports non-uniform workgroups
-#endif
- skc_uint reclaim_idx = get_group_id(0) * reclaim_stride + get_sub_group_id();
-
-#if 0
- //
- // NOTE -- FOR NOW, THIS KERNEL ALWAYS LAUNCHES FIXED SIZE GRIDS BUT
- // WE MIGHT WANT TO HAVE THE GRID LIMIT ITSELF TO A FRACTIONAL
- // MULTIPROCESSOR IN ORDER TO MINIMIZE THE IMPACT OF A LARGE
- // RECLAMATION JOB ON THE REST OF THE PIPELINE.
- //
- for (; reclaim_idx < SKC_RECLAIM_ARRAY_SIZE; reclaim_idx+=reclaim_stride)
-#endif
- {
- // get host raster id
- skc_raster_h const raster = reclaim.aN[reclaim_idx];
-
- // get block id of raster header
- skc_block_id_t id = map[raster];
-
- //
- // load all of the head block ttxk.lo keys into registers
- //
- // FIXME -- this pattern lends itself to using the higher
- // performance Intel GEN block load instructions
- //
- skc_uint const head_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_RASTERS_RECLAIM_STRIDE_H(get_sub_group_local_id());
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- skc_uint h##I = bp_elems[head_id + SKC_RASTERS_RECLAIM_STRIDE_V_LO(I)];
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- //
- // pick out count.nodes and count.prims from the header
- //
- // load raster header counts -- we only need the blocks and
- // nodes words the keys are doublewords.
- //
- // FIXME -- this can be made portable with compile-time macro expansion
- //
- skc_uint count_blocks = sub_group_broadcast(h0,0); // SKC_RASTER_HEAD_OFFSET_COUNTS_NODES
- skc_uint count_nodes = sub_group_broadcast(h0,1); // SKC_RASTER_HEAD_OFFSET_COUNTS_KEYS
-
-#if 0
- if (get_sub_group_local_id() == 0) {
- printf("reclaim rasters: %u / %u / %5u / %5u\n",raster,id,count_blocks,count_nodes);
- }
-#endif
- //
- // acquire a span in the block pool ids ring for reclaimed ids
- //
- skc_uint bp_ids_base = 0;
-
- if (get_sub_group_local_id() == 0) {
- bp_ids_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_SUBGROUP(bp_atomics+SKC_BP_ATOMIC_OFFSET_WRITES,count_blocks);
- }
-
- bp_ids_base = sub_group_broadcast(bp_ids_base,0);
-
- //
- // mask off everything but the block id
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
- h##I = h##I & SKC_TTXK_LO_MASK_ID; \
- }
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- //
- // swap current id with next
- //
- if (get_sub_group_local_id() == SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
- {
- skc_block_id_t const next = SKC_CONCAT(h,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST);
-
- SKC_CONCAT(h,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
-
- id = next;
-#if 0
- printf("rasters next = %u\n",id);
-#endif
- }
-
-#if 0
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- printf("%08X %u\n",h##I,h##I);
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-#endif
-
-#if 0
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
- printf("%08X\n",h##I); \
- }
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-#endif
-
- //
- // - we'll skip subgroups that are entirely header
- //
- // - but we need to mark any header elements that partially fill
- // a subgroup as subblocks
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
- if (SKC_RASTERS_RECLAIM_PARTIALLY_HEADER(I)) { \
- if (SKC_RASTERS_RECLAIM_IS_HEADER(I)) { \
- h##I = SKC_UINT_MAX; \
- } \
- } \
- }
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- {
- //
- // count reclaimable blocks in each lane
- //
- SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
- packed_count |= SKC_RASTERS_RECLAIM_PACKED_COUNT_IS_BLOCK(h##I,I); \
- }
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- //
- // scan to find index of each block
- //
- SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
-
- SKC_RASTERS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
-
- //
- // store blocks back to ring
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
- skc_uint const index = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
- skc_uint const count = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
- skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
- if (count > 0) { \
- bp_ids[bp_ids_idx] = h##I; \
- } \
- skc_uint const total = index + count; \
- bp_ids_base += sub_group_broadcast(total,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE-1); \
- }
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
- }
-
- // printf("R %7u ! %u\n",bp_ids_idx,h##I);
-
- //
- // we're done if it was just the header
- //
- if (count_nodes == 0)
- return;
-
- //
- // otherwise, walk the nodes
- //
- do {
- // id of next block is in last lane
- id = sub_group_broadcast(id,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE-1);
-
- //
- // load all of the node block ttxk.lo keys into registers
- //
- // FIXME -- this pattern lends itself to using the higher
- // performance Intel GEN block load instructions
- //
- skc_uint const node_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_RASTERS_RECLAIM_STRIDE_H(get_sub_group_local_id());
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- skc_uint n##I = bp_elems[node_id + SKC_RASTERS_RECLAIM_STRIDE_V_LO(I)];
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- //
- // mask off everything but the block id
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- n##I = n##I & SKC_TTXK_LO_MASK_ID;
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- //
- // swap current id with next
- //
- if (get_sub_group_local_id() == SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
- {
- skc_block_id_t const next = SKC_CONCAT(n,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST);
-
- SKC_CONCAT(n,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
-
- id = next;
-#if 0
- printf("rasters next = %u\n",id);
-#endif
- }
-
-#if 0
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- printf("%08X %u\n",n##I,n##I);
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-#endif
-
- //
- // count reclaimable blocks in each lane
- //
- SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) \
- packed_count |= SKC_RASTERS_RECLAIM_PACKED_COUNT_IS_BLOCK(n##I,I);
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- //
- // scan to find index of each block
- //
- SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
-
- SKC_RASTERS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
-
- //
- // store blocks back to ring
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,R) { \
- skc_uint const index = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
- skc_uint const count = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
- skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
- if (count > 0) { \
- bp_ids[bp_ids_idx] = n##I; \
- } \
- skc_uint const total = index + count; \
- bp_ids_base += sub_group_broadcast(total,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE-1); \
- }
-
- SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
-
- // printf("R %7u ! %u\n",bp_ids_idx,n##I);
-
- // any more nodes?
- } while (--count_nodes > 0);
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "tile.h"
+#include "block.h"
+#include "raster.h"
+#include "common.h"
+#include "atomic_cl.h"
+#include "block_pool_cl.h"
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#define SKC_RASTERS_RECLAIM_SUBGROUP_SIZE_MASK (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
+
+#define SKC_RASTERS_RECLAIM_SUBGROUP_WORDS (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE * SKC_RASTERS_RECLAIM_LOCAL_ELEMS)
+
+#define SKC_RASTERS_RECLAIM_X (SKC_DEVICE_BLOCK_DWORDS / SKC_RASTERS_RECLAIM_SUBGROUP_WORDS)
+
+//
+//
+//
+
+#if ( SKC_RASTERS_RECLAIM_X == 1 )
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_1()
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 0
+
+#elif ( SKC_RASTERS_RECLAIM_X == 2 )
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_2()
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 1
+
+#elif ( SKC_RASTERS_RECLAIM_X == 4 )
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_4()
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 3
+
+#elif ( SKC_RASTERS_RECLAIM_X == 8 )
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_8()
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 7
+
+#elif ( SKC_RASTERS_RECLAIM_X == 16)
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND() SKC_EXPAND_16()
+#define SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST 15
+
+#else
+#error "MISSING SKC_RASTERS_RECLAIM_X"
+#endif
+
+#if ( SKC_PREFIX_SUBGROUP_SIZE == SKC_RASTERS_RECLAIM_SUBGROUP_SIZE )
+
+#define SKC_RASTERS_RECLAIM_STRIDE_H(L) (L)
+#define SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) (I * 2 * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+#define SKC_RASTERS_RECLAIM_STRIDE_V_HI(I) (SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) + SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+
+#elif ( SKC_PREFIX_SUBGROUP_SIZE > SKC_RASTERS_RECLAIM_SUBGROUP_SIZE ) // same as above when ratio equals 1
+
+#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO (SKC_PREFIX_SUBGROUP_SIZE / SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK (SKC_RASTERS_RECLAIM_SUBGROUP_RATIO - 1)
+#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_SCALE(I) ((I / SKC_RASTERS_RECLAIM_SUBGROUP_RATIO) * 2 * SKC_RASTERS_RECLAIM_SUBGROUP_RATIO + \
+ (I & SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK))
+
+#define SKC_RASTERS_RECLAIM_STRIDE_H(L) (L)
+#define SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) (SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_SCALE(I) * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+#define SKC_RASTERS_RECLAIM_STRIDE_V_HI(I) (SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) + SKC_RASTERS_RECLAIM_SUBGROUP_RATIO * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+
+#elif ( SKC_PREFIX_SUBGROUP_SIZE < SKC_RASTERS_RECLAIM_SUBGROUP_SIZE ) // same as above when ratio equals 1
+
+#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE / SKC_PREFIX_SUBGROUP_SIZE)
+#define SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK (SKC_RASTERS_RECLAIM_SUBGROUP_SIZE / SKC_RASTERS_RECLAIM_SUBGROUP_RATIO - 1) // equal to prefix subgroup mask
+
+#define SKC_RASTERS_RECLAIM_STRIDE_H(L) (((L) & ~SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK) * 2 + ((L) & SKC_RASTERS_RECLAIM_SUBGROUP_RATIO_MASK))
+#define SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) (I * 2 * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+#define SKC_RASTERS_RECLAIM_STRIDE_V_HI(I) (SKC_RASTERS_RECLAIM_STRIDE_V_LO(I) + SKC_RASTERS_RECLAIM_SUBGROUP_SIZE / SKC_RASTERS_RECLAIM_SUBGROUP_RATIO)
+
+#endif
+
+//
+// FIXME -- slate these for replacement
+//
+
+#define SKC_BROADCAST(E,S,I) \
+ sub_group_broadcast(E,S - I * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+
+#define SKC_BROADCAST_LAST_HELPER(E,I) \
+ sub_group_broadcast(E,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
+
+#define SKC_BROADCAST_LAST(E,I) \
+ SKC_BROADCAST_LAST_HELPER(E,I)
+
+//
+// COMPILE-TIME PREDICATES
+//
+
+#define SKC_RASTERS_RECLAIM_ELEM_GTE(X,I) \
+ SKC_GTE_MACRO(X,(I+1) * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+
+#define SKC_RASTERS_RECLAIM_ELEM_IN_RANGE(X,I) \
+ (skc_bool)SKC_GTE_MACRO(X, I * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE) && \
+ (skc_bool)SKC_LT_MACRO(X,(I+1) * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE)
+
+#define SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I) \
+ SKC_RASTERS_RECLAIM_ELEM_GTE(SKC_RASTER_HEAD_DWORDS,I)
+
+#define SKC_RASTERS_RECLAIM_PARTIALLY_HEADER(I) \
+ SKC_RASTERS_RECLAIM_ELEM_IN_RANGE(SKC_RASTER_HEAD_DWORDS,I)
+
+//
+// RUN-TIME PREDICATES
+//
+
+#define SKC_RASTERS_RECLAIM_IS_HEADER(I) \
+ (get_sub_group_local_id() + I * SKC_RASTERS_RECLAIM_SUBGROUP_SIZE < SKC_RASTER_HEAD_DWORDS)
+
+//
+// FIXME -- THIS BITFIELD SCAN APPROACH CAN BE PARAMETERIZED FOR ALL
+// POSSIBLE PRACTICAL POWER-OF-TWO SUBGROUP AND SUBBLOCKS-PER-BLOCK
+// COMBOS (NOT NECESSARILY POW2)
+//
+// FOR WIDER SUBGROUPS WITH BIG BLOCKS, WE WILL WANT TO USE A VECTOR
+// UINT TYPE INSTEAD OF A ULONG.
+//
+
+#define SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS SKC_RASTERS_RECLAIM_SUBGROUP_SIZE_LOG2
+#define SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE skc_uint
+
+//
+//
+//
+
+#define SKC_RASTERS_RECLAIM_PACKED_COUNT_MASK SKC_BITS_TO_MASK(SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS)
+
+#define SKC_RASTERS_RECLAIM_PACKED_COUNT_IS_BLOCK(E,I) \
+ (((E) & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) \
+ ? 0 : (1u << SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS * I))
+
+#define SKC_RASTERS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(S,C) \
+ S = sub_group_scan_exclusive_add(C)
+
+#define SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(C,I) \
+ (((C) >> (SKC_RASTERS_RECLAIM_PACKED_COUNT_BITS * I)) & SKC_RASTERS_RECLAIM_PACKED_COUNT_MASK)
+
+//
+//
+//
+
+struct skc_reclaim
+{
+ skc_raster_h aN[SKC_RECLAIM_ARRAY_SIZE];
+};
+
+__kernel
+SKC_RASTERS_RECLAIM_KERNEL_ATTRIBS
+void
+skc_kernel_rasters_reclaim(__global skc_block_id_t * const bp_ids, // block pool ids ring
+ __global skc_uint * const bp_elems, // block pool blocks
+ __global skc_uint volatile * const bp_atomics, // read/write atomics
+ skc_uint const bp_mask, // pow2 modulo mask for block pool ring
+ __global skc_block_id_t const * const map, // raster host-to-device map
+ struct skc_reclaim const reclaim) // array of host raster ids
+{
+#if (__OPENCL_VERSION__ < 200)
+ skc_uint const reclaim_stride = get_num_sub_groups();
+#else
+ skc_uint const reclaim_stride = get_enqueued_num_sub_groups(); // 2.0 supports non-uniform workgroups
+#endif
+ skc_uint reclaim_idx = get_group_id(0) * reclaim_stride + get_sub_group_id();
+
+#if 0
+ //
+ // NOTE -- FOR NOW, THIS KERNEL ALWAYS LAUNCHES FIXED SIZE GRIDS BUT
+ // WE MIGHT WANT TO HAVE THE GRID LIMIT ITSELF TO A FRACTIONAL
+ // MULTIPROCESSOR IN ORDER TO MINIMIZE THE IMPACT OF A LARGE
+ // RECLAMATION JOB ON THE REST OF THE PIPELINE.
+ //
+ for (; reclaim_idx < SKC_RECLAIM_ARRAY_SIZE; reclaim_idx+=reclaim_stride)
+#endif
+ {
+ // get host raster id
+ skc_raster_h const raster = reclaim.aN[reclaim_idx];
+
+ // get block id of raster header
+ skc_block_id_t id = map[raster];
+
+ //
+ // load all of the head block ttxk.lo keys into registers
+ //
+ // FIXME -- this pattern lends itself to using the higher
+ // performance Intel GEN block load instructions
+ //
+ skc_uint const head_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_RASTERS_RECLAIM_STRIDE_H(get_sub_group_local_id());
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ skc_uint h##I = bp_elems[head_id + SKC_RASTERS_RECLAIM_STRIDE_V_LO(I)];
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // pick out count.nodes and count.prims from the header
+ //
+ // load raster header counts -- we only need the blocks and
+ // nodes words the keys are doublewords.
+ //
+ // FIXME -- this can be made portable with compile-time macro expansion
+ //
+ skc_uint count_blocks = sub_group_broadcast(h0,0); // SKC_RASTER_HEAD_OFFSET_COUNTS_NODES
+ skc_uint count_nodes = sub_group_broadcast(h0,1); // SKC_RASTER_HEAD_OFFSET_COUNTS_KEYS
+
+#if 0
+ if (get_sub_group_local_id() == 0) {
+ printf("reclaim rasters: %u / %u / %5u / %5u\n",raster,id,count_blocks,count_nodes);
+ }
+#endif
+ //
+ // acquire a span in the block pool ids ring for reclaimed ids
+ //
+ skc_uint bp_ids_base = 0;
+
+ if (get_sub_group_local_id() == 0) {
+ bp_ids_base = SKC_ATOMIC_ADD_GLOBAL_RELAXED_SUBGROUP(bp_atomics+SKC_BP_ATOMIC_OFFSET_WRITES,count_blocks);
+ }
+
+ bp_ids_base = sub_group_broadcast(bp_ids_base,0);
+
+ //
+ // mask off everything but the block id
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ h##I = h##I & SKC_TTXK_LO_MASK_ID; \
+ }
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // swap current id with next
+ //
+ if (get_sub_group_local_id() == SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
+ {
+ skc_block_id_t const next = SKC_CONCAT(h,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST);
+
+ SKC_CONCAT(h,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
+
+ id = next;
+#if 0
+ printf("rasters next = %u\n",id);
+#endif
+ }
+
+#if 0
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ printf("%08X %u\n",h##I,h##I);
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+#endif
+
+#if 0
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ printf("%08X\n",h##I); \
+ }
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+#endif
+
+ //
+ // - we'll skip subgroups that are entirely header
+ //
+ // - but we need to mark any header elements that partially fill
+ // a subgroup as subblocks
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ if (SKC_RASTERS_RECLAIM_PARTIALLY_HEADER(I)) { \
+ if (SKC_RASTERS_RECLAIM_IS_HEADER(I)) { \
+ h##I = SKC_UINT_MAX; \
+ } \
+ } \
+ }
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ {
+ //
+ // count reclaimable blocks in each lane
+ //
+ SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ packed_count |= SKC_RASTERS_RECLAIM_PACKED_COUNT_IS_BLOCK(h##I,I); \
+ }
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // scan to find index of each block
+ //
+ SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
+
+ SKC_RASTERS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
+
+ //
+ // store blocks back to ring
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ if (!SKC_RASTERS_RECLAIM_ENTIRELY_HEADER(I)) { \
+ skc_uint const index = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
+ skc_uint const count = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
+ skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
+ if (count > 0) { \
+ bp_ids[bp_ids_idx] = h##I; \
+ } \
+ skc_uint const total = index + count; \
+ bp_ids_base += sub_group_broadcast(total,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE-1); \
+ }
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+ }
+
+ // printf("R %7u ! %u\n",bp_ids_idx,h##I);
+
+ //
+ // we're done if it was just the header
+ //
+ if (count_nodes == 0)
+ return;
+
+ //
+ // otherwise, walk the nodes
+ //
+ do {
+ // id of next block is in last lane
+ id = sub_group_broadcast(id,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE-1);
+
+ //
+ // load all of the node block ttxk.lo keys into registers
+ //
+ // FIXME -- this pattern lends itself to using the higher
+ // performance Intel GEN block load instructions
+ //
+ skc_uint const node_id = id * SKC_DEVICE_SUBBLOCK_WORDS + SKC_RASTERS_RECLAIM_STRIDE_H(get_sub_group_local_id());
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ skc_uint n##I = bp_elems[node_id + SKC_RASTERS_RECLAIM_STRIDE_V_LO(I)];
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // mask off everything but the block id
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ n##I = n##I & SKC_TTXK_LO_MASK_ID;
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // swap current id with next
+ //
+ if (get_sub_group_local_id() == SKC_RASTERS_RECLAIM_SUBGROUP_SIZE - 1)
+ {
+ skc_block_id_t const next = SKC_CONCAT(n,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST);
+
+ SKC_CONCAT(n,SKC_RASTERS_RECLAIM_BLOCK_EXPAND_I_LAST) = id;
+
+ id = next;
+#if 0
+ printf("rasters next = %u\n",id);
+#endif
+ }
+
+#if 0
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ printf("%08X %u\n",n##I,n##I);
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+#endif
+
+ //
+ // count reclaimable blocks in each lane
+ //
+ SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_count = ( 0 );
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) \
+ packed_count |= SKC_RASTERS_RECLAIM_PACKED_COUNT_IS_BLOCK(n##I,I);
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ //
+ // scan to find index of each block
+ //
+ SKC_RASTERS_RECLAIM_PACKED_COUNT_DECLARE packed_index = ( 0 );
+
+ SKC_RASTERS_RECLAIM_PACKED_COUNT_SCAN_EXCLUSIVE_ADD(packed_index,packed_count);
+
+ //
+ // store blocks back to ring
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,R) { \
+ skc_uint const index = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_index,I); \
+ skc_uint const count = SKC_RASTERS_RECLAIM_PACKED_COUNT_GET(packed_count,I); \
+ skc_uint const bp_ids_idx = (bp_ids_base + index) & bp_mask; \
+ if (count > 0) { \
+ bp_ids[bp_ids_idx] = n##I; \
+ } \
+ skc_uint const total = index + count; \
+ bp_ids_base += sub_group_broadcast(total,SKC_RASTERS_RECLAIM_SUBGROUP_SIZE-1); \
+ }
+
+ SKC_RASTERS_RECLAIM_BLOCK_EXPAND();
+
+ // printf("R %7u ! %u\n",bp_ids_idx,n##I);
+
+ // any more nodes?
+ } while (--count_nodes > 0);
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/render.cl b/src/compute/skc/platforms/cl_12/kernels/render.cl
index ba2fd7bbfd..9205334940 100644
--- a/src/compute/skc/render.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/render.cl
@@ -1,2165 +1,2165 @@
-/*
- * Copyright 2016 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-//
-//
-
-#include "device_cl_12_gen9.h"
-#include "block.h"
-#include "tile.h"
-#include "atomic_cl.h"
-#include "styling_types.h"
-
-//
-//
-//
-
-#define SKC_RENDER_SUBGROUP_MASK (SKC_RENDER_SUBGROUP_SIZE - 1)
-
-//
-//
-//
-
-#if ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 1 )
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_1()
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 0
-
-#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 2 )
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_2()
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 1
-
-#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 4 )
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_4()
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 3
-
-#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 8 )
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_8()
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 7
-
-#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 16)
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_16()
-#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 15
-#endif
-
-//
-// tile state flag bits
-//
-
-typedef enum skc_tile_flags_e {
-
- // FLUSH
- SKC_TILE_FLAGS_FLUSH_FINALIZE = 0x00000001,
- SKC_TILE_FLAGS_FLUSH_UNWIND = 0x00000002,
- SKC_TILE_FLAGS_FLUSH_COMPLETE = 0x00000004,
-
- // OPACITY
- SKC_TILE_FLAGS_SCATTER_SKIP = 0x00000008,
-
- //
- // Note: testing for opacity and skipping scattering is on its way
- // to becoming a much more programmable option because sometimes we
- // may be compositing/blending from back-to-front and/or be using
- // group blend rules that ignore opacity.
- //
- // The point is that all of these decisions should be encoded in
- // styling commands and, as much as possible, removed from the final
- // group/layer styling traversal render loop.
- //
-
-} skc_tile_flags_e;
-
-//
-// COVER -- assumes availability of either fp16 or fp32
-//
-
-union skc_tile_cover
-{
- struct {
- SKC_RENDER_TILE_COVER c[SKC_TILE_WIDTH];
- } aN;
-
-#ifdef SKC_RENDER_TILE_COVER_VECTOR
- struct {
- SKC_RENDER_TILE_COVER_VECTOR c[SKC_RENDER_TILE_COVER_VECTOR_COUNT];
- } vN;
-#endif
-};
-
-//
-// COLOR -- assumes availability of either fp16 or fp32
-//
-
-union skc_tile_color
-{
- union {
- struct {
- SKC_RENDER_TILE_COLOR r;
- SKC_RENDER_TILE_COLOR g;
- SKC_RENDER_TILE_COLOR b;
- SKC_RENDER_TILE_COLOR a;
- } rgba[SKC_TILE_WIDTH];
- } aN;
-
-#ifdef SKC_RENDER_TILE_COLOR_INTERLEAVED
- union {
- SKC_RENDER_TILE_COLOR_INTERLEAVED rgba[SKC_TILE_WIDTH];
- } iN;
-#endif
-
-#ifdef SKC_RENDER_TILE_COLOR_VECTOR
- union {
- SKC_RENDER_TILE_COLOR_VECTOR rgba[SKC_RENDER_TILE_COLOR_VECTOR_COUNT];
- } vN;
-#endif
-
- struct {
- union {
- struct {
- SKC_RENDER_TILE_COLOR r;
- SKC_RENDER_TILE_COLOR g;
- };
- SKC_RENDER_GRADIENT_FLOAT distance;
- };
- union {
- struct {
- SKC_RENDER_TILE_COLOR b;
- SKC_RENDER_TILE_COLOR a;
- };
- SKC_RENDER_GRADIENT_FLOAT stoplerp;
- };
- } grad[SKC_TILE_WIDTH];
-};
-
-//
-// SHARED MEMORY STATE
-//
-
-#define SKC_RENDER_TILE_SMEM_WORDS ((SKC_TILE_WIDTH + 1) * SKC_TILE_HEIGHT)
-
-#define SKC_RENDER_WIDE_AA_BYTES (SKC_RENDER_TILE_SMEM_WORDS * sizeof(int) / SKC_RENDER_SUBGROUP_SIZE)
-#define SKC_RENDER_WIDE_AA_WIDTH (SKC_RENDER_WIDE_AA_BYTES / sizeof(SKC_RENDER_WIDE_AA))
-
-//
-//
-//
-
-union skc_subgroup_smem
-{
- //
- // The tiles are stored in column-major / height-major order
- //
- // The final column is a guard column that is OK to write to but
- // will never be read. It simplifies the TTSB scatter but could be
- // predicated if SMEM is really at a premium.
- //
-#if ( SKC_RENDER_SUBGROUP_SIZE > 1 )
- struct {
- SKC_ATOMIC_UINT area[SKC_RENDER_TILE_SMEM_WORDS]; // area[w][h]
- } atomic;
-#endif
-
- struct {
- int area[SKC_RENDER_TILE_SMEM_WORDS]; // area[w][h]
- } aN;
-
- struct { // assumption is that height = subgroup
- SKC_RENDER_AREA_V area[SKC_TILE_WIDTH + 1][SKC_RENDER_SUBGROUP_SIZE];
- } vN;
-
- struct { // assumption is that height = subgroup
- SKC_RENDER_WIDE_AA area[SKC_RENDER_WIDE_AA_WIDTH][SKC_RENDER_SUBGROUP_SIZE];
- } wide;
-
- union skc_styling_cmd cmds[(SKC_TILE_WIDTH + 1) * SKC_TILE_HEIGHT];
-
- half gc [(SKC_TILE_WIDTH + 1) * SKC_TILE_HEIGHT * 2];
-
-#if 0
- //
- // SPILL TO GMEM
- //
-#if (SKC_REGS_COLOR_S > 0) || (SKC_REGS_COVER_S > 0)
- struct {
-
-#if (SKC_REGS_COLOR_S > 0)
- union skc_color_r color[SKC_REGS_COLOR_S][SKC_TILE_HEIGHT][SKC_TILE_WIDTH];
-#endif
-
-#if (SKC_REGS_COVER_S > 0)
- union float cover[SKC_REGS_COVER_S][SKC_TILE_HEIGHT][SKC_TILE_WIDTH];
-#endif
-
- } regs;
-#endif
- //
- //
- //
-#endif
-};
-
-//
-//
-//
-
-#if ( SKC_RENDER_SUBGROUP_SIZE == 1 )
-
-#define skc_subgroup_lane() 0
-
-#else
-
-#define skc_subgroup_lane() get_sub_group_local_id()
-
-#endif
-
-//
-//
-//
-
-typedef skc_uint skc_ttsk_lo_t;
-typedef skc_uint skc_ttsk_hi_t;
-
-typedef skc_uint skc_ttpk_lo_t;
-typedef skc_uint skc_ttpk_hi_t;
-
-typedef skc_uint skc_ttxk_lo_t;
-typedef skc_uint skc_ttxk_hi_t;
-
-typedef skc_uint skc_ttck_lo_t;
-typedef skc_uint skc_ttck_hi_t;
-
-typedef skc_uint2 skc_ttck_t;
-
-typedef skc_int skc_ttxb_t;
-
-//
-// TTCK (32-BIT COMPARE) v1:
-//
-// 0 63
-// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
-// +----------------------+--------+--------+-------+-----+-----+
-// | 30 | 1 | 1 | 18 | 7 | 7 |
-//
-//
-// TTCK (32-BIT COMPARE) v2:
-//
-// 0 63
-// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
-// +----------------------+--------+--------+-------+-----+-----+
-// | 30 | 1 | 1 | 15 | 9 | 8 |
-//
-//
-// TTCK (64-BIT COMPARE) -- achieves 4K x 4K with an 8x16 tile:
-//
-// 0 63
-// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
-// +----------------------+--------+--------+-------+-----+-----+
-// | 27 | 1 | 1 | 18 | 9 | 8 |
-//
-
-static
-skc_uint
-skc_ttck_lo_get_ttxb_id(skc_ttck_lo_t const a)
-{
- return a & SKC_TTCK_LO_MASK_ID;
-}
-
-static
-skc_layer_id
-skc_ttck_get_layer(skc_ttck_t const a)
-{
- //
- // FIXME -- a union with a ulong and a shift down and mask is
- // probably faster on some architectures
- //
- skc_uint const lo = (a.lo >> SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE);
- skc_uint const hi = (a.hi & SKC_TTCK_HI_MASK_LAYER) << SKC_TTCK_LO_BITS_LAYER;
-
- return lo | hi;
-}
-
-static
-skc_uint
-skc_ttck_hi_get_x(skc_ttck_hi_t const a)
-{
- return SKC_BFE(a,SKC_TTCK_HI_BITS_X,SKC_TTCK_HI_OFFSET_X);
-}
-
-static
-skc_uint
-skc_ttck_hi_get_y(skc_ttck_hi_t const a)
-{
- return a >> SKC_TTCK_HI_OFFSET_Y;
-}
-
-static
-skc_bool
-skc_ttck_equal_yxl(skc_ttck_t const a, skc_ttck_t const b)
-{
- skc_uint const lo = (a.lo ^ b.lo) & SKC_BITS_TO_MASK_AT(SKC_TTCK_LO_BITS_LAYER,SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE);
- skc_uint const hi = (a.hi ^ b.hi);
-
- return (lo | hi) == 0;
-}
-
-static
-skc_bool
-skc_ttck_hi_equal_yx(skc_ttck_hi_t const a, skc_ttck_hi_t const b)
-{
- return ((a ^ b) & SKC_TTCK_HI_MASK_YX) == 0;
-}
-
-static
-skc_bool
-skc_ttck_lo_is_prefix(skc_ttck_lo_t const a)
-{
- return (a & SKC_TTCK_LO_MASK_PREFIX) != 0;
-}
-
-//
-// TILE TRACE SUBPIXEL
-//
-// The subpixels are encoded with either absolute tile coordinates
-// (32-bits) or packed in delta-encoded form form.
-//
-// For 32-bit subpixel packing of a 32x32 tile:
-//
-// A tile X is encoded as:
-//
-// TX : 10 : unsigned min(x0,x1) tile subpixel coordinate.
-//
-// SX : 6 : unsigned subpixel span from min to max x with range
-// [0,32]. The original direction is not captured. Would
-// be nice to capture dx but not necessary right now but
-// could be in the future. <--- SPARE VALUES AVAILABLE
-//
-// A tile Y is encoded as:
-//
-// TY : 10 : unsigned min(y0,y1) tile subpixel coordinate.
-//
-// DY : 6 : signed subpixel delta y1-y0. The range of delta is
-// [-32,32] but horizontal lines are not encoded so [1,32]
-// is mapped to [0,31]. The resulting range [-32,31] fits
-// in 6 bits.
-//
-// TTS:
-//
-// 0 31
-// | TX | SX | TY | DY |
-// +-----+------+-----+------+
-// | 10 | 6 | 10 | 6 |
-//
-
-static
-SKC_RENDER_TTS_V_BITFIELD
-skc_tts_get_ty_pixel_v(SKC_RENDER_TTS_V const a)
-{
- //
- // extract the whole pixel y coordinate
- //
- return SKC_BFE(a,
- SKC_TTS_BITS_TY - SKC_SUBPIXEL_RESL_Y_LOG2,
- SKC_TTS_OFFSET_TY + SKC_SUBPIXEL_RESL_Y_LOG2);
-}
-
-static
-SKC_RENDER_TTS_V_BITFIELD
-skc_tts_get_xy_idx_v(SKC_RENDER_TTS_V const a)
-{
- //
- // get the linear array tile index of the pixel
- //
- return (((a & SKC_TTS_MASK_TX_PIXEL)
-
-#if (SKC_SUBPIXEL_RESL_X_LOG2 > SKC_TILE_HEIGHT_LOG2)
- >> (SKC_SUBPIXEL_RESL_X_LOG2 - SKC_TILE_HEIGHT_LOG2)
-#elif (SKC_SUBPIXEL_RESL_X_LOG2 < SKC_TILE_HEIGHT_LOG2)
- << (SKC_TILE_HEIGHT_LOG2 - SKC_SUBPIXEL_RESL_X_LOG2)
-#endif
-
- ) | skc_tts_get_ty_pixel_v(a));
-}
-
-#if 0
-static
-skc_ttx_v_s32_t
-skc_tts_get_dy_v(SKC_RENDER_TTS_V const a)
-{
- skc_ttx_v_s32_t const dy = SKC_AS(skc_ttx_v_s32_t)a >> SKC_TTS_OFFSET_DY;
-
- return (dy + SKC_AS(skc_ttx_v_s32_t)(~a >> 31));
-}
-#else
-static
-SKC_RENDER_TTS_V_BITFIELD
-skc_tts_get_dy_v(SKC_RENDER_TTS_V const a)
-{
- SKC_RENDER_TTS_V_BITFIELD const dy = a >> SKC_TTS_OFFSET_DY;
-
- return dy - (~a >> 31);
-}
-#endif
-
-static
-SKC_RENDER_TTS_V_BITFIELD
-skc_tts_get_tx_subpixel_v(SKC_RENDER_TTS_V const a)
-{
- return a & SKC_BITS_TO_MASK(SKC_SUBPIXEL_RESL_X_LOG2);
-}
-
-static
-SKC_RENDER_TTS_V_BITFIELD
-skc_tts_get_sx_v(SKC_RENDER_TTS_V const a)
-{
- return SKC_BFE(a,SKC_TTS_BITS_SX,SKC_TTS_OFFSET_SX);
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_aa_zero(__local union skc_subgroup_smem * SKC_RESTRICT const smem)
-{
- //
- // SIMD / CPU
- //
- // &
- //
- // SIMT / GPU
- //
- // Note that atomic_init() is likely implemented as a simple
- // assignment so there is no identifiable performance difference on
- // current targets.
- //
- // If such an architecture appears in the future then we'll probably
- // still want to implement this zero'ing operation as below but
- // follow with an appropriate fence that occurs before any scatter
- // operations.
- //
- // The baroque expansion below improves performance on Intel GEN by,
- // presumably, achieving the 64-byte per clock SLM write as well as
- // minimizing the overall number of SEND() block initializations and
- // launches.
- //
- // Intel GENx has a documented 64 byte per cycle SLM write limit.
- // So having each lane in an 8 lane subgroup zero-write 8 bytes is
- // probably a safe bet (Later: benchmarking backs this up!).
- //
- // Note there is no reason at this time to unroll this loop.
- //
- for (uint ii=0; ii<SKC_RENDER_WIDE_AA_WIDTH; ii++)
- smem->wide.area[ii][skc_subgroup_lane()] = ( 0 );
-}
-
-//
-// Note this is going to be vectorizable on most architectures.
-//
-// The return of the key translation feature might complicate things.
-//
-
-static
-void
-skc_scatter_ttpb(__global skc_ttxb_t const * SKC_RESTRICT const ttxb_extent,
- __local union skc_subgroup_smem * SKC_RESTRICT const smem,
- skc_block_id_t const pb_id)
-{
- skc_uint const offset = pb_id * (SKC_DEVICE_SUBBLOCK_WORDS / SKC_TILE_RATIO) + skc_subgroup_lane();
-
-#if ( SKC_TILE_RATIO == 1 )
-
- SKC_RENDER_TTP_V const ttp_v = ttxb_extent[offset];
-
-#elif ( SKC_TILE_RATIO == 2 )
-
- SKC_RENDER_TTP_V const ttp_v = vload2(offset,ttxb_extent);
-
-#else
-
-#error("tile ratio greater than 2 not supported")
-
-#endif
-
- //
- // Note there is no need to use an atomic for this operation on the
- // current group of target platforms... but this may change if
- // atomic ops truly go through a different path.
- //
- // As noted above, this direct increment is probably faster and can
- // always be followed by a fence.
- //
- // Furthermore, note that the key sorting orders all ttck keys
- // before ttpk keys.
- //
-
- //
- // FIXME -- if the SMEM store is wider than bank word count then we
- // might want to odd-even interleave the TTP values if the target
- // device can't handle 64-bit stores
- //
-
- //
- // skipping per-key translation for now
- //
- smem->vN.area[0][skc_subgroup_lane()] += ttp_v << (SKC_SUBPIXEL_RESL_X_LOG2 + 1);
-}
-
-//
-// Note that skc_scatter_ttsb is *not* vectorizable unless the
-// architecture supports a "scatter-add" capability. All relevant
-// GPUs support atomic add on shared/local memory and thus support
-// scatter-add.
-//
-
-static
-void
-skc_scatter_ttsb(__global skc_ttxb_t const * SKC_RESTRICT const ttxb_extent,
- __local union skc_subgroup_smem * SKC_RESTRICT const smem,
- skc_block_id_t const sb_id)
-{
- skc_uint const offset = sb_id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
-
- SKC_RENDER_TTS_V const tts_v = ttxb_extent[offset];
-
- //
- // Skipping per-key translation for now
- //
-
- // Index into tile
- //
- // The tiles are stored in column-major / height-major order
- //
- // The final column is a guard column that is OK to write to but
- // will never be read. It simplifies the TTSB scatter but could be
- // predicated if SMEM is really at a premium.
- //
-
- SKC_RENDER_TTS_V_BITFIELD const xy_idx = skc_tts_get_xy_idx_v(tts_v);
-
-#if 0
- if (tts_v != SKC_TTS_INVALID)
- printf("(%08X) = %u\n",tts_v,xy_idx);
-#endif
-
- //
- // adjust subpixel range to max y
- //
- // range is stored as [-32,31] and when read [0,31] is mapped to
- // [1,32] because a dy of 0 is not possible.
- //
- // more succinctly: if dy >= 0 then ++dy
- //
- SKC_RENDER_TTS_V_BITFIELD const dy = skc_tts_get_dy_v(tts_v);
-
- //
- // FIXME -- benchmark performance of setting dy to 0 if ttsv.vN is invalid?
- //
-
- // this "min(x0) * 2 + dx" is equivalent to "x0 + x1"
- SKC_RENDER_TTS_V_BITFIELD const widths = skc_tts_get_tx_subpixel_v(tts_v) * 2 + skc_tts_get_sx_v(tts_v);
-
- // Calculate left and right coverage contribution trapezoids
- SKC_RENDER_TTS_V_BITFIELD const left = dy * widths;
- SKC_RENDER_TTS_V_BITFIELD const right = (dy << (SKC_SUBPIXEL_RESL_X_LOG2 + 1)) - left;
-
- //
- // Accumulate altitudes and areas
- //
- // Optimization: if the device supports an CPU/SIMD vector-add or
- // GPU/SIMT scatter-add atomic int2 add operation then placing the
- // ALT and AREA values side-by-side would halve the number of
- // additions.
- //
-#if ( SKC_RENDER_SUBGROUP_SIZE == 1 )
- //
- // CPU/SIMD
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (tts_v C != SKC_TTS_INVALID) { \
- smem->aN.area[SKC_TILE_HEIGHT + xy_idx C] += left C; \
- smem->aN.area[ xy_idx C] += right C; \
- }
-
-#else
- //
- // GPU/SIMT -- IMPLIES SUPPORT FOR ATOMIC SCATTER-ADD
- //
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) \
- if (tts_v C != SKC_TTS_INVALID) { \
- SKC_ATOMIC_ADD_LOCAL_RELAXED_SUBGROUP(smem->atomic.area + \
- SKC_TILE_HEIGHT + xy_idx C, \
- left C); \
- SKC_ATOMIC_ADD_LOCAL_RELAXED_SUBGROUP(smem->atomic.area + xy_idx C, \
- right C); \
- }
-#endif
-
- SKC_RENDER_TTSB_EXPAND();
-}
-
-//
-// Note that 2048.0 can be represented exactly with fp16... fortuitous!
-//
-
-#define SKC_RENDER_FILL_MAX_AREA (2u * SKC_SUBPIXEL_RESL_X * SKC_SUBPIXEL_RESL_Y)
-#define SKC_RENDER_FILL_MAX_AREA_2 (2u * SKC_RENDER_FILL_MAX_AREA)
-#define SKC_RENDER_FILL_EVEN_ODD_MASK (SKC_RENDER_FILL_MAX_AREA_2 - 1)
-#define SKC_RENDER_FILL_MAX_AREA_RCP_F32 (SKC_RENDER_TILE_COVER)(1.0f / SKC_RENDER_FILL_MAX_AREA)
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_nonzero(__local union skc_subgroup_smem * SKC_RESTRICT const smem,
- union skc_tile_cover * SKC_RESTRICT const cover,
- union skc_tile_color * SKC_RESTRICT const color)
-{
- SKC_RENDER_ACC_COVER_INT area = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH))) // doesn't help on AVX2
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- area += smem->vN.area[ii][skc_subgroup_lane()];
- SKC_RENDER_ACC_COVER_UINT const trapabs = abs(area);
- SKC_RENDER_TILE_COVER const nonzero = SKC_CONVERT(SKC_RENDER_TILE_COVER)(min(trapabs,SKC_RENDER_FILL_MAX_AREA));
-
- cover->aN.c[ii] = nonzero * (SKC_RENDER_TILE_COVER)(SKC_RENDER_FILL_MAX_AREA_RCP_F32);
- }
-}
-
-static
-void
-skc_tile_cover_evenodd(__local union skc_subgroup_smem * SKC_RESTRICT const smem,
- union skc_tile_cover * SKC_RESTRICT const cover,
- union skc_tile_color * SKC_RESTRICT const color)
-{
- SKC_RENDER_ACC_COVER_INT area = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH))) // doesn't help on AVX2
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- area += smem->vN.area[ii][skc_subgroup_lane()];
- SKC_RENDER_ACC_COVER_UINT const trapabs = abs(area);
- SKC_RENDER_ACC_COVER_UINT const reflect = abs(SKC_AS(SKC_RENDER_ACC_COVER_INT)((trapabs & SKC_RENDER_FILL_EVEN_ODD_MASK) - SKC_RENDER_FILL_MAX_AREA));
-
- cover->aN.c[ii] = SKC_CONVERT(SKC_RENDER_TILE_COVER)(SKC_RENDER_FILL_MAX_AREA - reflect) * (SKC_RENDER_TILE_COVER)SKC_RENDER_FILL_MAX_AREA_RCP_F32;
- }
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_color_fill_solid(__global union skc_styling_cmd const * SKC_RESTRICT const commands,
- uint * SKC_RESTRICT const cmd_next,
- union skc_tile_color * SKC_RESTRICT const color)
-{
- //
- // rgba = solid fill
- //
- __global half const * const rgba_ptr = commands[*cmd_next].f16a2 + 0;
-
- *cmd_next += 2;
-
-#if !defined( SKC_RENDER_TILE_COLOR_VECTOR )
-
- SKC_RENDER_TILE_COLOR_PAIR const rg = SKC_RENDER_TILE_COLOR_PAIR_LOAD(0,rgba_ptr);
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->aN.rgba[ii].r = rg.lo;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->aN.rgba[ii].g = rg.hi;
-
- SKC_RENDER_TILE_COLOR_PAIR const ba = SKC_RENDER_TILE_COLOR_PAIR_LOAD(1,rgba_ptr);
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->aN.rgba[ii].b = ba.lo;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->aN.rgba[ii].a = ba.hi;
-
-#else
-
- SKC_RENDER_TILE_COLOR_PAIR const rg = SKC_RENDER_TILE_COLOR_PAIR_LOAD(0,rgba_ptr);
- SKC_RENDER_TILE_COLOR const r = rg.lo;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].even.even = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(r);
-
- SKC_RENDER_TILE_COLOR const g = rg.hi;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].odd.even = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(g);
-
- SKC_RENDER_TILE_COLOR_PAIR const ba = SKC_RENDER_TILE_COLOR_PAIR_LOAD(1,rgba_ptr);
- SKC_RENDER_TILE_COLOR const b = ba.lo;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].even.odd = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(b);
-
- SKC_RENDER_TILE_COLOR const a = ba.hi;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].odd.odd = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(a);
-
-#endif
-}
-
-//
-// Norbert Juffa notes: "GPU Pro Tip: Lerp Faster in C++"
-//
-// https://devblogs.nvidia.com/parallelforall/lerp-faster-cuda/
-//
-// Lerp in two fma/mad ops:
-//
-// t * b + ((-t) * a + a)
-//
-// Note: OpenCL documents mix() as being implemented as:
-//
-// a + (b - a) * t
-//
-// But this may be a native instruction on some devices. For example,
-// on GEN9 there is an LRP "linear interoplation" function but it
-// doesn't appear to support half floats.
-//
-
-#if 1
-#define SKC_LERP(a,b,t) mad(t,b,mad(-(t),a,a))
-#else
-#define SKC_LERP(a,b,t) mix(a,b,t)
-#endif
-
-//
-// CPUs have a mock local address space so copying the gradient header
-// is probably not useful. Just read directly from global.
-//
-
-#ifndef SKC_RENDER_GRADIENT_IS_GLOBAL
-#define SKC_RENDER_GRADIENT_SPACE __local
-#else
-#define SKC_RENDER_GRADIENT_SPACE __global
-#endif
-
-//
-// gradient is non-vertical
-//
-// removed the vertical (actually, horizontal) special case
-//
-
-static
-void
-skc_tile_color_fill_gradient_linear_nonvertical(__local union skc_subgroup_smem * SKC_RESTRICT const smem,
- __global union skc_styling_cmd const * SKC_RESTRICT const commands,
- uint * SKC_RESTRICT const cmd_next,
- union skc_tile_color * SKC_RESTRICT const color,
- skc_ttck_hi_t const ttck_hi)
-{
- //
- // Where is this tile?
- //
- // Note that the gradient is being sampled from pixel centers.
- //
- SKC_RENDER_GRADIENT_FLOAT const y =
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) I##.5f P
- (SKC_RENDER_GRADIENT_FLOAT)( SKC_RENDER_SCANLINE_VECTOR_EXPAND() ) +
- (skc_ttck_hi_get_y(ttck_hi) * SKC_TILE_HEIGHT + (skc_subgroup_lane() * SKC_RENDER_SCANLINE_VECTOR_SIZE));
-
- float const x = 0.5f + (skc_ttck_hi_get_x(ttck_hi) * SKC_TILE_WIDTH);
-
- //
- // Get starting numerator and denominator
- //
- // Note: if gh[0].dx is exactly 0.0f then this is a vertical
- // gradient and can be handled by a special opcode.
- //
- // Note: the mad() ordering is slightly different than the original
- // CUDA implementation.
- //
- union skc_gradient_vector const gv = { vload4(0,&commands[*cmd_next].f32) };
-
- *cmd_next += 4;
-
- float const gv_x_dot = mad(x,gv.dx,gv.p0);
- SKC_RENDER_GRADIENT_FLOAT const gv_numer = mad(y,gv.dy,gv_x_dot);
-
- //
- // Where are columns along gradient vector?
- //
- // TODO: Note that the gv_denom isn't multiplied through.
- //
- // Please doublecheck this... but I recall that in certain cases
- // this wipes out some precision and results in minor but noticeable
- // gradient artifacts.
- //
- // All arguments are scalars except gv_numer so a simpler
- // evaluation might save some flops.
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->grad[ii].distance = mad(gv.dx,(float)ii,gv_numer) * gv.denom;
-
- //
- // is gradient non-repeating, repeating or reflecting?
- //
- switch (commands[(*cmd_next)++].u32)
- {
- case SKC_STYLING_GRADIENT_TYPE_LINEAR_NON_REPEATING:
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->grad[ii].distance = clamp(color->grad[ii].distance,0.0f,1.0f);
- break;
-
- case SKC_STYLING_GRADIENT_TYPE_LINEAR_REPEATING:
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->grad[ii].distance -= floor(color->grad[ii].distance);
- break;
-
- default: // PXL_STYLING_GRADIENT_TYPE_LINEAR_REFLECTING
- //
- // OPTIMIZATION: Can this be done in fewer than ~4 ops?
- //
- // Note: OpenCL "rint()" is round-to-nearest-even integer!
- //
- // Note: the floor() "round to -inf" op is implemented in the
- // GEN op 'FRC' so probably don't use trunc() when floor will
- // suffice.
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- SKC_RENDER_GRADIENT_FLOAT dist_abs = fabs(color->grad[ii].distance);
- color->grad[ii].distance = fabs(dist_abs - rint(dist_abs));
- }
- }
-
- //
- // initialize "stoplerp" for all columns
- //
- uint const slope_count = commands[(*cmd_next)++].u32;
- uint const gd_n_v1 = commands[(*cmd_next)++].u32; // REMOVE ME
-
- {
- float const slope = commands[(*cmd_next)++].f32;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->grad[ii].stoplerp = color->grad[ii].distance * slope;
- }
-
- //
- // compute stoplerp for remaining stops
- //
- for (int jj=1; jj<slope_count; jj++)
- {
- float const floor = (float)jj;
- float const slope = commands[(*cmd_next)++].f32;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->grad[ii].stoplerp = mad(min(0, color->grad[ii].stoplerp - floor),slope,color->grad[ii].stoplerp);
- }
-
- //
- // copy gradient colors to local memory
- //
- uint const gd_n = slope_count + 1;
-
-#ifndef SKC_RENDER_GRADIENT_IS_GLOBAL
- //
- // copy entire gradient descriptor to local memory
- //
- for (uint ii=skc_subgroup_lane(); ii<gd_n*4; ii+=SKC_RENDER_SUBGROUP_SIZE)
- smem->cmds[ii].u32 = commands[*cmd_next + ii].u32;
-
- __local half const * const SKC_RESTRICT gc = smem->gc + 0;
-#else
- //
- // prefetch entire gradient header
- //
- // no noticeable impact on performance
- //
- // prefetch(&commands[*cmd_next].u32,gh_words);
- //
- __global half const * const SKC_RESTRICT gc = commands[*cmd_next].f16a2 + 0;
-#endif
-
- //
- // adjust cmd_next so that V1 structure is consumed -- FIXME
- //
- *cmd_next += SKC_GRADIENT_CMD_WORDS_V2_ADJUST(gd_n_v1,gd_n);
-
- //
- // lerp between color pair stops
- //
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- //
- // Finally, we have the gradient stop index and the color stop
- // pair lerp fraction
- //
- // Note that if these are vector values then a gather operation
- // must occur -- there may be platforms (AVX-512?) that can
- // perform an explicit gather on a vector type but it's not
- // really expressible in OpenCL except implicitly with a
- // workgroup of work items.
- //
- // ***********************
- //
- // FIXME -- USE HERB'S SINGLE FMA LERP
- //
- // ***********************
- //
- SKC_RENDER_GRADIENT_STOP const gc_stop = SKC_CONVERT(SKC_RENDER_GRADIENT_STOP)(color->grad[ii].stoplerp);
- SKC_RENDER_GRADIENT_FRAC const gc_frac = SKC_CONVERT(SKC_RENDER_GRADIENT_FRAC)(color->grad[ii].stoplerp - floor(color->grad[ii].stoplerp));
-
- {
- SKC_RENDER_TILE_COLOR lo, hi;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + 0,gc); \
- lo C = cc.lo; \
- hi C = cc.hi; \
- }
-
- SKC_RENDER_SCANLINE_VECTOR_EXPAND();
-
- color->aN.rgba[ii].r = SKC_LERP(lo,hi,gc_frac);
- }
-
- //
- //
- //
- {
- SKC_RENDER_TILE_COLOR lo, hi;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + gd_n,gc); \
- lo C = cc.lo; \
- hi C = cc.hi; \
- }
-
- SKC_RENDER_SCANLINE_VECTOR_EXPAND();
-
- color->aN.rgba[ii].g = SKC_LERP(lo,hi,gc_frac);
- }
-
- //
- //
- //
- {
- SKC_RENDER_TILE_COLOR lo, hi;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + gd_n*2,gc); \
- lo C = cc.lo; \
- hi C = cc.hi; \
- }
-
- SKC_RENDER_SCANLINE_VECTOR_EXPAND();
-
- color->aN.rgba[ii].b = SKC_LERP(lo,hi,gc_frac);
- }
-
- //
- //
- //
- {
- SKC_RENDER_TILE_COLOR lo, hi;
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + gd_n*3,gc); \
- lo C = cc.lo; \
- hi C = cc.hi; \
- }
-
- SKC_RENDER_SCANLINE_VECTOR_EXPAND();
-
- color->aN.rgba[ii].a = SKC_LERP(lo,hi,gc_frac);
- }
- }
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_blend_over(union skc_tile_color * SKC_RESTRICT const color_acc,
- union skc_tile_cover const * SKC_RESTRICT const cover_wip,
- union skc_tile_color const * SKC_RESTRICT const color_wip)
-{
- //
- // fralunco = cover.wip * acc.a
- //
- // acc.r = fralunco * wip.r + acc.r
- // acc.g = fralunco * wip.g + acc.g
- // acc.b = fralunco * wip.b + acc.b
- // acc.a = -fralunco * wip.a + acc.a
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- SKC_RENDER_TILE_COVER const fralunco = cover_wip->aN.c[ii] * color_acc->aN.rgba[ii].a;
-
- color_acc->aN.rgba[ii].r = mad(+fralunco,color_wip->aN.rgba[ii].r,color_acc->aN.rgba[ii].r);
- color_acc->aN.rgba[ii].g = mad(+fralunco,color_wip->aN.rgba[ii].g,color_acc->aN.rgba[ii].g);
- color_acc->aN.rgba[ii].b = mad(+fralunco,color_wip->aN.rgba[ii].b,color_acc->aN.rgba[ii].b);
- color_acc->aN.rgba[ii].a = mad(-fralunco,color_wip->aN.rgba[ii].a,color_acc->aN.rgba[ii].a);
- }
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_blend_plus(union skc_tile_color * SKC_RESTRICT const color_acc,
- union skc_tile_cover const * SKC_RESTRICT const cover_wip,
- union skc_tile_color const * SKC_RESTRICT const color_wip)
-{
- //
- // cover_min = min(cover.wip,a.acc)
- //
- // r.acc = cover_min * r.wip + r.acc
- // g.acc = cover_min * g.wip + g.acc
- // b.acc = cover_min * b.wip + b.acc
- // a.acc = -cover_min * a.wip + a.acc
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- SKC_RENDER_TILE_COVER const cover_min = fmin(cover_wip->aN.c[ii],color_acc->aN.rgba[ii].a);
-
- color_acc->aN.rgba[ii].r = mad(+cover_min,color_wip->aN.rgba[ii].r,color_acc->aN.rgba[ii].r);
- color_acc->aN.rgba[ii].g = mad(+cover_min,color_wip->aN.rgba[ii].g,color_acc->aN.rgba[ii].g);
- color_acc->aN.rgba[ii].b = mad(+cover_min,color_wip->aN.rgba[ii].b,color_acc->aN.rgba[ii].b);
- color_acc->aN.rgba[ii].a = mad(-cover_min,color_wip->aN.rgba[ii].a,color_acc->aN.rgba[ii].a);
- }
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_blend_multiply(union skc_tile_color * SKC_RESTRICT const color_acc,
- union skc_tile_cover const * SKC_RESTRICT const cover_wip,
- union skc_tile_color const * SKC_RESTRICT const color_wip)
-{
- //
- // r.acc = (cover.wip * r.wip) * r.acc
- // g.acc = (cover.wip * g.wip) * g.acc
- // b.acc = (cover.wip * b.wip) * b.acc
- // a.acc = (cover.wip * a.wip) * (1.0 - a.acc) <-- a.acc is already (1.0 - alpha)
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- color_acc->aN.rgba[ii].r *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].r;
- color_acc->aN.rgba[ii].g *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].g;
- color_acc->aN.rgba[ii].b *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].b;
- color_acc->aN.rgba[ii].a *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].a;
- }
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_blend_knockout(union skc_tile_cover * SKC_RESTRICT const cover_acc,
- union skc_tile_color * SKC_RESTRICT const color_acc,
- union skc_tile_cover const * SKC_RESTRICT const cover_wip,
- union skc_tile_color const * SKC_RESTRICT const color_wip)
-{
- //
- // cover.wip.contrib = (1.0 - cover.acc) * cover.wip
- // cover.acc = cover.acc + cover.wip.contrib
- //
- // r.acc = cover.wip.contrib * r.wip + r.acc
- // g.acc = cover.wip.contrib * g.wip + g.acc
- // b.acc = cover.wip.contrib * b.wip + b.acc
- // a.acc = -cover.wip.contrib * a.wip * a.acc
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- SKC_RENDER_TILE_COVER const contrib = (1 - cover_acc->aN.c[ii]) * cover_wip->aN.c[ii];
-
- cover_acc->aN.c[ii] += contrib;
-
- color_acc->aN.rgba[ii].r = mad(+contrib,color_wip->aN.rgba[ii].r,color_acc->aN.rgba[ii].r);
- color_acc->aN.rgba[ii].g = mad(+contrib,color_wip->aN.rgba[ii].g,color_acc->aN.rgba[ii].g);
- color_acc->aN.rgba[ii].b = mad(+contrib,color_wip->aN.rgba[ii].b,color_acc->aN.rgba[ii].b);
- color_acc->aN.rgba[ii].a = mad(-contrib,color_wip->aN.rgba[ii].a,color_acc->aN.rgba[ii].a);
- }
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_msk_copy_wip(union skc_tile_cover * SKC_RESTRICT const cover_msk,
- union skc_tile_cover const * SKC_RESTRICT const cover_wip)
-{
-#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover_msk->aN.c[ii] = cover_wip->aN.c[ii];
-
-#else
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
- cover_msk->vN.c[ii] = cover_wip->vN.c[ii];
-
-#endif
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_msk_copy_acc(union skc_tile_cover * SKC_RESTRICT const cover_msk,
- union skc_tile_cover const * SKC_RESTRICT const cover_acc)
-{
-#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover_msk->aN.c[ii] = cover_acc->aN.c[ii];
-
-#else
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNTN)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
- cover_msk->vN.c[ii] = cover_acc->vN.c[ii];
-
-#endif
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_accumulate(union skc_tile_cover * SKC_RESTRICT const cover_acc,
- union skc_tile_cover const * SKC_RESTRICT const cover_wip)
-{
- //
- // cover.wip.contrib = (1.0 - cover.acc) * cover.wip
- // cover.acc = cover.acc + cover.wip.contrib
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover_acc->aN.c[ii] = mad(1 - cover_acc->aN.c[ii],cover_wip->aN.c[ii],cover_acc->aN.c[ii]);
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_wip_mask(union skc_tile_cover * SKC_RESTRICT const cover_wip,
- union skc_tile_cover const * SKC_RESTRICT const cover_msk)
-{
- //
- // cover.wip *= cover.msk
- //
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover_wip->aN.c[ii] *= cover_msk->aN.c[ii];
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_wip_zero(union skc_tile_cover * SKC_RESTRICT const cover)
-{
-#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) // || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover->aN.c[ii] = 0;
-
-#else
- //
- // GEN9 compiler underperforms on this
- //
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
- cover->vN.c[ii] = 0;
-
-#endif
-}
-
-static
-void
-skc_tile_cover_acc_zero(union skc_tile_cover * SKC_RESTRICT const cover)
-{
-#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) // || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover->aN.c[ii] = 0;
-
-#else
- //
- // GEN9 compiler underperforms on this
- //
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
- cover->vN.c[ii] = 0;
-
-#endif
-}
-
-static
-void
-skc_tile_cover_msk_zero(union skc_tile_cover * SKC_RESTRICT const cover)
-{
-#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover->aN.c[ii] = 0;
-
-#else
- //
- // GEN9 compiler underperforms on this
- //
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
- cover->vN.c[ii] = 0;
-
-#endif
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_msk_one(union skc_tile_cover * SKC_RESTRICT const cover)
-{
-#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover->aN.c[ii] = 1;
-
-#else
- //
- // GEN9 compiler underperforms on this
- //
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
- cover->vN.c[ii] = SKC_RENDER_TILE_COVER_VECTOR_ONE;
-
-#endif
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_cover_msk_invert(union skc_tile_cover * SKC_RESTRICT const cover)
-{
-#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- cover->aN.c[ii] = 1 - cover->aN.c[ii];
-
-#else
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
- cover->vN.c[ii] = 1 - cover->vN.c[ii];
-
-#endif
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_color_wip_zero(union skc_tile_color * SKC_RESTRICT const color)
-{
-#if !defined( SKC_RENDER_TILE_COLOR_VECTOR ) || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- color->aN.rgba[ii].r = 0;
- color->aN.rgba[ii].g = 0;
- color->aN.rgba[ii].b = 0;
- color->aN.rgba[ii].a = 1;
- }
-
-#else
- //
- // DISABLED ON GEN9 -- probably a compiler bug
- //
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].even.even = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].odd.even = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].even.odd = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].odd.odd = 1;
-#endif
-}
-
-static
-void
-skc_tile_color_acc_zero(union skc_tile_color * SKC_RESTRICT const color)
-{
-#if !defined( SKC_RENDER_TILE_COLOR_VECTOR ) || defined( SKC_ARCH_GEN9 )
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- color->aN.rgba[ii].r = 0;
- color->aN.rgba[ii].g = 0;
- color->aN.rgba[ii].b = 0;
- color->aN.rgba[ii].a = 1;
- }
-
-#else
- //
- // DISABLED ON GEN9 -- probably a compiler bug
- //
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].even.even = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].odd.even = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].even.odd = 0;
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- color->vN.rgba[ii].odd.odd = 1;
-#endif
-}
-
-//
-//
-//
-
-static
-bool
-skc_tile_color_test_opacity(union skc_tile_color const * SKC_RESTRICT const color)
-{
- //
- // returns true if tile is opaque
- //
- // various hacks to test for complete tile opacity
- //
- // note that front-to-back currently has alpha at 0.0f -- this can
- // be harmonized to use a traditional alpha if we want to support
- // rendering in either direction
- //
- // hack -- ADD/MAX/OR all alphas together and test for non-zero
- //
- SKC_RENDER_TILE_COLOR t = color->aN.rgba[0].a;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
- for (uint ii=1; ii<SKC_TILE_WIDTH; ii++)
- t += color->aN.rgba[ii].a;
-
-#if ( SKC_RENDER_SUBGROUP_SIZE == 1 )
- //
- // SIMD
- //
- return !any(t != ( 0 ));
-
-#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 1 )
- //
- // SIMT - scalar per lane
- //
- return !sub_group_any(t != 0);
-
-#else
- //
- // SIMT - vector per lane
- //
- return !sub_group_any(any(t != ( 0 )));
-
-#endif
-
- //
- // TODO: The alternative vector-per-lane implementation below is
- // *not* believed to be performant because the terse vector-wide
- // test is just hiding a series of comparisons and is likely worse
- // than the blind ADD/MAX/OR'ing of all alphas followed by a single
- // test.
- //
-#if 0
- //
- // SIMT - vector per lane
- //
-
- // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT-1)))
- for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
- {
- if (sub_group_any(any(color->vN.ba[ii].a != ( 0 ))))
- return false;
- }
-
- return true;
-#endif
-}
-
-//
-//
-//
-
-static
-void
-skc_tile_background_over(__global union skc_styling_cmd const * SKC_RESTRICT const commands,
- uint * SKC_RESTRICT const cmd_next,
- union skc_tile_color * SKC_RESTRICT const color)
-{
- //
- // acc.r = acc.a * r + acc.r
- // acc.g = acc.a * g + acc.g
- // acc.b = acc.a * b + acc.b
- //
- __global half const * const rgba_ptr = commands[*cmd_next].f16a2 + 0;
-
- *cmd_next += 2;
-
- SKC_RENDER_TILE_COLOR_PAIR const rg = SKC_RENDER_TILE_COLOR_PAIR_LOAD(0,rgba_ptr);
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->aN.rgba[ii].r = mad(color->aN.rgba[ii].a,rg.lo,color->aN.rgba[ii].r);
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->aN.rgba[ii].g = mad(color->aN.rgba[ii].a,rg.hi,color->aN.rgba[ii].g);
-
- SKC_RENDER_TILE_COLOR_PAIR const ba = SKC_RENDER_TILE_COLOR_PAIR_LOAD(1,rgba_ptr);
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- color->aN.rgba[ii].b = mad(color->aN.rgba[ii].a,ba.lo,color->aN.rgba[ii].b);
-}
-
-//
-//
-//
-
-// #define SKC_SURFACE_IS_BUFFER
-#ifdef SKC_SURFACE_IS_BUFFER
-
-static
-void
-skc_surface_composite_u8_rgba(__global SKC_RENDER_SURFACE_U8_RGBA * SKC_RESTRICT const surface,
- skc_uint const surface_pitch,
- union skc_tile_color const * SKC_RESTRICT const color,
- skc_ttck_hi_t const ttck_hi)
-{
- //
- // NEW MAJOR OPTIMIZATION:
- //
- // Rotating and rasterizing the original world transform by -90
- // degrees and then rendering the scene scene by +90 degrees enables
- // all the final surface composite to be perfomed in perfectly
- // coalesced wide transactions.
- //
- // For this reason, linear access to the framebuffer is preferred.
- //
- // vvvvvvvvvvvv OLD NOTE BELOW vvvvvvvvvvvvv
- //
- // NOTE THIS IS TRANSPOSED BY 90 DEGREES
- //
- // INTEL HAS A "BLOCK STORE" FEATURE THAT SOLVES THIS AND TEXTURE
- // CACHES ARE ALSO PROBABLY SOMEWHAT FORGIVING.
- //
- // IT'S EASY TO TRANSPOSE THIS IN SMEM BEFORE STORING BUT IN THIS
- // CPU EXAMPLE WE CAN PROBABLY DO WELL BY JUST WRITING OUT SCALARS
- //
- // FIXME -- NEED TO HARMONIZE BYTE AND COMPONENT COLOR CHANNEL
- // ORDERING SO THAT COLOR CHANNELS MATCH 0xAARRGGBBAA ORDER
- //
- uint const pitch = surface_pitch / SKC_RENDER_SCANLINE_VECTOR_SIZE;
- uint const x = skc_ttck_hi_get_x(ttck_hi);
- uint const y = skc_ttck_hi_get_y(ttck_hi) ;
- uint const base = x * SKC_TILE_WIDTH * pitch + y * (SKC_TILE_HEIGHT / SKC_RENDER_SCANLINE_VECTOR_SIZE) + skc_subgroup_lane();
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
- SKC_RENDER_SURFACE_U8_RGBA rgba = ( 0xFF000000 );
-
- rgba |= SKC_CONVERT(SKC_RENDER_SURFACE_U8_RGBA)(color->aN.rgba[ii].r * 255);
- rgba |= SKC_CONVERT(SKC_RENDER_SURFACE_U8_RGBA)(color->aN.rgba[ii].g * 255) << 8;
- rgba |= SKC_CONVERT(SKC_RENDER_SURFACE_U8_RGBA)(color->aN.rgba[ii].b * 255) << 16;
-
- surface[base + ii * pitch] = rgba;
-
- // printf("%08v2X\n",rgba);
- }
-}
-
-#else
-
-static
-void
-skc_surface_composite_u8_rgba(__write_only image2d_t surface,
- union skc_tile_color const * SKC_RESTRICT const color,
- skc_ttck_hi_t const ttck_hi)
-{
- //
- // NEW MAJOR OPTIMIZATION:
- //
- // Rotating and rasterizing the original world transform by -90
- // degrees and then rendering the scene scene by +90 degrees enables
- // all the final surface composite to be perfomed in perfectly
- // coalesced wide transactions.
- //
- // For this reason, linear access to the framebuffer is preferred.
- //
- // vvvvvvvvvvvv OLD NOTE BELOW vvvvvvvvvvvvv
- //
- // NOTE THIS IS TRANSPOSED BY 90 DEGREES
- //
- // INTEL HAS A "BLOCK STORE" FEATURE THAT SOLVES THIS AND TEXTURE
- // CACHES ARE ALSO PROBABLY SOMEWHAT FORGIVING.
- //
- // IT'S EASY TO TRANSPOSE THIS IN SMEM BEFORE STORING BUT IN THIS
- // CPU EXAMPLE WE CAN PROBABLY DO WELL BY JUST WRITING OUT SCALARS
- //
- // FIXME -- NEED TO HARMONIZE BYTE AND COMPONENT COLOR CHANNEL
- // ORDERING SO THAT COLOR CHANNELS MATCH 0xAARRGGBBAA ORDER
- //
-
-#if 1
- int x = skc_ttck_hi_get_x(ttck_hi) * SKC_TILE_WIDTH;
- int y = skc_ttck_hi_get_y(ttck_hi) * SKC_TILE_HEIGHT + (skc_subgroup_lane() * SKC_RENDER_SCANLINE_VECTOR_SIZE);
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
-#ifdef SKC_RENDER_TILE_COLOR_INTERLEAVED
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_SURFACE_WRITE(surface, \
- (int2)(x,y+I), \
- color->iN.rgba[ii] A); \
- }
-
-#else
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_SURFACE_COLOR const rgba = \
- (SKC_RENDER_SURFACE_COLOR) \
- (color->aN.rgba[ii].r C, \
- color->aN.rgba[ii].g C, \
- color->aN.rgba[ii].b C, \
- 1.0); \
- SKC_RENDER_SURFACE_WRITE(surface,(int2)(x,y+I),rgba); \
- }
-
-#endif
-
- SKC_RENDER_SCANLINE_VECTOR_EXPAND();
-
- x += 1;
- }
-#else
- int x = skc_ttck_hi_get_y(ttck_hi) * SKC_TILE_HEIGHT + (skc_subgroup_lane() * SKC_RENDER_SCANLINE_VECTOR_SIZE);
- int y = skc_ttck_hi_get_x(ttck_hi) * SKC_TILE_WIDTH;
-
- // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
- for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
- {
-#ifdef SKC_RENDER_TILE_COLOR_INTERLEAVED
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_SURFACE_WRITE(surface, \
- (int2)(x+I,y+ii), \
- color->iN.rgba[ii] A); \
- }
-
-#else
-
-#undef SKC_EXPAND_X
-#define SKC_EXPAND_X(I,S,C,P,A) { \
- SKC_RENDER_SURFACE_COLOR const rgba = \
- (SKC_RENDER_SURFACE_COLOR) \
- (color->aN.rgba[ii].r C, \
- color->aN.rgba[ii].g C, \
- color->aN.rgba[ii].b C, \
- 1.0); \
- SKC_RENDER_SURFACE_WRITE(surface,(int2)(x+I,y+ii),rgba); \
- }
-
-#endif
-
- SKC_RENDER_SCANLINE_VECTOR_EXPAND();
- }
-
-#endif
-}
-
-#endif
-
-//
-//
-//
-static
-uint const
-skc_ttck_lane(uint const ttck_idx)
-{
- return ttck_idx & SKC_RENDER_SUBGROUP_MASK;
-}
-
-//
-// RENDER KERNEL
-//
-
-__kernel
-SKC_RENDER_KERNEL_ATTRIBS
-void
-skc_kernel_render(__global union skc_layer_node const * SKC_RESTRICT const layers,
- __global struct skc_group_node const * SKC_RESTRICT const groups,
- __global union skc_styling_cmd const * SKC_RESTRICT const commands, // FIXME -- rename
-
- __global skc_ttck_t const * SKC_RESTRICT const ttck_keys, // rename: keys
- skc_uint const ttck_count, // rename: key_count
-
- __global uint const * SKC_RESTRICT const ttck_offsets, // rename: offsets
- skc_uint const tile_count, // rename: offset_count
-
- __global skc_ttxb_t const * SKC_RESTRICT const ttxb_extent,
-#ifdef SKC_SURFACE_IS_BUFFER
- __global void * SKC_RESTRICT const surface,
-#else
- __write_only image2d_t surface,
-#endif
-#ifdef SKC_SURFACE_IS_BUFFER
- skc_uint const surface_pitch,
-#endif
- uint4 const tile_clip) // rename: clip
-{
- //
- // Each subgroup is responsible for a tile. No extra subgroups are
- // launched.
- //
- // FIXME -- might be better implemented as a "grid stride loop" if
- // Intel GEN really has a local memory "quantum" of 4KB which means
- // we would need to launch 4 subgroups per workgroup.
- //
- // Confirmed: GEN8 has 4KB SLM workgroup min while GEN9 is 1KB.
- //
-
- //
- // declare tile cover and color registers
- //
- // this used to be a neat unified struct but the Intel GEN compiler
- // wasn't cooperating and spilling to private memory even though all
- // registers were indexed by constants
- //
- union skc_tile_color color_wip;
- union skc_tile_color color_acc;
-
- union skc_tile_cover cover_wip;
- union skc_tile_cover cover_acc;
- union skc_tile_cover cover_msk;
-
- //
- // which subgroup in the grid is this?
- //
- // TAKE NOTE: the Intel GEN compiler is recognizing get_group_id(0)
- // as a uniform but the alternative calculation used when there are
- // multiple subgroups per workgroup is not cooperating and
- // driving spillage elsewhere.
- //
-#if ( SKC_RENDER_WORKGROUP_SUBGROUPS == 1 )
- skc_uint const ttck_offset_idx = get_group_id(0);
-#else
- skc_uint const ttck_offset_idx = get_group_id(0) * SKC_RENDER_WORKGROUP_SUBGROUPS + get_sub_group_id();
-#endif
-
- //
- // load the starting ttck for this offset and get a bound on the max
- // number of keys that might be loaded
- //
- // these are uniform across all subgroup lanes
- //
- skc_uint ttck_idx = ttck_offsets[ttck_offset_idx];
-
- //
- // FIXME -- SIMD/CPU version should probaby load a 256-bit (4-wide)
- // vector of ttck keys
- //
-#ifndef SKC_TARGET_ARCH_COALESCED_LOAD_TTCK
-
- skc_ttck_t ttck = ttck_keys[ttck_idx];
-
-#else
-
- uint const ttck_base = ttck_idx & ~SKC_RENDER_SUBGROUP_MASK;
- uint const ttck_lane = ttck_idx & SKC_RENDER_SUBGROUP_MASK;
- skc_ttck_t ttck_s = ttck_keys[min(ttck_base+max(get_sub_group_local_id(),ttck_lane),ttck_count-1)]
-
-#endif
-
- //
- // set up style group/layer state
- //
- struct skc_styling_group {
- union skc_group_range range;
- skc_uint depth;
- skc_uint id;
- } group;
-
- group.range.lo = 0;
- group.range.hi = SKC_UINT_MAX;
- group.depth = 0;
- group.id = SKC_UINT_MAX;
-
- //
- // start with clear tile opacity, knockout and flag bits
- //
- // uint color_acc_opacity = 0; // per lane bit mask -- assumes a PIXEL_TILE_HEIGHT <= 32
- // uint cover_acc_knockout = 0; // per lane bit mask -- assumes a PIXEL_TILE_HEIGHT <= 32
- //
- skc_uint flags = 0;
-
- //
- // declare and initialize accumulators
- //
-#if ( SKC_RENDER_WORKGROUP_SUBGROUPS == 1 )
- __local union skc_subgroup_smem smem[1];
-#else
- __local union skc_subgroup_smem smem_wg[SKC_RENDER_WORKGROUP_SUBGROUPS];
- __local union skc_subgroup_smem * SKC_RESTRICT const smem = smem_wg + get_sub_group_id();
-#endif
-
-#ifdef SKC_TARGET_ARCH_COALESCED_LOAD_TTCK
- //
- // select the initial ttck key
- //
- skc_ttck_t ttck;
-#if 0
- ttck = sub_group_broadcast(ttck_s,ttck_lane); // SHOULD WORK BUT .4454 COMPILER IS BROKEN
-#else
- ttck.lo = sub_group_broadcast(ttck_s.lo,ttck_lane); // EXPLICIT WORKAROUND
- ttck.hi = sub_group_broadcast(ttck_s.hi,ttck_lane);
-#endif
-
-#endif
-
- //
- // save the first key so we know what tile we're in
- //
- skc_ttck_t ttck0 = ttck;
-
- //
- // evaluate the coarse clip as late as possible
- //
- skc_uint const ttck_hi_x = skc_ttck_hi_get_x(ttck0.hi);
-
- if ((ttck_hi_x < tile_clip.lo.x) || (ttck_hi_x >= tile_clip.hi.x))
- return;
-
- skc_uint const ttck_hi_y = skc_ttck_hi_get_y(ttck0.hi);
-
- if ((ttck_hi_y < tile_clip.lo.y) || (ttck_hi_y >= tile_clip.hi.y))
- return;
-
-#if 0
- printf("< %u, %u >\n",ttck_hi_x,ttck_hi_y);
-#endif
-
- //
- // load -> scatter -> flush
- //
- while (true)
- {
- // if scattering is disabled then just run through ttck keys
- bool const is_scatter_enabled = (flags & SKC_TILE_FLAGS_SCATTER_SKIP) == 0;
-
- // need to clear accumulators before a scatter loop
- if (is_scatter_enabled)
- {
- skc_tile_aa_zero(smem);
- }
-
- do {
- // skip scattering?
- if (is_scatter_enabled)
- {
- skc_block_id_t const xb_id = skc_ttck_lo_get_ttxb_id(ttck.lo);
-
- if (skc_ttck_lo_is_prefix(ttck.lo)) {
- skc_scatter_ttpb(ttxb_extent,smem,xb_id);
- } else {
- skc_scatter_ttsb(ttxb_extent,smem,xb_id);
- }
- }
-
- //
- // any ttck keys left?
- //
- if (++ttck_idx >= ttck_count)
- {
- flags |= SKC_TILE_FLAGS_FLUSH_FINALIZE;
- break;
- }
-
- //
- // process next ttck key
- //
-#ifndef SKC_TARGET_ARCH_COALESCED_LOAD_TTCK
- //
- // SIMD -- read next key
- //
- ttck = ttck_keys[ttck_idx];
-#else
- //
- // SIMT -- refresh the ttck_s?
- //
- uint const ttck_lane_next = ttck_idx & SKC_RENDER_SUBGROUP_MASK;
-
- if (ttck_lane_next == 0)
- ttck_s = ttck_keys[min(ttck_idx+get_sub_group_local_id(),ttck_count-1)];
-
- //
- // broadcast next key to entire subgroup
- //
-#if 0
- ttck = sub_group_broadcast(ttck_s,ttck_lane_next); // SHOULD WORK BUT .4454 COMPILER IS BROKEN
-#else
- ttck.lo = sub_group_broadcast(ttck_s.lo,ttck_lane_next); // EXPLICIT WORKAROUND
- ttck.hi = sub_group_broadcast(ttck_s.hi,ttck_lane_next);
-#endif
-#endif
- // continue scattering if on same YXL layer
- } while (skc_ttck_equal_yxl(ttck0,ttck));
-
- // finalize if no longer on same YX tile
- if (!skc_ttck_hi_equal_yx(ttck0.hi,ttck.hi))
- {
- // otherwise, unwind the tile styling and exit
- flags |= SKC_TILE_FLAGS_FLUSH_FINALIZE;
- }
-
- //
- // given: new layer id from ttxk key
- //
- // load [layer id]{ group id, depth }
- //
- // if within current group's layer range
- //
- // if at same depth
- //
- // load and execute cover>[mask>]color>blend commands
- //
- // else if not at same depth then move deeper
- //
- // for all groups in group trail from cur depth to new depth
- // enter group, saving and initializing regs as necessary
- // increment depth and update layer range
- // load and execute cover>[mask>]color>blend commands
- //
- // else not within layer range
- //
- // exit current group, restoring regs as necessary
- // decrement depth and update layer range
- //
- //
- skc_layer_id const layer_id_new = skc_ttck_get_layer(ttck0); // FIXME -- this was ttck_hi
- union skc_layer_node const layer_node_new = layers[layer_id_new];
-
- // clear flag that controls group/layer traversal
- flags &= ~SKC_TILE_FLAGS_FLUSH_COMPLETE;
-
- do {
- bool const unwind = (flags & SKC_TILE_FLAGS_FLUSH_UNWIND) != 0;
-
- //
- // is layer a child of the current parent group?
- //
- uint cmd_next = 0;
-
- if (!unwind && (layer_node_new.parent == group.id))
- {
- // execute this layer's cmds
- cmd_next = layer_node_new.cmds;
-
- // if this is final then configure so groups get unwound, otherwise we're done
- flags |= ((flags & SKC_TILE_FLAGS_FLUSH_FINALIZE) ? SKC_TILE_FLAGS_FLUSH_UNWIND : SKC_TILE_FLAGS_FLUSH_COMPLETE);
- }
- else if (!unwind && (layer_id_new >= group.range.lo && layer_id_new <= group.range.hi))
- {
- //
- // is layer in a child group?
- //
- union skc_group_parents const gp = groups[layer_node_new.parent].parents;
- uint const gn = gp.depth - ++group.depth;
-
- if (gn == 0)
- group.id = layer_node_new.parent;
- else
- group.id = commands[gp.base + gn - 1].parent;
-
- // update group layer range
- group.range = groups[group.id].range;
-
- // enter current group
- cmd_next = groups[group.id].cmds.enter;
- }
- else // otherwise, exit this group
- {
- // enter current group
- cmd_next = groups[group.id].cmds.leave;
-
- // decrement group depth
- if (--group.depth == 0)
- {
- flags |= SKC_TILE_FLAGS_FLUSH_COMPLETE;
- }
- else
- {
- // get path_base of current group
- uint const gnpb = groups[group.id].parents.base;
-
- // get parent of current group
- group.id = commands[gnpb].parent;
-
- // update group layer range
- group.range = groups[group.id].range;
- }
- }
-
- //
- // execute cmds
- //
- while (true)
- {
- union skc_styling_cmd const cmd = commands[cmd_next++];
-
- switch (cmd.u32 & SKC_STYLING_OPCODE_MASK_OPCODE)
- {
- case SKC_STYLING_OPCODE_NOOP:
- break;
-
- case SKC_STYLING_OPCODE_COVER_NONZERO:
- skc_tile_cover_nonzero(smem,&cover_wip,&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_COVER_EVENODD:
- skc_tile_cover_evenodd(smem,&cover_wip,&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_COVER_ACCUMULATE:
- skc_tile_cover_accumulate(&cover_acc,&cover_wip);
- break;
-
- case SKC_STYLING_OPCODE_COVER_MASK:
- skc_tile_cover_wip_mask(&cover_wip,&cover_msk);
- break;
-
- case SKC_STYLING_OPCODE_COVER_WIP_ZERO:
- skc_tile_cover_wip_zero(&cover_wip);
- break;
-
- case SKC_STYLING_OPCODE_COVER_ACC_ZERO:
- skc_tile_cover_acc_zero(&cover_acc);
- break;
-
- case SKC_STYLING_OPCODE_COVER_MASK_ZERO:
- skc_tile_cover_msk_zero(&cover_msk);
- break;
-
- case SKC_STYLING_OPCODE_COVER_MASK_ONE:
- skc_tile_cover_msk_one(&cover_msk);
- break;
-
- case SKC_STYLING_OPCODE_COVER_MASK_INVERT:
- skc_tile_cover_msk_invert(&cover_msk);
- break;
-
- case SKC_STYLING_OPCODE_COLOR_FILL_SOLID:
- skc_tile_color_fill_solid(commands,&cmd_next,&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_COLOR_FILL_GRADIENT_LINEAR:
- //
- // FIXME -- gradients shouldn't be executing so much
- // conditional driven code at runtime since we *know*
- // the gradient style on the host can just create a
- // new styling command to exploit this.
- //
- // FIXME -- it might be time to try using the GPU's
- // sampler on a linear array of half4 vectors -- it
- // might outperform the explicit load/lerp routines.
- //
- // FIXME -- optimizing for vertical gradients (uhhh,
- // they're actually horizontal due to the -90 degree
- // view transform) is nice but is it worthwhile to
- // have this in the kernel? Easy to add it back...
- //
-#if defined( SKC_ARCH_GEN9 )
- // disable gradients due to exessive spillage -- fix later
- cmd_next += SKC_GRADIENT_CMD_WORDS_V1(commands[cmd_next+6].u32);
-#else
- skc_tile_color_fill_gradient_linear_nonvertical(smem,commands,&cmd_next,&color_wip,ttck0.hi);
-#endif
- break;
-
- case SKC_STYLING_OPCODE_COLOR_WIP_ZERO:
- skc_tile_color_wip_zero(&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_COLOR_ACC_ZERO:
- skc_tile_color_acc_zero(&color_acc);
- break;
-
- case SKC_STYLING_OPCODE_BLEND_OVER:
- skc_tile_blend_over(&color_acc,&cover_wip,&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_BLEND_PLUS:
- skc_tile_blend_plus(&color_acc,&cover_wip,&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_BLEND_MULTIPLY:
- skc_tile_blend_multiply(&color_acc,&cover_wip,&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_BLEND_KNOCKOUT:
- skc_tile_blend_knockout(&cover_acc,&color_acc,&cover_wip,&color_wip);
- break;
-
- case SKC_STYLING_OPCODE_COVER_WIP_MOVE_TO_MASK:
- // skc_tile_cover_msk_copy_wip(&cover_msk,&cover_wip);
- break;
-
- case SKC_STYLING_OPCODE_COVER_ACC_MOVE_TO_MASK:
- // skc_tile_cover_msk_copy_acc(&cover_msk,&cover_acc);
- break;
-
- case SKC_STYLING_OPCODE_BACKGROUND_OVER:
- skc_tile_background_over(commands,&cmd_next,&color_acc);
- break;
-
- case SKC_STYLING_OPCODE_SURFACE_COMPOSITE:
-#ifdef SKC_SURFACE_IS_BUFFER
- skc_surface_composite_u8_rgba(surface,surface_pitch,&color_acc,ttck0.hi);
-#else
- skc_surface_composite_u8_rgba(surface, &color_acc,ttck0.hi);
-#endif
- break;
-
- case SKC_STYLING_OPCODE_COLOR_ACC_TEST_OPACITY:
- if (skc_tile_color_test_opacity(&color_acc))
- flags |= SKC_TILE_FLAGS_SCATTER_SKIP;
- break;
-
- default:
- return; // this is an illegal opcode -- trap and die!
- }
-
- //
- // if sign bit is set then this was final command
- //
- if (cmd.s32 < 0)
- break;
- }
-
- // continue as long as tile flush isn't complete
- } while ((flags & SKC_TILE_FLAGS_FLUSH_COMPLETE) == 0);
-
- // return if was the final flush
- if (flags & SKC_TILE_FLAGS_FLUSH_FINALIZE)
- return;
-
- // update wip ttck_hi
- ttck0 = ttck;
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+//
+//
+
+#include "tile.h"
+#include "block.h"
+#include "styling_types.h"
+#include "atomic_cl.h"
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#define SKC_RENDER_SUBGROUP_MASK (SKC_RENDER_SUBGROUP_SIZE - 1)
+
+//
+//
+//
+
+#if ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 1 )
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_1()
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 0
+
+#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 2 )
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_2()
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 1
+
+#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 4 )
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_4()
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 3
+
+#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 8 )
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_8()
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 7
+
+#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 16)
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND() SKC_EXPAND_16()
+#define SKC_RENDER_SCANLINE_VECTOR_EXPAND_I_LAST 15
+#endif
+
+//
+// tile state flag bits
+//
+
+typedef enum skc_tile_flags_e {
+
+ // FLUSH
+ SKC_TILE_FLAGS_FLUSH_FINALIZE = 0x00000001,
+ SKC_TILE_FLAGS_FLUSH_UNWIND = 0x00000002,
+ SKC_TILE_FLAGS_FLUSH_COMPLETE = 0x00000004,
+
+ // OPACITY
+ SKC_TILE_FLAGS_SCATTER_SKIP = 0x00000008,
+
+ //
+ // Note: testing for opacity and skipping scattering is on its way
+ // to becoming a much more programmable option because sometimes we
+ // may be compositing/blending from back-to-front and/or be using
+ // group blend rules that ignore opacity.
+ //
+ // The point is that all of these decisions should be encoded in
+ // styling commands and, as much as possible, removed from the final
+ // group/layer styling traversal render loop.
+ //
+
+} skc_tile_flags_e;
+
+//
+// COVER -- assumes availability of either fp16 or fp32
+//
+
+union skc_tile_cover
+{
+ struct {
+ SKC_RENDER_TILE_COVER c[SKC_TILE_WIDTH];
+ } aN;
+
+#ifdef SKC_RENDER_TILE_COVER_VECTOR
+ struct {
+ SKC_RENDER_TILE_COVER_VECTOR c[SKC_RENDER_TILE_COVER_VECTOR_COUNT];
+ } vN;
+#endif
+};
+
+//
+// COLOR -- assumes availability of either fp16 or fp32
+//
+
+union skc_tile_color
+{
+ union {
+ struct {
+ SKC_RENDER_TILE_COLOR r;
+ SKC_RENDER_TILE_COLOR g;
+ SKC_RENDER_TILE_COLOR b;
+ SKC_RENDER_TILE_COLOR a;
+ } rgba[SKC_TILE_WIDTH];
+ } aN;
+
+#ifdef SKC_RENDER_TILE_COLOR_INTERLEAVED
+ union {
+ SKC_RENDER_TILE_COLOR_INTERLEAVED rgba[SKC_TILE_WIDTH];
+ } iN;
+#endif
+
+#ifdef SKC_RENDER_TILE_COLOR_VECTOR
+ union {
+ SKC_RENDER_TILE_COLOR_VECTOR rgba[SKC_RENDER_TILE_COLOR_VECTOR_COUNT];
+ } vN;
+#endif
+
+ struct {
+ union {
+ struct {
+ SKC_RENDER_TILE_COLOR r;
+ SKC_RENDER_TILE_COLOR g;
+ };
+ SKC_RENDER_GRADIENT_FLOAT distance;
+ };
+ union {
+ struct {
+ SKC_RENDER_TILE_COLOR b;
+ SKC_RENDER_TILE_COLOR a;
+ };
+ SKC_RENDER_GRADIENT_FLOAT stoplerp;
+ };
+ } grad[SKC_TILE_WIDTH];
+};
+
+//
+// SHARED MEMORY STATE
+//
+
+#define SKC_RENDER_TILE_SMEM_WORDS ((SKC_TILE_WIDTH + 1) * SKC_TILE_HEIGHT)
+
+#define SKC_RENDER_WIDE_AA_BYTES (SKC_RENDER_TILE_SMEM_WORDS * sizeof(int) / SKC_RENDER_SUBGROUP_SIZE)
+#define SKC_RENDER_WIDE_AA_WIDTH (SKC_RENDER_WIDE_AA_BYTES / sizeof(SKC_RENDER_WIDE_AA))
+
+//
+//
+//
+
+union skc_subgroup_smem
+{
+ //
+ // The tiles are stored in column-major / height-major order
+ //
+ // The final column is a guard column that is OK to write to but
+ // will never be read. It simplifies the TTSB scatter but could be
+ // predicated if SMEM is really at a premium.
+ //
+#if ( SKC_RENDER_SUBGROUP_SIZE > 1 )
+ struct {
+ SKC_ATOMIC_UINT area[SKC_RENDER_TILE_SMEM_WORDS]; // area[w][h]
+ } atomic;
+#endif
+
+ struct {
+ int area[SKC_RENDER_TILE_SMEM_WORDS]; // area[w][h]
+ } aN;
+
+ struct { // assumption is that height = subgroup
+ SKC_RENDER_AREA_V area[SKC_TILE_WIDTH + 1][SKC_RENDER_SUBGROUP_SIZE];
+ } vN;
+
+ struct { // assumption is that height = subgroup
+ SKC_RENDER_WIDE_AA area[SKC_RENDER_WIDE_AA_WIDTH][SKC_RENDER_SUBGROUP_SIZE];
+ } wide;
+
+ union skc_styling_cmd cmds[(SKC_TILE_WIDTH + 1) * SKC_TILE_HEIGHT];
+
+ half gc [(SKC_TILE_WIDTH + 1) * SKC_TILE_HEIGHT * 2];
+
+#if 0
+ //
+ // SPILL TO GMEM
+ //
+#if (SKC_REGS_COLOR_S > 0) || (SKC_REGS_COVER_S > 0)
+ struct {
+
+#if (SKC_REGS_COLOR_S > 0)
+ union skc_color_r color[SKC_REGS_COLOR_S][SKC_TILE_HEIGHT][SKC_TILE_WIDTH];
+#endif
+
+#if (SKC_REGS_COVER_S > 0)
+ union float cover[SKC_REGS_COVER_S][SKC_TILE_HEIGHT][SKC_TILE_WIDTH];
+#endif
+
+ } regs;
+#endif
+ //
+ //
+ //
+#endif
+};
+
+//
+//
+//
+
+#if ( SKC_RENDER_SUBGROUP_SIZE == 1 )
+
+#define skc_subgroup_lane() 0
+
+#else
+
+#define skc_subgroup_lane() get_sub_group_local_id()
+
+#endif
+
+//
+//
+//
+
+typedef skc_uint skc_ttsk_lo_t;
+typedef skc_uint skc_ttsk_hi_t;
+
+typedef skc_uint skc_ttpk_lo_t;
+typedef skc_uint skc_ttpk_hi_t;
+
+typedef skc_uint skc_ttxk_lo_t;
+typedef skc_uint skc_ttxk_hi_t;
+
+typedef skc_uint skc_ttck_lo_t;
+typedef skc_uint skc_ttck_hi_t;
+
+typedef skc_uint2 skc_ttck_t;
+
+typedef skc_int skc_ttxb_t;
+
+//
+// TTCK (32-BIT COMPARE) v1:
+//
+// 0 63
+// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
+// +----------------------+--------+--------+-------+-----+-----+
+// | 30 | 1 | 1 | 18 | 7 | 7 |
+//
+//
+// TTCK (32-BIT COMPARE) v2:
+//
+// 0 63
+// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
+// +----------------------+--------+--------+-------+-----+-----+
+// | 30 | 1 | 1 | 15 | 9 | 8 |
+//
+//
+// TTCK (64-BIT COMPARE) -- achieves 4K x 4K with an 8x16 tile:
+//
+// 0 63
+// | PAYLOAD/TTSB/TTPB ID | PREFIX | ESCAPE | LAYER | X | Y |
+// +----------------------+--------+--------+-------+-----+-----+
+// | 27 | 1 | 1 | 18 | 9 | 8 |
+//
+
+static
+skc_uint
+skc_ttck_lo_get_ttxb_id(skc_ttck_lo_t const a)
+{
+ return a & SKC_TTCK_LO_MASK_ID;
+}
+
+static
+skc_layer_id
+skc_ttck_get_layer(skc_ttck_t const a)
+{
+ //
+ // FIXME -- a union with a ulong and a shift down and mask is
+ // probably faster on some architectures
+ //
+ skc_uint const lo = (a.lo >> SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE);
+ skc_uint const hi = (a.hi & SKC_TTCK_HI_MASK_LAYER) << SKC_TTCK_LO_BITS_LAYER;
+
+ return lo | hi;
+}
+
+static
+skc_uint
+skc_ttck_hi_get_x(skc_ttck_hi_t const a)
+{
+ return SKC_BFE(a,SKC_TTCK_HI_BITS_X,SKC_TTCK_HI_OFFSET_X);
+}
+
+static
+skc_uint
+skc_ttck_hi_get_y(skc_ttck_hi_t const a)
+{
+ return a >> SKC_TTCK_HI_OFFSET_Y;
+}
+
+static
+skc_bool
+skc_ttck_equal_yxl(skc_ttck_t const a, skc_ttck_t const b)
+{
+ skc_uint const lo = (a.lo ^ b.lo) & SKC_BITS_TO_MASK_AT(SKC_TTCK_LO_BITS_LAYER,SKC_TTCK_LO_BITS_ID_PREFIX_ESCAPE);
+ skc_uint const hi = (a.hi ^ b.hi);
+
+ return (lo | hi) == 0;
+}
+
+static
+skc_bool
+skc_ttck_hi_equal_yx(skc_ttck_hi_t const a, skc_ttck_hi_t const b)
+{
+ return ((a ^ b) & SKC_TTCK_HI_MASK_YX) == 0;
+}
+
+static
+skc_bool
+skc_ttck_lo_is_prefix(skc_ttck_lo_t const a)
+{
+ return (a & SKC_TTCK_LO_MASK_PREFIX) != 0;
+}
+
+//
+// TILE TRACE SUBPIXEL
+//
+// The subpixels are encoded with either absolute tile coordinates
+// (32-bits) or packed in delta-encoded form form.
+//
+// For 32-bit subpixel packing of a 32x32 tile:
+//
+// A tile X is encoded as:
+//
+// TX : 10 : unsigned min(x0,x1) tile subpixel coordinate.
+//
+// SX : 6 : unsigned subpixel span from min to max x with range
+// [0,32]. The original direction is not captured. Would
+// be nice to capture dx but not necessary right now but
+// could be in the future. <--- SPARE VALUES AVAILABLE
+//
+// A tile Y is encoded as:
+//
+// TY : 10 : unsigned min(y0,y1) tile subpixel coordinate.
+//
+// DY : 6 : signed subpixel delta y1-y0. The range of delta is
+// [-32,32] but horizontal lines are not encoded so [1,32]
+// is mapped to [0,31]. The resulting range [-32,31] fits
+// in 6 bits.
+//
+// TTS:
+//
+// 0 31
+// | TX | SX | TY | DY |
+// +-----+------+-----+------+
+// | 10 | 6 | 10 | 6 |
+//
+
+static
+SKC_RENDER_TTS_V_BITFIELD
+skc_tts_get_ty_pixel_v(SKC_RENDER_TTS_V const a)
+{
+ //
+ // extract the whole pixel y coordinate
+ //
+ return SKC_BFE(a,
+ SKC_TTS_BITS_TY - SKC_SUBPIXEL_RESL_Y_LOG2,
+ SKC_TTS_OFFSET_TY + SKC_SUBPIXEL_RESL_Y_LOG2);
+}
+
+static
+SKC_RENDER_TTS_V_BITFIELD
+skc_tts_get_xy_idx_v(SKC_RENDER_TTS_V const a)
+{
+ //
+ // get the linear array tile index of the pixel
+ //
+ return (((a & SKC_TTS_MASK_TX_PIXEL)
+
+#if (SKC_SUBPIXEL_RESL_X_LOG2 > SKC_TILE_HEIGHT_LOG2)
+ >> (SKC_SUBPIXEL_RESL_X_LOG2 - SKC_TILE_HEIGHT_LOG2)
+#elif (SKC_SUBPIXEL_RESL_X_LOG2 < SKC_TILE_HEIGHT_LOG2)
+ << (SKC_TILE_HEIGHT_LOG2 - SKC_SUBPIXEL_RESL_X_LOG2)
+#endif
+
+ ) | skc_tts_get_ty_pixel_v(a));
+}
+
+#if 0
+static
+skc_ttx_v_s32_t
+skc_tts_get_dy_v(SKC_RENDER_TTS_V const a)
+{
+ skc_ttx_v_s32_t const dy = SKC_AS(skc_ttx_v_s32_t)a >> SKC_TTS_OFFSET_DY;
+
+ return (dy + SKC_AS(skc_ttx_v_s32_t)(~a >> 31));
+}
+#else
+static
+SKC_RENDER_TTS_V_BITFIELD
+skc_tts_get_dy_v(SKC_RENDER_TTS_V const a)
+{
+ SKC_RENDER_TTS_V_BITFIELD const dy = a >> SKC_TTS_OFFSET_DY;
+
+ return dy - (~a >> 31);
+}
+#endif
+
+static
+SKC_RENDER_TTS_V_BITFIELD
+skc_tts_get_tx_subpixel_v(SKC_RENDER_TTS_V const a)
+{
+ return a & SKC_BITS_TO_MASK(SKC_SUBPIXEL_RESL_X_LOG2);
+}
+
+static
+SKC_RENDER_TTS_V_BITFIELD
+skc_tts_get_sx_v(SKC_RENDER_TTS_V const a)
+{
+ return SKC_BFE(a,SKC_TTS_BITS_SX,SKC_TTS_OFFSET_SX);
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_aa_zero(__local union skc_subgroup_smem * SKC_RESTRICT const smem)
+{
+ //
+ // SIMD / CPU
+ //
+ // &
+ //
+ // SIMT / GPU
+ //
+ // Note that atomic_init() is likely implemented as a simple
+ // assignment so there is no identifiable performance difference on
+ // current targets.
+ //
+ // If such an architecture appears in the future then we'll probably
+ // still want to implement this zero'ing operation as below but
+ // follow with an appropriate fence that occurs before any scatter
+ // operations.
+ //
+ // The baroque expansion below improves performance on Intel GEN by,
+ // presumably, achieving the 64-byte per clock SLM write as well as
+ // minimizing the overall number of SEND() block initializations and
+ // launches.
+ //
+ // Intel GENx has a documented 64 byte per cycle SLM write limit.
+ // So having each lane in an 8 lane subgroup zero-write 8 bytes is
+ // probably a safe bet (Later: benchmarking backs this up!).
+ //
+ // Note there is no reason at this time to unroll this loop.
+ //
+ for (uint ii=0; ii<SKC_RENDER_WIDE_AA_WIDTH; ii++)
+ smem->wide.area[ii][skc_subgroup_lane()] = ( 0 );
+}
+
+//
+// Note this is going to be vectorizable on most architectures.
+//
+// The return of the key translation feature might complicate things.
+//
+
+static
+void
+skc_scatter_ttpb(__global skc_ttxb_t const * SKC_RESTRICT const ttxb_extent,
+ __local union skc_subgroup_smem * SKC_RESTRICT const smem,
+ skc_block_id_t const pb_id)
+{
+ skc_uint const offset = pb_id * (SKC_DEVICE_SUBBLOCK_WORDS / SKC_TILE_RATIO) + skc_subgroup_lane();
+
+#if ( SKC_TILE_RATIO == 1 )
+
+ SKC_RENDER_TTP_V const ttp_v = ttxb_extent[offset];
+
+#elif ( SKC_TILE_RATIO == 2 )
+
+ SKC_RENDER_TTP_V const ttp_v = vload2(offset,ttxb_extent);
+
+#else
+
+#error("tile ratio greater than 2 not supported")
+
+#endif
+
+ //
+ // Note there is no need to use an atomic for this operation on the
+ // current group of target platforms... but this may change if
+ // atomic ops truly go through a different path.
+ //
+ // As noted above, this direct increment is probably faster and can
+ // always be followed by a fence.
+ //
+ // Furthermore, note that the key sorting orders all ttck keys
+ // before ttpk keys.
+ //
+
+ //
+ // FIXME -- if the SMEM store is wider than bank word count then we
+ // might want to odd-even interleave the TTP values if the target
+ // device can't handle 64-bit stores
+ //
+
+ //
+ // skipping per-key translation for now
+ //
+ smem->vN.area[0][skc_subgroup_lane()] += ttp_v << (SKC_SUBPIXEL_RESL_X_LOG2 + 1);
+}
+
+//
+// Note that skc_scatter_ttsb is *not* vectorizable unless the
+// architecture supports a "scatter-add" capability. All relevant
+// GPUs support atomic add on shared/local memory and thus support
+// scatter-add.
+//
+
+static
+void
+skc_scatter_ttsb(__global skc_ttxb_t const * SKC_RESTRICT const ttxb_extent,
+ __local union skc_subgroup_smem * SKC_RESTRICT const smem,
+ skc_block_id_t const sb_id)
+{
+ skc_uint const offset = sb_id * SKC_DEVICE_SUBBLOCK_WORDS + skc_subgroup_lane();
+
+ SKC_RENDER_TTS_V const tts_v = ttxb_extent[offset];
+
+ //
+ // Skipping per-key translation for now
+ //
+
+ // Index into tile
+ //
+ // The tiles are stored in column-major / height-major order
+ //
+ // The final column is a guard column that is OK to write to but
+ // will never be read. It simplifies the TTSB scatter but could be
+ // predicated if SMEM is really at a premium.
+ //
+
+ SKC_RENDER_TTS_V_BITFIELD const xy_idx = skc_tts_get_xy_idx_v(tts_v);
+
+#if 0
+ if (tts_v != SKC_TTS_INVALID)
+ printf("(%08X) = %u\n",tts_v,xy_idx);
+#endif
+
+ //
+ // adjust subpixel range to max y
+ //
+ // range is stored as [-32,31] and when read [0,31] is mapped to
+ // [1,32] because a dy of 0 is not possible.
+ //
+ // more succinctly: if dy >= 0 then ++dy
+ //
+ SKC_RENDER_TTS_V_BITFIELD const dy = skc_tts_get_dy_v(tts_v);
+
+ //
+ // FIXME -- benchmark performance of setting dy to 0 if ttsv.vN is invalid?
+ //
+
+ // this "min(x0) * 2 + dx" is equivalent to "x0 + x1"
+ SKC_RENDER_TTS_V_BITFIELD const widths = skc_tts_get_tx_subpixel_v(tts_v) * 2 + skc_tts_get_sx_v(tts_v);
+
+ // Calculate left and right coverage contribution trapezoids
+ SKC_RENDER_TTS_V_BITFIELD const left = dy * widths;
+ SKC_RENDER_TTS_V_BITFIELD const right = (dy << (SKC_SUBPIXEL_RESL_X_LOG2 + 1)) - left;
+
+ //
+ // Accumulate altitudes and areas
+ //
+ // Optimization: if the device supports an CPU/SIMD vector-add or
+ // GPU/SIMT scatter-add atomic int2 add operation then placing the
+ // ALT and AREA values side-by-side would halve the number of
+ // additions.
+ //
+#if ( SKC_RENDER_SUBGROUP_SIZE == 1 )
+ //
+ // CPU/SIMD
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (tts_v C != SKC_TTS_INVALID) { \
+ smem->aN.area[SKC_TILE_HEIGHT + xy_idx C] += left C; \
+ smem->aN.area[ xy_idx C] += right C; \
+ }
+
+#else
+ //
+ // GPU/SIMT -- IMPLIES SUPPORT FOR ATOMIC SCATTER-ADD
+ //
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) \
+ if (tts_v C != SKC_TTS_INVALID) { \
+ SKC_ATOMIC_ADD_LOCAL_RELAXED_SUBGROUP(smem->atomic.area + \
+ SKC_TILE_HEIGHT + xy_idx C, \
+ left C); \
+ SKC_ATOMIC_ADD_LOCAL_RELAXED_SUBGROUP(smem->atomic.area + xy_idx C, \
+ right C); \
+ }
+#endif
+
+ SKC_RENDER_TTSB_EXPAND();
+}
+
+//
+// Note that 2048.0 can be represented exactly with fp16... fortuitous!
+//
+
+#define SKC_RENDER_FILL_MAX_AREA (2u * SKC_SUBPIXEL_RESL_X * SKC_SUBPIXEL_RESL_Y)
+#define SKC_RENDER_FILL_MAX_AREA_2 (2u * SKC_RENDER_FILL_MAX_AREA)
+#define SKC_RENDER_FILL_EVEN_ODD_MASK (SKC_RENDER_FILL_MAX_AREA_2 - 1)
+#define SKC_RENDER_FILL_MAX_AREA_RCP_F32 (SKC_RENDER_TILE_COVER)(1.0f / SKC_RENDER_FILL_MAX_AREA)
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_nonzero(__local union skc_subgroup_smem * SKC_RESTRICT const smem,
+ union skc_tile_cover * SKC_RESTRICT const cover,
+ union skc_tile_color * SKC_RESTRICT const color)
+{
+ SKC_RENDER_ACC_COVER_INT area = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH))) // doesn't help on AVX2
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ area += smem->vN.area[ii][skc_subgroup_lane()];
+ SKC_RENDER_ACC_COVER_UINT const trapabs = abs(area);
+ SKC_RENDER_TILE_COVER const nonzero = SKC_CONVERT(SKC_RENDER_TILE_COVER)(min(trapabs,SKC_RENDER_FILL_MAX_AREA));
+
+ cover->aN.c[ii] = nonzero * (SKC_RENDER_TILE_COVER)(SKC_RENDER_FILL_MAX_AREA_RCP_F32);
+ }
+}
+
+static
+void
+skc_tile_cover_evenodd(__local union skc_subgroup_smem * SKC_RESTRICT const smem,
+ union skc_tile_cover * SKC_RESTRICT const cover,
+ union skc_tile_color * SKC_RESTRICT const color)
+{
+ SKC_RENDER_ACC_COVER_INT area = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH))) // doesn't help on AVX2
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ area += smem->vN.area[ii][skc_subgroup_lane()];
+ SKC_RENDER_ACC_COVER_UINT const trapabs = abs(area);
+ SKC_RENDER_ACC_COVER_UINT const reflect = abs(SKC_AS(SKC_RENDER_ACC_COVER_INT)((trapabs & SKC_RENDER_FILL_EVEN_ODD_MASK) - SKC_RENDER_FILL_MAX_AREA));
+
+ cover->aN.c[ii] = SKC_CONVERT(SKC_RENDER_TILE_COVER)(SKC_RENDER_FILL_MAX_AREA - reflect) * (SKC_RENDER_TILE_COVER)SKC_RENDER_FILL_MAX_AREA_RCP_F32;
+ }
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_color_fill_solid(__global union skc_styling_cmd const * SKC_RESTRICT const commands,
+ uint * SKC_RESTRICT const cmd_next,
+ union skc_tile_color * SKC_RESTRICT const color)
+{
+ //
+ // rgba = solid fill
+ //
+ __global half const * const rgba_ptr = commands[*cmd_next].f16a2 + 0;
+
+ *cmd_next += 2;
+
+#if !defined( SKC_RENDER_TILE_COLOR_VECTOR )
+
+ SKC_RENDER_TILE_COLOR_PAIR const rg = SKC_RENDER_TILE_COLOR_PAIR_LOAD(0,rgba_ptr);
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->aN.rgba[ii].r = rg.lo;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->aN.rgba[ii].g = rg.hi;
+
+ SKC_RENDER_TILE_COLOR_PAIR const ba = SKC_RENDER_TILE_COLOR_PAIR_LOAD(1,rgba_ptr);
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->aN.rgba[ii].b = ba.lo;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->aN.rgba[ii].a = ba.hi;
+
+#else
+
+ SKC_RENDER_TILE_COLOR_PAIR const rg = SKC_RENDER_TILE_COLOR_PAIR_LOAD(0,rgba_ptr);
+ SKC_RENDER_TILE_COLOR const r = rg.lo;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].even.even = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(r);
+
+ SKC_RENDER_TILE_COLOR const g = rg.hi;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].odd.even = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(g);
+
+ SKC_RENDER_TILE_COLOR_PAIR const ba = SKC_RENDER_TILE_COLOR_PAIR_LOAD(1,rgba_ptr);
+ SKC_RENDER_TILE_COLOR const b = ba.lo;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].even.odd = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(b);
+
+ SKC_RENDER_TILE_COLOR const a = ba.hi;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].odd.odd = SKC_AS(SKC_RENDER_TILE_COLOR_VECTOR_COMPONENT)(a);
+
+#endif
+}
+
+//
+// Norbert Juffa notes: "GPU Pro Tip: Lerp Faster in C++"
+//
+// https://devblogs.nvidia.com/parallelforall/lerp-faster-cuda/
+//
+// Lerp in two fma/mad ops:
+//
+// t * b + ((-t) * a + a)
+//
+// Note: OpenCL documents mix() as being implemented as:
+//
+// a + (b - a) * t
+//
+// But this may be a native instruction on some devices. For example,
+// on GEN9 there is an LRP "linear interoplation" function but it
+// doesn't appear to support half floats.
+//
+
+#if 1
+#define SKC_LERP(a,b,t) mad(t,b,mad(-(t),a,a))
+#else
+#define SKC_LERP(a,b,t) mix(a,b,t)
+#endif
+
+//
+// CPUs have a mock local address space so copying the gradient header
+// is probably not useful. Just read directly from global.
+//
+
+#ifndef SKC_RENDER_GRADIENT_IS_GLOBAL
+#define SKC_RENDER_GRADIENT_SPACE __local
+#else
+#define SKC_RENDER_GRADIENT_SPACE __global
+#endif
+
+//
+// gradient is non-vertical
+//
+// removed the vertical (actually, horizontal) special case
+//
+
+static
+void
+skc_tile_color_fill_gradient_linear_nonvertical(__local union skc_subgroup_smem * SKC_RESTRICT const smem,
+ __global union skc_styling_cmd const * SKC_RESTRICT const commands,
+ uint * SKC_RESTRICT const cmd_next,
+ union skc_tile_color * SKC_RESTRICT const color,
+ skc_ttck_hi_t const ttck_hi)
+{
+ //
+ // Where is this tile?
+ //
+ // Note that the gradient is being sampled from pixel centers.
+ //
+ SKC_RENDER_GRADIENT_FLOAT const y =
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) I##.5f P
+ (SKC_RENDER_GRADIENT_FLOAT)( SKC_RENDER_SCANLINE_VECTOR_EXPAND() ) +
+ (skc_ttck_hi_get_y(ttck_hi) * SKC_TILE_HEIGHT + (skc_subgroup_lane() * SKC_RENDER_SCANLINE_VECTOR_SIZE));
+
+ float const x = 0.5f + (skc_ttck_hi_get_x(ttck_hi) * SKC_TILE_WIDTH);
+
+ //
+ // Get starting numerator and denominator
+ //
+ // Note: if gh[0].dx is exactly 0.0f then this is a vertical
+ // gradient and can be handled by a special opcode.
+ //
+ // Note: the mad() ordering is slightly different than the original
+ // CUDA implementation.
+ //
+ union skc_gradient_vector const gv = { vload4(0,&commands[*cmd_next].f32) };
+
+ *cmd_next += 4;
+
+ float const gv_x_dot = mad(x,gv.dx,gv.p0);
+ SKC_RENDER_GRADIENT_FLOAT const gv_numer = mad(y,gv.dy,gv_x_dot);
+
+ //
+ // Where are columns along gradient vector?
+ //
+ // TODO: Note that the gv_denom isn't multiplied through.
+ //
+ // Please doublecheck this... but I recall that in certain cases
+ // this wipes out some precision and results in minor but noticeable
+ // gradient artifacts.
+ //
+ // All arguments are scalars except gv_numer so a simpler
+ // evaluation might save some flops.
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->grad[ii].distance = mad(gv.dx,(float)ii,gv_numer) * gv.denom;
+
+ //
+ // is gradient non-repeating, repeating or reflecting?
+ //
+ switch (commands[(*cmd_next)++].u32)
+ {
+ case SKC_STYLING_GRADIENT_TYPE_LINEAR_NON_REPEATING:
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->grad[ii].distance = clamp(color->grad[ii].distance,0.0f,1.0f);
+ break;
+
+ case SKC_STYLING_GRADIENT_TYPE_LINEAR_REPEATING:
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->grad[ii].distance -= floor(color->grad[ii].distance);
+ break;
+
+ default: // PXL_STYLING_GRADIENT_TYPE_LINEAR_REFLECTING
+ //
+ // OPTIMIZATION: Can this be done in fewer than ~4 ops?
+ //
+ // Note: OpenCL "rint()" is round-to-nearest-even integer!
+ //
+ // Note: the floor() "round to -inf" op is implemented in the
+ // GEN op 'FRC' so probably don't use trunc() when floor will
+ // suffice.
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ SKC_RENDER_GRADIENT_FLOAT dist_abs = fabs(color->grad[ii].distance);
+ color->grad[ii].distance = fabs(dist_abs - rint(dist_abs));
+ }
+ }
+
+ //
+ // initialize "stoplerp" for all columns
+ //
+ uint const slope_count = commands[(*cmd_next)++].u32;
+ uint const gd_n_v1 = commands[(*cmd_next)++].u32; // REMOVE ME
+
+ {
+ float const slope = commands[(*cmd_next)++].f32;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->grad[ii].stoplerp = color->grad[ii].distance * slope;
+ }
+
+ //
+ // compute stoplerp for remaining stops
+ //
+ for (int jj=1; jj<slope_count; jj++)
+ {
+ float const floor = (float)jj;
+ float const slope = commands[(*cmd_next)++].f32;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->grad[ii].stoplerp = mad(min(0, color->grad[ii].stoplerp - floor),slope,color->grad[ii].stoplerp);
+ }
+
+ //
+ // copy gradient colors to local memory
+ //
+ uint const gd_n = slope_count + 1;
+
+#ifndef SKC_RENDER_GRADIENT_IS_GLOBAL
+ //
+ // copy entire gradient descriptor to local memory
+ //
+ for (uint ii=skc_subgroup_lane(); ii<gd_n*4; ii+=SKC_RENDER_SUBGROUP_SIZE)
+ smem->cmds[ii].u32 = commands[*cmd_next + ii].u32;
+
+ __local half const * const SKC_RESTRICT gc = smem->gc + 0;
+#else
+ //
+ // prefetch entire gradient header
+ //
+ // no noticeable impact on performance
+ //
+ // prefetch(&commands[*cmd_next].u32,gh_words);
+ //
+ __global half const * const SKC_RESTRICT gc = commands[*cmd_next].f16a2 + 0;
+#endif
+
+ //
+ // adjust cmd_next so that V1 structure is consumed -- FIXME
+ //
+ *cmd_next += SKC_GRADIENT_CMD_WORDS_V2_ADJUST(gd_n_v1,gd_n);
+
+ //
+ // lerp between color pair stops
+ //
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ //
+ // Finally, we have the gradient stop index and the color stop
+ // pair lerp fraction
+ //
+ // Note that if these are vector values then a gather operation
+ // must occur -- there may be platforms (AVX-512?) that can
+ // perform an explicit gather on a vector type but it's not
+ // really expressible in OpenCL except implicitly with a
+ // workgroup of work items.
+ //
+ // ***********************
+ //
+ // FIXME -- USE HERB'S SINGLE FMA LERP
+ //
+ // ***********************
+ //
+ SKC_RENDER_GRADIENT_STOP const gc_stop = SKC_CONVERT(SKC_RENDER_GRADIENT_STOP)(color->grad[ii].stoplerp);
+ SKC_RENDER_GRADIENT_FRAC const gc_frac = SKC_CONVERT(SKC_RENDER_GRADIENT_FRAC)(color->grad[ii].stoplerp - floor(color->grad[ii].stoplerp));
+
+ {
+ SKC_RENDER_TILE_COLOR lo, hi;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + 0,gc); \
+ lo C = cc.lo; \
+ hi C = cc.hi; \
+ }
+
+ SKC_RENDER_SCANLINE_VECTOR_EXPAND();
+
+ color->aN.rgba[ii].r = SKC_LERP(lo,hi,gc_frac);
+ }
+
+ //
+ //
+ //
+ {
+ SKC_RENDER_TILE_COLOR lo, hi;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + gd_n,gc); \
+ lo C = cc.lo; \
+ hi C = cc.hi; \
+ }
+
+ SKC_RENDER_SCANLINE_VECTOR_EXPAND();
+
+ color->aN.rgba[ii].g = SKC_LERP(lo,hi,gc_frac);
+ }
+
+ //
+ //
+ //
+ {
+ SKC_RENDER_TILE_COLOR lo, hi;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + gd_n*2,gc); \
+ lo C = cc.lo; \
+ hi C = cc.hi; \
+ }
+
+ SKC_RENDER_SCANLINE_VECTOR_EXPAND();
+
+ color->aN.rgba[ii].b = SKC_LERP(lo,hi,gc_frac);
+ }
+
+ //
+ //
+ //
+ {
+ SKC_RENDER_TILE_COLOR lo, hi;
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_TILE_COLOR_PAIR const cc = SKC_RENDER_TILE_COLOR_PAIR_LOAD(gc_stop C + gd_n*3,gc); \
+ lo C = cc.lo; \
+ hi C = cc.hi; \
+ }
+
+ SKC_RENDER_SCANLINE_VECTOR_EXPAND();
+
+ color->aN.rgba[ii].a = SKC_LERP(lo,hi,gc_frac);
+ }
+ }
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_blend_over(union skc_tile_color * SKC_RESTRICT const color_acc,
+ union skc_tile_cover const * SKC_RESTRICT const cover_wip,
+ union skc_tile_color const * SKC_RESTRICT const color_wip)
+{
+ //
+ // fralunco = cover.wip * acc.a
+ //
+ // acc.r = fralunco * wip.r + acc.r
+ // acc.g = fralunco * wip.g + acc.g
+ // acc.b = fralunco * wip.b + acc.b
+ // acc.a = -fralunco * wip.a + acc.a
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ SKC_RENDER_TILE_COVER const fralunco = cover_wip->aN.c[ii] * color_acc->aN.rgba[ii].a;
+
+ color_acc->aN.rgba[ii].r = mad(+fralunco,color_wip->aN.rgba[ii].r,color_acc->aN.rgba[ii].r);
+ color_acc->aN.rgba[ii].g = mad(+fralunco,color_wip->aN.rgba[ii].g,color_acc->aN.rgba[ii].g);
+ color_acc->aN.rgba[ii].b = mad(+fralunco,color_wip->aN.rgba[ii].b,color_acc->aN.rgba[ii].b);
+ color_acc->aN.rgba[ii].a = mad(-fralunco,color_wip->aN.rgba[ii].a,color_acc->aN.rgba[ii].a);
+ }
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_blend_plus(union skc_tile_color * SKC_RESTRICT const color_acc,
+ union skc_tile_cover const * SKC_RESTRICT const cover_wip,
+ union skc_tile_color const * SKC_RESTRICT const color_wip)
+{
+ //
+ // cover_min = min(cover.wip,a.acc)
+ //
+ // r.acc = cover_min * r.wip + r.acc
+ // g.acc = cover_min * g.wip + g.acc
+ // b.acc = cover_min * b.wip + b.acc
+ // a.acc = -cover_min * a.wip + a.acc
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ SKC_RENDER_TILE_COVER const cover_min = fmin(cover_wip->aN.c[ii],color_acc->aN.rgba[ii].a);
+
+ color_acc->aN.rgba[ii].r = mad(+cover_min,color_wip->aN.rgba[ii].r,color_acc->aN.rgba[ii].r);
+ color_acc->aN.rgba[ii].g = mad(+cover_min,color_wip->aN.rgba[ii].g,color_acc->aN.rgba[ii].g);
+ color_acc->aN.rgba[ii].b = mad(+cover_min,color_wip->aN.rgba[ii].b,color_acc->aN.rgba[ii].b);
+ color_acc->aN.rgba[ii].a = mad(-cover_min,color_wip->aN.rgba[ii].a,color_acc->aN.rgba[ii].a);
+ }
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_blend_multiply(union skc_tile_color * SKC_RESTRICT const color_acc,
+ union skc_tile_cover const * SKC_RESTRICT const cover_wip,
+ union skc_tile_color const * SKC_RESTRICT const color_wip)
+{
+ //
+ // r.acc = (cover.wip * r.wip) * r.acc
+ // g.acc = (cover.wip * g.wip) * g.acc
+ // b.acc = (cover.wip * b.wip) * b.acc
+ // a.acc = (cover.wip * a.wip) * (1.0 - a.acc) <-- a.acc is already (1.0 - alpha)
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ color_acc->aN.rgba[ii].r *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].r;
+ color_acc->aN.rgba[ii].g *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].g;
+ color_acc->aN.rgba[ii].b *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].b;
+ color_acc->aN.rgba[ii].a *= cover_wip->aN.c[ii] * color_wip->aN.rgba[ii].a;
+ }
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_blend_knockout(union skc_tile_cover * SKC_RESTRICT const cover_acc,
+ union skc_tile_color * SKC_RESTRICT const color_acc,
+ union skc_tile_cover const * SKC_RESTRICT const cover_wip,
+ union skc_tile_color const * SKC_RESTRICT const color_wip)
+{
+ //
+ // cover.wip.contrib = (1.0 - cover.acc) * cover.wip
+ // cover.acc = cover.acc + cover.wip.contrib
+ //
+ // r.acc = cover.wip.contrib * r.wip + r.acc
+ // g.acc = cover.wip.contrib * g.wip + g.acc
+ // b.acc = cover.wip.contrib * b.wip + b.acc
+ // a.acc = -cover.wip.contrib * a.wip * a.acc
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ SKC_RENDER_TILE_COVER const contrib = (1 - cover_acc->aN.c[ii]) * cover_wip->aN.c[ii];
+
+ cover_acc->aN.c[ii] += contrib;
+
+ color_acc->aN.rgba[ii].r = mad(+contrib,color_wip->aN.rgba[ii].r,color_acc->aN.rgba[ii].r);
+ color_acc->aN.rgba[ii].g = mad(+contrib,color_wip->aN.rgba[ii].g,color_acc->aN.rgba[ii].g);
+ color_acc->aN.rgba[ii].b = mad(+contrib,color_wip->aN.rgba[ii].b,color_acc->aN.rgba[ii].b);
+ color_acc->aN.rgba[ii].a = mad(-contrib,color_wip->aN.rgba[ii].a,color_acc->aN.rgba[ii].a);
+ }
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_msk_copy_wip(union skc_tile_cover * SKC_RESTRICT const cover_msk,
+ union skc_tile_cover const * SKC_RESTRICT const cover_wip)
+{
+#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover_msk->aN.c[ii] = cover_wip->aN.c[ii];
+
+#else
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
+ cover_msk->vN.c[ii] = cover_wip->vN.c[ii];
+
+#endif
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_msk_copy_acc(union skc_tile_cover * SKC_RESTRICT const cover_msk,
+ union skc_tile_cover const * SKC_RESTRICT const cover_acc)
+{
+#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover_msk->aN.c[ii] = cover_acc->aN.c[ii];
+
+#else
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNTN)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
+ cover_msk->vN.c[ii] = cover_acc->vN.c[ii];
+
+#endif
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_accumulate(union skc_tile_cover * SKC_RESTRICT const cover_acc,
+ union skc_tile_cover const * SKC_RESTRICT const cover_wip)
+{
+ //
+ // cover.wip.contrib = (1.0 - cover.acc) * cover.wip
+ // cover.acc = cover.acc + cover.wip.contrib
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover_acc->aN.c[ii] = mad(1 - cover_acc->aN.c[ii],cover_wip->aN.c[ii],cover_acc->aN.c[ii]);
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_wip_mask(union skc_tile_cover * SKC_RESTRICT const cover_wip,
+ union skc_tile_cover const * SKC_RESTRICT const cover_msk)
+{
+ //
+ // cover.wip *= cover.msk
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover_wip->aN.c[ii] *= cover_msk->aN.c[ii];
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_wip_zero(union skc_tile_cover * SKC_RESTRICT const cover)
+{
+#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) // || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover->aN.c[ii] = 0;
+
+#else
+ //
+ // GEN9 compiler underperforms on this
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
+ cover->vN.c[ii] = 0;
+
+#endif
+}
+
+static
+void
+skc_tile_cover_acc_zero(union skc_tile_cover * SKC_RESTRICT const cover)
+{
+#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) // || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover->aN.c[ii] = 0;
+
+#else
+ //
+ // GEN9 compiler underperforms on this
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
+ cover->vN.c[ii] = 0;
+
+#endif
+}
+
+static
+void
+skc_tile_cover_msk_zero(union skc_tile_cover * SKC_RESTRICT const cover)
+{
+#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover->aN.c[ii] = 0;
+
+#else
+ //
+ // GEN9 compiler underperforms on this
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
+ cover->vN.c[ii] = 0;
+
+#endif
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_msk_one(union skc_tile_cover * SKC_RESTRICT const cover)
+{
+#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover->aN.c[ii] = 1;
+
+#else
+ //
+ // GEN9 compiler underperforms on this
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
+ cover->vN.c[ii] = SKC_RENDER_TILE_COVER_VECTOR_ONE;
+
+#endif
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_cover_msk_invert(union skc_tile_cover * SKC_RESTRICT const cover)
+{
+#if !defined( SKC_RENDER_TILE_COVER_VECTOR ) || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ cover->aN.c[ii] = 1 - cover->aN.c[ii];
+
+#else
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COVER_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COVER_VECTOR_COUNT; ii++)
+ cover->vN.c[ii] = 1 - cover->vN.c[ii];
+
+#endif
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_color_wip_zero(union skc_tile_color * SKC_RESTRICT const color)
+{
+#if !defined( SKC_RENDER_TILE_COLOR_VECTOR ) || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ color->aN.rgba[ii].r = 0;
+ color->aN.rgba[ii].g = 0;
+ color->aN.rgba[ii].b = 0;
+ color->aN.rgba[ii].a = 1;
+ }
+
+#else
+ //
+ // DISABLED ON GEN9 -- probably a compiler bug
+ //
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].even.even = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].odd.even = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].even.odd = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].odd.odd = 1;
+#endif
+}
+
+static
+void
+skc_tile_color_acc_zero(union skc_tile_color * SKC_RESTRICT const color)
+{
+#if !defined( SKC_RENDER_TILE_COLOR_VECTOR ) || defined( SKC_ARCH_GEN9 )
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ color->aN.rgba[ii].r = 0;
+ color->aN.rgba[ii].g = 0;
+ color->aN.rgba[ii].b = 0;
+ color->aN.rgba[ii].a = 1;
+ }
+
+#else
+ //
+ // DISABLED ON GEN9 -- probably a compiler bug
+ //
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].even.even = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].odd.even = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].even.odd = 0;
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ color->vN.rgba[ii].odd.odd = 1;
+#endif
+}
+
+//
+//
+//
+
+static
+bool
+skc_tile_color_test_opacity(union skc_tile_color const * SKC_RESTRICT const color)
+{
+ //
+ // returns true if tile is opaque
+ //
+ // various hacks to test for complete tile opacity
+ //
+ // note that front-to-back currently has alpha at 0.0f -- this can
+ // be harmonized to use a traditional alpha if we want to support
+ // rendering in either direction
+ //
+ // hack -- ADD/MAX/OR all alphas together and test for non-zero
+ //
+ SKC_RENDER_TILE_COLOR t = color->aN.rgba[0].a;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH-1)))
+ for (uint ii=1; ii<SKC_TILE_WIDTH; ii++)
+ t += color->aN.rgba[ii].a;
+
+#if ( SKC_RENDER_SUBGROUP_SIZE == 1 )
+ //
+ // SIMD
+ //
+ return !any(t != ( 0 ));
+
+#elif ( SKC_RENDER_SCANLINE_VECTOR_SIZE == 1 )
+ //
+ // SIMT - scalar per lane
+ //
+ return !sub_group_any(t != 0);
+
+#else
+ //
+ // SIMT - vector per lane
+ //
+ return !sub_group_any(any(t != ( 0 )));
+
+#endif
+
+ //
+ // TODO: The alternative vector-per-lane implementation below is
+ // *not* believed to be performant because the terse vector-wide
+ // test is just hiding a series of comparisons and is likely worse
+ // than the blind ADD/MAX/OR'ing of all alphas followed by a single
+ // test.
+ //
+#if 0
+ //
+ // SIMT - vector per lane
+ //
+
+ // __attribute__((opencl_unroll_hint(SKC_RENDER_TILE_COLOR_VECTOR_COUNT-1)))
+ for (uint ii=0; ii<SKC_RENDER_TILE_COLOR_VECTOR_COUNT; ii++)
+ {
+ if (sub_group_any(any(color->vN.ba[ii].a != ( 0 ))))
+ return false;
+ }
+
+ return true;
+#endif
+}
+
+//
+//
+//
+
+static
+void
+skc_tile_background_over(__global union skc_styling_cmd const * SKC_RESTRICT const commands,
+ uint * SKC_RESTRICT const cmd_next,
+ union skc_tile_color * SKC_RESTRICT const color)
+{
+ //
+ // acc.r = acc.a * r + acc.r
+ // acc.g = acc.a * g + acc.g
+ // acc.b = acc.a * b + acc.b
+ //
+ __global half const * const rgba_ptr = commands[*cmd_next].f16a2 + 0;
+
+ *cmd_next += 2;
+
+ SKC_RENDER_TILE_COLOR_PAIR const rg = SKC_RENDER_TILE_COLOR_PAIR_LOAD(0,rgba_ptr);
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->aN.rgba[ii].r = mad(color->aN.rgba[ii].a,rg.lo,color->aN.rgba[ii].r);
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->aN.rgba[ii].g = mad(color->aN.rgba[ii].a,rg.hi,color->aN.rgba[ii].g);
+
+ SKC_RENDER_TILE_COLOR_PAIR const ba = SKC_RENDER_TILE_COLOR_PAIR_LOAD(1,rgba_ptr);
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ color->aN.rgba[ii].b = mad(color->aN.rgba[ii].a,ba.lo,color->aN.rgba[ii].b);
+}
+
+//
+//
+//
+
+// #define SKC_SURFACE_IS_BUFFER
+#ifdef SKC_SURFACE_IS_BUFFER
+
+static
+void
+skc_surface_composite_u8_rgba(__global SKC_RENDER_SURFACE_U8_RGBA * SKC_RESTRICT const surface,
+ skc_uint const surface_pitch,
+ union skc_tile_color const * SKC_RESTRICT const color,
+ skc_ttck_hi_t const ttck_hi)
+{
+ //
+ // NEW MAJOR OPTIMIZATION:
+ //
+ // Rotating and rasterizing the original world transform by -90
+ // degrees and then rendering the scene scene by +90 degrees enables
+ // all the final surface composite to be perfomed in perfectly
+ // coalesced wide transactions.
+ //
+ // For this reason, linear access to the framebuffer is preferred.
+ //
+ // vvvvvvvvvvvv OLD NOTE BELOW vvvvvvvvvvvvv
+ //
+ // NOTE THIS IS TRANSPOSED BY 90 DEGREES
+ //
+ // INTEL HAS A "BLOCK STORE" FEATURE THAT SOLVES THIS AND TEXTURE
+ // CACHES ARE ALSO PROBABLY SOMEWHAT FORGIVING.
+ //
+ // IT'S EASY TO TRANSPOSE THIS IN SMEM BEFORE STORING BUT IN THIS
+ // CPU EXAMPLE WE CAN PROBABLY DO WELL BY JUST WRITING OUT SCALARS
+ //
+ // FIXME -- NEED TO HARMONIZE BYTE AND COMPONENT COLOR CHANNEL
+ // ORDERING SO THAT COLOR CHANNELS MATCH 0xAARRGGBBAA ORDER
+ //
+ uint const pitch = surface_pitch / SKC_RENDER_SCANLINE_VECTOR_SIZE;
+ uint const x = skc_ttck_hi_get_x(ttck_hi);
+ uint const y = skc_ttck_hi_get_y(ttck_hi) ;
+ uint const base = x * SKC_TILE_WIDTH * pitch + y * (SKC_TILE_HEIGHT / SKC_RENDER_SCANLINE_VECTOR_SIZE) + skc_subgroup_lane();
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+ SKC_RENDER_SURFACE_U8_RGBA rgba = ( 0xFF000000 );
+
+ rgba |= SKC_CONVERT(SKC_RENDER_SURFACE_U8_RGBA)(color->aN.rgba[ii].r * 255);
+ rgba |= SKC_CONVERT(SKC_RENDER_SURFACE_U8_RGBA)(color->aN.rgba[ii].g * 255) << 8;
+ rgba |= SKC_CONVERT(SKC_RENDER_SURFACE_U8_RGBA)(color->aN.rgba[ii].b * 255) << 16;
+
+ surface[base + ii * pitch] = rgba;
+
+ // printf("%08v2X\n",rgba);
+ }
+}
+
+#else
+
+static
+void
+skc_surface_composite_u8_rgba(__write_only image2d_t surface,
+ union skc_tile_color const * SKC_RESTRICT const color,
+ skc_ttck_hi_t const ttck_hi)
+{
+ //
+ // NEW MAJOR OPTIMIZATION:
+ //
+ // Rotating and rasterizing the original world transform by -90
+ // degrees and then rendering the scene scene by +90 degrees enables
+ // all the final surface composite to be perfomed in perfectly
+ // coalesced wide transactions.
+ //
+ // For this reason, linear access to the framebuffer is preferred.
+ //
+ // vvvvvvvvvvvv OLD NOTE BELOW vvvvvvvvvvvvv
+ //
+ // NOTE THIS IS TRANSPOSED BY 90 DEGREES
+ //
+ // INTEL HAS A "BLOCK STORE" FEATURE THAT SOLVES THIS AND TEXTURE
+ // CACHES ARE ALSO PROBABLY SOMEWHAT FORGIVING.
+ //
+ // IT'S EASY TO TRANSPOSE THIS IN SMEM BEFORE STORING BUT IN THIS
+ // CPU EXAMPLE WE CAN PROBABLY DO WELL BY JUST WRITING OUT SCALARS
+ //
+ // FIXME -- NEED TO HARMONIZE BYTE AND COMPONENT COLOR CHANNEL
+ // ORDERING SO THAT COLOR CHANNELS MATCH 0xAARRGGBBAA ORDER
+ //
+
+#if 1
+ int x = skc_ttck_hi_get_x(ttck_hi) * SKC_TILE_WIDTH;
+ int y = skc_ttck_hi_get_y(ttck_hi) * SKC_TILE_HEIGHT + (skc_subgroup_lane() * SKC_RENDER_SCANLINE_VECTOR_SIZE);
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+#ifdef SKC_RENDER_TILE_COLOR_INTERLEAVED
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_SURFACE_WRITE(surface, \
+ (int2)(x,y+I), \
+ color->iN.rgba[ii] A); \
+ }
+
+#else
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_SURFACE_COLOR const rgba = \
+ (SKC_RENDER_SURFACE_COLOR) \
+ (color->aN.rgba[ii].r C, \
+ color->aN.rgba[ii].g C, \
+ color->aN.rgba[ii].b C, \
+ 1.0); \
+ SKC_RENDER_SURFACE_WRITE(surface,(int2)(x,y+I),rgba); \
+ }
+
+#endif
+
+ SKC_RENDER_SCANLINE_VECTOR_EXPAND();
+
+ x += 1;
+ }
+#else
+ int x = skc_ttck_hi_get_y(ttck_hi) * SKC_TILE_HEIGHT + (skc_subgroup_lane() * SKC_RENDER_SCANLINE_VECTOR_SIZE);
+ int y = skc_ttck_hi_get_x(ttck_hi) * SKC_TILE_WIDTH;
+
+ // __attribute__((opencl_unroll_hint(SKC_TILE_WIDTH)))
+ for (uint ii=0; ii<SKC_TILE_WIDTH; ii++)
+ {
+#ifdef SKC_RENDER_TILE_COLOR_INTERLEAVED
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_SURFACE_WRITE(surface, \
+ (int2)(x+I,y+ii), \
+ color->iN.rgba[ii] A); \
+ }
+
+#else
+
+#undef SKC_EXPAND_X
+#define SKC_EXPAND_X(I,S,C,P,A) { \
+ SKC_RENDER_SURFACE_COLOR const rgba = \
+ (SKC_RENDER_SURFACE_COLOR) \
+ (color->aN.rgba[ii].r C, \
+ color->aN.rgba[ii].g C, \
+ color->aN.rgba[ii].b C, \
+ 1.0); \
+ SKC_RENDER_SURFACE_WRITE(surface,(int2)(x+I,y+ii),rgba); \
+ }
+
+#endif
+
+ SKC_RENDER_SCANLINE_VECTOR_EXPAND();
+ }
+
+#endif
+}
+
+#endif
+
+//
+//
+//
+static
+uint const
+skc_ttck_lane(uint const ttck_idx)
+{
+ return ttck_idx & SKC_RENDER_SUBGROUP_MASK;
+}
+
+//
+// RENDER KERNEL
+//
+
+__kernel
+SKC_RENDER_KERNEL_ATTRIBS
+void
+skc_kernel_render(__global union skc_layer_node const * SKC_RESTRICT const layers,
+ __global struct skc_group_node const * SKC_RESTRICT const groups,
+ __global union skc_styling_cmd const * SKC_RESTRICT const commands, // FIXME -- rename
+
+ __global skc_ttck_t const * SKC_RESTRICT const ttck_keys, // rename: keys
+ skc_uint const ttck_count, // rename: key_count
+
+ __global uint const * SKC_RESTRICT const ttck_offsets, // rename: offsets
+ skc_uint const tile_count, // rename: offset_count
+
+ __global skc_ttxb_t const * SKC_RESTRICT const ttxb_extent,
+#ifdef SKC_SURFACE_IS_BUFFER
+ __global void * SKC_RESTRICT const surface,
+#else
+ __write_only image2d_t surface,
+#endif
+#ifdef SKC_SURFACE_IS_BUFFER
+ skc_uint const surface_pitch,
+#endif
+ uint4 const tile_clip) // rename: clip
+{
+ //
+ // Each subgroup is responsible for a tile. No extra subgroups are
+ // launched.
+ //
+ // FIXME -- might be better implemented as a "grid stride loop" if
+ // Intel GEN really has a local memory "quantum" of 4KB which means
+ // we would need to launch 4 subgroups per workgroup.
+ //
+ // Confirmed: GEN8 has 4KB SLM workgroup min while GEN9 is 1KB.
+ //
+
+ //
+ // declare tile cover and color registers
+ //
+ // this used to be a neat unified struct but the Intel GEN compiler
+ // wasn't cooperating and spilling to private memory even though all
+ // registers were indexed by constants
+ //
+ union skc_tile_color color_wip;
+ union skc_tile_color color_acc;
+
+ union skc_tile_cover cover_wip;
+ union skc_tile_cover cover_acc;
+ union skc_tile_cover cover_msk;
+
+ //
+ // which subgroup in the grid is this?
+ //
+ // TAKE NOTE: the Intel GEN compiler is recognizing get_group_id(0)
+ // as a uniform but the alternative calculation used when there are
+ // multiple subgroups per workgroup is not cooperating and
+ // driving spillage elsewhere.
+ //
+#if ( SKC_RENDER_WORKGROUP_SUBGROUPS == 1 )
+ skc_uint const ttck_offset_idx = get_group_id(0);
+#else
+ skc_uint const ttck_offset_idx = get_group_id(0) * SKC_RENDER_WORKGROUP_SUBGROUPS + get_sub_group_id();
+#endif
+
+ //
+ // load the starting ttck for this offset and get a bound on the max
+ // number of keys that might be loaded
+ //
+ // these are uniform across all subgroup lanes
+ //
+ skc_uint ttck_idx = ttck_offsets[ttck_offset_idx];
+
+ //
+ // FIXME -- SIMD/CPU version should probaby load a 256-bit (4-wide)
+ // vector of ttck keys
+ //
+#ifndef SKC_TARGET_ARCH_COALESCED_LOAD_TTCK
+
+ skc_ttck_t ttck = ttck_keys[ttck_idx];
+
+#else
+
+ uint const ttck_base = ttck_idx & ~SKC_RENDER_SUBGROUP_MASK;
+ uint const ttck_lane = ttck_idx & SKC_RENDER_SUBGROUP_MASK;
+ skc_ttck_t ttck_s = ttck_keys[min(ttck_base+max(get_sub_group_local_id(),ttck_lane),ttck_count-1)]
+
+#endif
+
+ //
+ // set up style group/layer state
+ //
+ struct skc_styling_group {
+ union skc_group_range range;
+ skc_uint depth;
+ skc_uint id;
+ } group;
+
+ group.range.lo = 0;
+ group.range.hi = SKC_UINT_MAX;
+ group.depth = 0;
+ group.id = SKC_UINT_MAX;
+
+ //
+ // start with clear tile opacity, knockout and flag bits
+ //
+ // uint color_acc_opacity = 0; // per lane bit mask -- assumes a PIXEL_TILE_HEIGHT <= 32
+ // uint cover_acc_knockout = 0; // per lane bit mask -- assumes a PIXEL_TILE_HEIGHT <= 32
+ //
+ skc_uint flags = 0;
+
+ //
+ // declare and initialize accumulators
+ //
+#if ( SKC_RENDER_WORKGROUP_SUBGROUPS == 1 )
+ __local union skc_subgroup_smem smem[1];
+#else
+ __local union skc_subgroup_smem smem_wg[SKC_RENDER_WORKGROUP_SUBGROUPS];
+ __local union skc_subgroup_smem * SKC_RESTRICT const smem = smem_wg + get_sub_group_id();
+#endif
+
+#ifdef SKC_TARGET_ARCH_COALESCED_LOAD_TTCK
+ //
+ // select the initial ttck key
+ //
+ skc_ttck_t ttck;
+#if 0
+ ttck = sub_group_broadcast(ttck_s,ttck_lane); // SHOULD WORK BUT .4454 COMPILER IS BROKEN
+#else
+ ttck.lo = sub_group_broadcast(ttck_s.lo,ttck_lane); // EXPLICIT WORKAROUND
+ ttck.hi = sub_group_broadcast(ttck_s.hi,ttck_lane);
+#endif
+
+#endif
+
+ //
+ // save the first key so we know what tile we're in
+ //
+ skc_ttck_t ttck0 = ttck;
+
+ //
+ // evaluate the coarse clip as late as possible
+ //
+ skc_uint const ttck_hi_x = skc_ttck_hi_get_x(ttck0.hi);
+
+ if ((ttck_hi_x < tile_clip.lo.x) || (ttck_hi_x >= tile_clip.hi.x))
+ return;
+
+ skc_uint const ttck_hi_y = skc_ttck_hi_get_y(ttck0.hi);
+
+ if ((ttck_hi_y < tile_clip.lo.y) || (ttck_hi_y >= tile_clip.hi.y))
+ return;
+
+#if 0
+ printf("< %u, %u >\n",ttck_hi_x,ttck_hi_y);
+#endif
+
+ //
+ // load -> scatter -> flush
+ //
+ while (true)
+ {
+ // if scattering is disabled then just run through ttck keys
+ bool const is_scatter_enabled = (flags & SKC_TILE_FLAGS_SCATTER_SKIP) == 0;
+
+ // need to clear accumulators before a scatter loop
+ if (is_scatter_enabled)
+ {
+ skc_tile_aa_zero(smem);
+ }
+
+ do {
+ // skip scattering?
+ if (is_scatter_enabled)
+ {
+ skc_block_id_t const xb_id = skc_ttck_lo_get_ttxb_id(ttck.lo);
+
+ if (skc_ttck_lo_is_prefix(ttck.lo)) {
+ skc_scatter_ttpb(ttxb_extent,smem,xb_id);
+ } else {
+ skc_scatter_ttsb(ttxb_extent,smem,xb_id);
+ }
+ }
+
+ //
+ // any ttck keys left?
+ //
+ if (++ttck_idx >= ttck_count)
+ {
+ flags |= SKC_TILE_FLAGS_FLUSH_FINALIZE;
+ break;
+ }
+
+ //
+ // process next ttck key
+ //
+#ifndef SKC_TARGET_ARCH_COALESCED_LOAD_TTCK
+ //
+ // SIMD -- read next key
+ //
+ ttck = ttck_keys[ttck_idx];
+#else
+ //
+ // SIMT -- refresh the ttck_s?
+ //
+ uint const ttck_lane_next = ttck_idx & SKC_RENDER_SUBGROUP_MASK;
+
+ if (ttck_lane_next == 0)
+ ttck_s = ttck_keys[min(ttck_idx+get_sub_group_local_id(),ttck_count-1)];
+
+ //
+ // broadcast next key to entire subgroup
+ //
+#if 0
+ ttck = sub_group_broadcast(ttck_s,ttck_lane_next); // SHOULD WORK BUT .4454 COMPILER IS BROKEN
+#else
+ ttck.lo = sub_group_broadcast(ttck_s.lo,ttck_lane_next); // EXPLICIT WORKAROUND
+ ttck.hi = sub_group_broadcast(ttck_s.hi,ttck_lane_next);
+#endif
+#endif
+ // continue scattering if on same YXL layer
+ } while (skc_ttck_equal_yxl(ttck0,ttck));
+
+ // finalize if no longer on same YX tile
+ if (!skc_ttck_hi_equal_yx(ttck0.hi,ttck.hi))
+ {
+ // otherwise, unwind the tile styling and exit
+ flags |= SKC_TILE_FLAGS_FLUSH_FINALIZE;
+ }
+
+ //
+ // given: new layer id from ttxk key
+ //
+ // load [layer id]{ group id, depth }
+ //
+ // if within current group's layer range
+ //
+ // if at same depth
+ //
+ // load and execute cover>[mask>]color>blend commands
+ //
+ // else if not at same depth then move deeper
+ //
+ // for all groups in group trail from cur depth to new depth
+ // enter group, saving and initializing regs as necessary
+ // increment depth and update layer range
+ // load and execute cover>[mask>]color>blend commands
+ //
+ // else not within layer range
+ //
+ // exit current group, restoring regs as necessary
+ // decrement depth and update layer range
+ //
+ //
+ skc_layer_id const layer_id_new = skc_ttck_get_layer(ttck0); // FIXME -- this was ttck_hi
+ union skc_layer_node const layer_node_new = layers[layer_id_new];
+
+ // clear flag that controls group/layer traversal
+ flags &= ~SKC_TILE_FLAGS_FLUSH_COMPLETE;
+
+ do {
+ bool const unwind = (flags & SKC_TILE_FLAGS_FLUSH_UNWIND) != 0;
+
+ //
+ // is layer a child of the current parent group?
+ //
+ uint cmd_next = 0;
+
+ if (!unwind && (layer_node_new.parent == group.id))
+ {
+ // execute this layer's cmds
+ cmd_next = layer_node_new.cmds;
+
+ // if this is final then configure so groups get unwound, otherwise we're done
+ flags |= ((flags & SKC_TILE_FLAGS_FLUSH_FINALIZE) ? SKC_TILE_FLAGS_FLUSH_UNWIND : SKC_TILE_FLAGS_FLUSH_COMPLETE);
+ }
+ else if (!unwind && (layer_id_new >= group.range.lo && layer_id_new <= group.range.hi))
+ {
+ //
+ // is layer in a child group?
+ //
+ union skc_group_parents const gp = groups[layer_node_new.parent].parents;
+ uint const gn = gp.depth - ++group.depth;
+
+ if (gn == 0)
+ group.id = layer_node_new.parent;
+ else
+ group.id = commands[gp.base + gn - 1].parent;
+
+ // update group layer range
+ group.range = groups[group.id].range;
+
+ // enter current group
+ cmd_next = groups[group.id].cmds.enter;
+ }
+ else // otherwise, exit this group
+ {
+ // enter current group
+ cmd_next = groups[group.id].cmds.leave;
+
+ // decrement group depth
+ if (--group.depth == 0)
+ {
+ flags |= SKC_TILE_FLAGS_FLUSH_COMPLETE;
+ }
+ else
+ {
+ // get path_base of current group
+ uint const gnpb = groups[group.id].parents.base;
+
+ // get parent of current group
+ group.id = commands[gnpb].parent;
+
+ // update group layer range
+ group.range = groups[group.id].range;
+ }
+ }
+
+ //
+ // execute cmds
+ //
+ while (true)
+ {
+ union skc_styling_cmd const cmd = commands[cmd_next++];
+
+ switch (cmd.u32 & SKC_STYLING_OPCODE_MASK_OPCODE)
+ {
+ case SKC_STYLING_OPCODE_NOOP:
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_NONZERO:
+ skc_tile_cover_nonzero(smem,&cover_wip,&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_EVENODD:
+ skc_tile_cover_evenodd(smem,&cover_wip,&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_ACCUMULATE:
+ skc_tile_cover_accumulate(&cover_acc,&cover_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_MASK:
+ skc_tile_cover_wip_mask(&cover_wip,&cover_msk);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_WIP_ZERO:
+ skc_tile_cover_wip_zero(&cover_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_ACC_ZERO:
+ skc_tile_cover_acc_zero(&cover_acc);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_MASK_ZERO:
+ skc_tile_cover_msk_zero(&cover_msk);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_MASK_ONE:
+ skc_tile_cover_msk_one(&cover_msk);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_MASK_INVERT:
+ skc_tile_cover_msk_invert(&cover_msk);
+ break;
+
+ case SKC_STYLING_OPCODE_COLOR_FILL_SOLID:
+ skc_tile_color_fill_solid(commands,&cmd_next,&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COLOR_FILL_GRADIENT_LINEAR:
+ //
+ // FIXME -- gradients shouldn't be executing so much
+ // conditional driven code at runtime since we *know*
+ // the gradient style on the host can just create a
+ // new styling command to exploit this.
+ //
+ // FIXME -- it might be time to try using the GPU's
+ // sampler on a linear array of half4 vectors -- it
+ // might outperform the explicit load/lerp routines.
+ //
+ // FIXME -- optimizing for vertical gradients (uhhh,
+ // they're actually horizontal due to the -90 degree
+ // view transform) is nice but is it worthwhile to
+ // have this in the kernel? Easy to add it back...
+ //
+#if defined( SKC_ARCH_GEN9 )
+ // disable gradients due to exessive spillage -- fix later
+ cmd_next += SKC_GRADIENT_CMD_WORDS_V1(commands[cmd_next+6].u32);
+#else
+ skc_tile_color_fill_gradient_linear_nonvertical(smem,commands,&cmd_next,&color_wip,ttck0.hi);
+#endif
+ break;
+
+ case SKC_STYLING_OPCODE_COLOR_WIP_ZERO:
+ skc_tile_color_wip_zero(&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COLOR_ACC_ZERO:
+ skc_tile_color_acc_zero(&color_acc);
+ break;
+
+ case SKC_STYLING_OPCODE_BLEND_OVER:
+ skc_tile_blend_over(&color_acc,&cover_wip,&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_BLEND_PLUS:
+ skc_tile_blend_plus(&color_acc,&cover_wip,&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_BLEND_MULTIPLY:
+ skc_tile_blend_multiply(&color_acc,&cover_wip,&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_BLEND_KNOCKOUT:
+ skc_tile_blend_knockout(&cover_acc,&color_acc,&cover_wip,&color_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_WIP_MOVE_TO_MASK:
+ // skc_tile_cover_msk_copy_wip(&cover_msk,&cover_wip);
+ break;
+
+ case SKC_STYLING_OPCODE_COVER_ACC_MOVE_TO_MASK:
+ // skc_tile_cover_msk_copy_acc(&cover_msk,&cover_acc);
+ break;
+
+ case SKC_STYLING_OPCODE_BACKGROUND_OVER:
+ skc_tile_background_over(commands,&cmd_next,&color_acc);
+ break;
+
+ case SKC_STYLING_OPCODE_SURFACE_COMPOSITE:
+#ifdef SKC_SURFACE_IS_BUFFER
+ skc_surface_composite_u8_rgba(surface,surface_pitch,&color_acc,ttck0.hi);
+#else
+ skc_surface_composite_u8_rgba(surface, &color_acc,ttck0.hi);
+#endif
+ break;
+
+ case SKC_STYLING_OPCODE_COLOR_ACC_TEST_OPACITY:
+ if (skc_tile_color_test_opacity(&color_acc))
+ flags |= SKC_TILE_FLAGS_SCATTER_SKIP;
+ break;
+
+ default:
+ return; // this is an illegal opcode -- trap and die!
+ }
+
+ //
+ // if sign bit is set then this was final command
+ //
+ if (cmd.s32 < 0)
+ break;
+ }
+
+ // continue as long as tile flush isn't complete
+ } while ((flags & SKC_TILE_FLAGS_FLUSH_COMPLETE) == 0);
+
+ // return if was the final flush
+ if (flags & SKC_TILE_FLAGS_FLUSH_FINALIZE)
+ return;
+
+ // update wip ttck_hi
+ ttck0 = ttck;
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/segment_ttck.cl b/src/compute/skc/platforms/cl_12/kernels/segment_ttck.cl
index 6ac068bee6..378d51d8d7 100644
--- a/src/compute/skc/segment_ttck.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/segment_ttck.cl
@@ -1,131 +1,130 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-// NOTE THAT THE SEGMENT TTCK KERNEL IS ENTIRELY DEPENDENT ON THE
-// LAYOUT OF THE TTCK KEY. IF THE TTCK KEY IS ALTERED THEN THIS
-// KERNEL WILL NEED TO BE UPDATED
-//
-
-#include <hs/cl/gen9/hs_cl_macros.h>
-
-#include "atomic_cl.h"
-#include "tile.h"
-
-//
-//
-//
-
-#define HS_KEYS_PER_SLAB (HS_KEYS_PER_LANE * HS_LANES_PER_WARP)
-#define HS_LANE_MASK (HS_LANES_PER_WARP - 1)
-
-//
-//
-//
-
-#define SKC_YX_NEQ(row,prev) \
- (((as_uint2(r##row).hi ^ as_uint2(r##prev).hi) & SKC_TTCK_HI_MASK_YX) != 0)
-
-//
-//
-//
-
-__kernel
-__attribute__((intel_reqd_sub_group_size(HS_LANES_PER_WARP)))
-void
-skc_kernel_segment_ttck(__global HS_KEY_TYPE * SKC_RESTRICT const vout,
- __global uint * SKC_RESTRICT const indices,
- __global SKC_ATOMIC_UINT volatile * SKC_RESTRICT const atomics)
-{
- uint const global_id = get_global_id(0);
- uint const gmem_base = (global_id >> HS_LANES_PER_WARP_LOG2) * HS_KEYS_PER_SLAB;
- uint const gmem_idx = gmem_base + (global_id & HS_LANE_MASK);
- uint const lane_idx = gmem_base + (global_id & HS_LANE_MASK) * HS_KEYS_PER_LANE;
-
- //
- // LOAD ALL THE ROWS
- //
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- HS_KEY_TYPE const r##row = (vout + gmem_idx)[prev * HS_LANES_PER_WARP];
-
- HS_SLAB_ROWS();
-
- //
- // LOAD LAST REGISTER FROM COLUMN TO LEFT
- //
- uint diffs = 0;
- uint2 r0 = r1;
-
- if (gmem_base > 0) {
- // if this is the first key in any slab but the first then it
- // broadcast loads the last key in previous slab
- r0.hi = as_uint2(vout[gmem_base - 1]).hi;
- } else if (get_sub_group_local_id() == 0) {
- // if this is the first lane in the first slab
- diffs = 1;
- }
-
- // now shuffle in the last key from the column to the left
- r0.hi = intel_sub_group_shuffle_up(r0.hi,as_uint2(HS_REG_LAST(r)).hi,1);
-
- //
- // FIND ALL DIFFERENCES IN SLAB
- //
- uint valid = 0;
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- valid |= ((r##row != SKC_ULONG_MAX) << prev);
-
- HS_SLAB_ROWS();
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- diffs |= (SKC_YX_NEQ(row,prev) << prev);
-
- HS_SLAB_ROWS();
-
- //
- // SUM UP THE DIFFERENCES
- //
- uint const valid_diffs = valid & diffs;
- uint const count = popcount(valid_diffs);
- uint const inclusive = sub_group_scan_inclusive_add(count);
- uint const exclusive = inclusive - count;
-
- //
- // RESERVE SPACE IN THE INDICES ARRAY
- //
- uint next = 0;
-
- if (get_sub_group_local_id() == HS_LANES_PER_WARP-1)
- next = atomic_add(atomics+1,inclusive); // FIXME -- need a symbolic offset
-
- // distribute base across subgroup
- next = exclusive + sub_group_broadcast(next,HS_LANES_PER_WARP-1);
-
- //
- // STORE THE INDICES
- //
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- if (valid_diffs & (1 << prev)) \
- indices[next++] = lane_idx + prev;
-
- HS_SLAB_ROWS();
-
- //
- // TRANSPOSE THE SLAB AND STORE IT
- //
- HS_TRANSPOSE_SLAB();
-}
-
-//
-//
-//
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+// NOTE THAT THE SEGMENT TTCK KERNEL IS ENTIRELY DEPENDENT ON THE
+// LAYOUT OF THE TTCK KEY. IF THE TTCK KEY IS ALTERED THEN THIS
+// KERNEL WILL NEED TO BE UPDATED
+//
+
+#include "tile.h"
+#include "atomic_cl.h"
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#define HS_KEYS_PER_SLAB (HS_KEYS_PER_LANE * HS_LANES_PER_WARP)
+#define HS_LANE_MASK (HS_LANES_PER_WARP - 1)
+
+//
+//
+//
+
+#define SKC_YX_NEQ(row,prev) \
+ (((as_uint2(r##row).hi ^ as_uint2(r##prev).hi) & SKC_TTCK_HI_MASK_YX) != 0)
+
+//
+//
+//
+
+__kernel
+__attribute__((intel_reqd_sub_group_size(HS_LANES_PER_WARP)))
+void
+skc_kernel_segment_ttck(__global HS_KEY_TYPE * SKC_RESTRICT const vout,
+ __global uint * SKC_RESTRICT const indices,
+ __global SKC_ATOMIC_UINT volatile * SKC_RESTRICT const atomics)
+{
+ uint const global_id = get_global_id(0);
+ uint const gmem_base = (global_id >> HS_LANES_PER_WARP_LOG2) * HS_KEYS_PER_SLAB;
+ uint const gmem_idx = gmem_base + (global_id & HS_LANE_MASK);
+ uint const lane_idx = gmem_base + (global_id & HS_LANE_MASK) * HS_KEYS_PER_LANE;
+
+ //
+ // LOAD ALL THE ROWS
+ //
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ HS_KEY_TYPE const r##row = (vout + gmem_idx)[prev * HS_LANES_PER_WARP];
+
+ HS_SLAB_ROWS();
+
+ //
+ // LOAD LAST REGISTER FROM COLUMN TO LEFT
+ //
+ uint diffs = 0;
+ uint2 r0 = r1;
+
+ if (gmem_base > 0) {
+ // if this is the first key in any slab but the first then it
+ // broadcast loads the last key in previous slab
+ r0.hi = as_uint2(vout[gmem_base - 1]).hi;
+ } else if (get_sub_group_local_id() == 0) {
+ // if this is the first lane in the first slab
+ diffs = 1;
+ }
+
+ // now shuffle in the last key from the column to the left
+ r0.hi = intel_sub_group_shuffle_up(r0.hi,as_uint2(HS_REG_LAST(r)).hi,1);
+
+ //
+ // FIND ALL DIFFERENCES IN SLAB
+ //
+ uint valid = 0;
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ valid |= ((r##row != SKC_ULONG_MAX) << prev);
+
+ HS_SLAB_ROWS();
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ diffs |= (SKC_YX_NEQ(row,prev) << prev);
+
+ HS_SLAB_ROWS();
+
+ //
+ // SUM UP THE DIFFERENCES
+ //
+ uint const valid_diffs = valid & diffs;
+ uint const count = popcount(valid_diffs);
+ uint const inclusive = sub_group_scan_inclusive_add(count);
+ uint const exclusive = inclusive - count;
+
+ //
+ // RESERVE SPACE IN THE INDICES ARRAY
+ //
+ uint next = 0;
+
+ if (get_sub_group_local_id() == HS_LANES_PER_WARP-1)
+ next = atomic_add(atomics+1,inclusive); // FIXME -- need a symbolic offset
+
+ // distribute base across subgroup
+ next = exclusive + sub_group_broadcast(next,HS_LANES_PER_WARP-1);
+
+ //
+ // STORE THE INDICES
+ //
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ if (valid_diffs & (1 << prev)) \
+ indices[next++] = lane_idx + prev;
+
+ HS_SLAB_ROWS();
+
+ //
+ // TRANSPOSE THE SLAB AND STORE IT
+ //
+ HS_TRANSPOSE_SLAB();
+}
+
+//
+//
+//
diff --git a/src/compute/skc/segment_ttrk.cl b/src/compute/skc/platforms/cl_12/kernels/segment_ttrk.cl
index 28a9557ad7..e9accde307 100644
--- a/src/compute/skc/segment_ttrk.cl
+++ b/src/compute/skc/platforms/cl_12/kernels/segment_ttrk.cl
@@ -1,396 +1,394 @@
-/*
- * Copyright 2018 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can
- * be found in the LICENSE file.
- *
- */
-
-//
-// NOTE THAT THE SEGMENT TTRK KERNEL IS ENTIRELY DEPENDENT ON THE
-// LAYOUT OF THE TTRK KEY. IF THE TTRK KEY IS ALTERED THEN THIS
-// KERNEL WILL NEED TO BE UPDATED
-//
-
-#include <hs/cl/gen9/hs_cl_macros.h>
-
-#include "tile.h"
-#include "raster_builder_cl_12.h" // need meta_in structure
-#include "device_cl_12_gen9.h"
-
-//
-//
-//
-
-#define HS_KEYS_PER_SLAB (HS_KEYS_PER_LANE * HS_LANES_PER_WARP)
-#define HS_LANE_MASK (HS_LANES_PER_WARP - 1)
-
-//
-// THE BEST TYPE TO ZERO SMEM
-//
-
-#define SKC_ZERO_TYPE ulong
-#define SKC_ZERO_WORDS 2
-
-//
-// THE ORDER OF COMPONENTS IS:
-//
-// 0: blocks
-// 1: offset
-// 2: pk
-// 3: rk
-//
-
-#if (HS_KEYS_PER_SLAB < 256)
-
-#define SKC_META_TYPE uint
-#define SKC_META_WORDS 1
-
-#define SKC_COMPONENT_TYPE uchar
-
-#else
-
-#define SKC_META_TYPE uint2
-#define SKC_META_WORDS 2
-
-#define SKC_COMPONENT_TYPE ushort
-
-#endif
-
-//
-//
-//
-
-#if ( SKC_TTRK_HI_BITS_COHORT <= 8)
-#define SKC_COHORT_TYPE uchar
-#else
-#define SKC_COHORT_TYPE ushort
-#endif
-
-//
-//
-//
-
-#define SKC_COHORT_ID(row) \
- as_uint2(r##row).hi >> SKC_TTRK_HI_OFFSET_COHORT
-
-//
-// FIXME -- THIS WILL BREAK IF EITHER THE YX BITS OR OFFSET ARE CHANGED
-//
-
-#define SKC_IS_BLOCK(row) \
- ((as_uint2(r##row).lo & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
-
-#define SKC_YX(row,prev) \
- (as_uint2(r##row).hi ^ as_uint2(r##prev).hi)
-
-#define SKC_IS_PK(row,prev) \
- ((uint)(SKC_YX(row,prev) - 1) < SKC_TTRK_HI_MASK_X)
-
-//
-// COHORT SIZE IS ALWAYS A POWER-OF-TWO
-// SUBGROUP SIZE IS ALWAYS A POWER-OF-TWO
-//
-// COHORT SIZE >= SUBGROUP SIZE
-//
-
-#define SKC_COHORT_SIZE (1<<SKC_TTRK_HI_BITS_COHORT)
-
-#define SKC_ZERO_RATIO (SKC_ZERO_WORDS / SKC_META_WORDS)
-#define SKC_META_ZERO_COUNT (SKC_COHORT_SIZE * sizeof(SKC_META_TYPE) / sizeof(SKC_ZERO_TYPE))
-#define SKC_META_ZERO_REM (SKC_META_ZERO_COUNT & SKC_BITS_TO_MASK(HS_LANES_PER_WARP_LOG2))
-
-#define SKC_META_COMPONENTS 4
-#define SKC_META_COMPONENT_COUNT (SKC_COHORT_SIZE * sizeof(SKC_META_TYPE) / sizeof(SKC_COMPONENT_TYPE))
-
-//
-//
-//
-
-__kernel
-__attribute__((intel_reqd_sub_group_size(HS_LANES_PER_WARP)))
-void
-skc_kernel_segment_ttrk(__global HS_KEY_TYPE * SKC_RESTRICT const vout,
- __global uint * SKC_RESTRICT const metas)
-{
- __local union
- {
- SKC_META_TYPE volatile m[SKC_COHORT_SIZE];
- SKC_ZERO_TYPE z[SKC_META_ZERO_COUNT];
- SKC_COMPONENT_TYPE c[SKC_META_COMPONENT_COUNT];
- } shared;
-
- uint const global_id = get_global_id(0);
- uint const gmem_base = (global_id >> HS_LANES_PER_WARP_LOG2) * HS_KEYS_PER_SLAB;
- uint const gmem_idx = gmem_base + (global_id & HS_LANE_MASK);
- uint const gmem_off = (global_id & HS_LANE_MASK) * HS_KEYS_PER_LANE;
-
- //
- // LOAD ALL THE ROWS
- //
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- HS_KEY_TYPE const r##row = (vout + gmem_idx)[prev * HS_LANES_PER_WARP];
-
- HS_SLAB_ROWS();
-
- //
- // LOAD LAST REGISTER FROM COLUMN TO LEFT
- //
- uint diffs = 0;
- uint2 r0 = 0;
-
- if (gmem_base > 0) {
- // if this is the first key in any slab but the first then it
- // broadcast loads the last key in previous slab
- r0.hi = as_uint2(vout[gmem_base - 1]).hi;
- } else {
- // otherwise broadcast the first key in the first slab
- r0.hi = sub_group_broadcast(as_uint2(r1).hi,0);
- // and mark it as an implicit diff
- if (get_sub_group_local_id() == 0)
- diffs = 1;
- }
-
- // now shuffle in the last key from the column to the left
- r0.hi = intel_sub_group_shuffle_up(r0.hi,as_uint2(HS_REG_LAST(r)).hi,1);
-
- // shift away y/x
- SKC_COHORT_TYPE const c0 = r0.hi >> SKC_TTRK_HI_OFFSET_COHORT;
-
- //
- // EXTRACT ALL COHORT IDS EARLY...
- //
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- SKC_COHORT_TYPE c##row = SKC_COHORT_ID(row);
-
- HS_SLAB_ROWS();
-
- //
- // DEBUG
- //
-#if 0
- if (gmem_base == HS_KEYS_PER_SLAB * 7)
- {
- if (get_sub_group_local_id() == 0)
- printf("\n%llX ",as_ulong(r0));
- else
- printf("%llX ",as_ulong(r0));
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- if (get_sub_group_local_id() == 0) \
- printf("\n%llX ",r##row); \
- else \
- printf("%llX ",r##row);
-
- HS_SLAB_ROWS();
- }
-#endif
-
- //
- // CAPTURE ALL CONDITIONS WE CARE ABOUT
- //
- // Diffs must be captured before cohorts
- //
- uint valid = 0;
- uint blocks = 0;
- uint pks = 0;
- SKC_COHORT_TYPE c_max = 0;
-
- //
- // FIXME -- IT'S UNCLEAR IF SHIFTING THE CONDITION CODE VS. AN
- // EXPLICIT PREDICATE WILL GENERATE THE SAME CODE
- //
-#if 0
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- diffs |= ((c##row != c##prev) << prev);
-
- HS_SLAB_ROWS();
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- blocks |= (SKC_IS_BLOCK(row) << prev);
-
- HS_SLAB_ROWS();
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- pks |= SKC_IS_PK(row,prev) << prev);
-
- HS_SLAB_ROWS();
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- valid |= ((r##row != SKC_ULONG_MAX) << prev);
-
- HS_SLAB_ROWS();
-
-#else
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- if (c##row != c##prev) \
- diffs |= 1<<prev;
-
- HS_SLAB_ROWS();
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- if (SKC_IS_BLOCK(row)) \
- blocks |= 1<<prev;
-
- HS_SLAB_ROWS();
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- if (SKC_IS_PK(row,prev)) \
- pks |= 1<<prev;
-
- HS_SLAB_ROWS();
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- if (r##row != SKC_ULONG_MAX) { \
- valid |= 1<<prev; \
- c_max = max(c_max,c##row); \
- }
-
- HS_SLAB_ROWS();
-
-#endif
-
- //
- // TRANSPOSE THE SLAB AND STORE IT
- //
- HS_TRANSPOSE_SLAB();
-
- // the min cohort is the first key in the slab
- uint const c_min = sub_group_broadcast(c1,0);
-
- // the max cohort is the max across all lanes
- c_max = sub_group_reduce_max(c_max);
-
-#if 0 // REMOVE ME LATER
- if (get_sub_group_local_id() == 0)
- printf("%3u : ( %3u , %3u )\n",
- get_global_id(0)>>HS_LANES_PER_WARP_LOG2,c_min,c_max);
-#endif
-
- //
- // ZERO SMEM
- //
- // zero only the meta info for the cohort ids found in this slab
- //
-#if (SKC_ZERO_WORDS >= SKC_META_WORDS)
- uint zz = ((c_min / SKC_ZERO_RATIO) & ~HS_LANE_MASK) + get_sub_group_local_id();
- uint const zz_max = (c_max + SKC_ZERO_RATIO - 1) / SKC_ZERO_RATIO;
-
- for (; zz<=zz_max; zz+=HS_LANES_PER_WARP)
- shared.z[zz] = 0;
-#else
- // ERROR -- it's highly unlikely that the zero type is smaller than
- // the meta type
-#error("Unsupported right now...")
-#endif
-
- //
- // ACCUMULATE AND STORE META INFO
- //
- uint const valid_blocks = valid & blocks;
- uint const valid_pks = valid & pks & ~diffs;
- SKC_META_TYPE meta = ( 0 );
-
-#define SKC_META_LOCAL_ADD(meta) \
- atomic_add(shared.m+HS_REG_LAST(c),meta);
-
-#define SKC_META_LOCAL_STORE(meta,prev) \
- shared.m[c##prev] = meta;
-
- // note this is purposefully off by +1
-#define SKC_META_RESET(meta,curr) \
- meta = ((gmem_off + curr) << 8);
-
-#if 0
-
- // FIXME -- this can be tweaked to shift directly
-#define SKC_META_ADD(meta,prev,blocks,pks,rks) \
- meta += ((((blocks >> prev) & 1) ) | \
- (((pks >> prev) & 1) << 16) | \
- (((rks >> prev) & 1) << 24));
-
-#else
-
-#define SKC_META_ADD(meta,prev,blocks,pks,rks) \
- if (blocks & (1<<prev)) \
- meta += 1; \
- if (pks & (1<<prev)) \
- meta += 1<<16; \
- if (rks & (1<<prev)) \
- meta += 1<<24;
-
-#endif
-
-#undef HS_SLAB_ROW
-#define HS_SLAB_ROW(row,prev) \
- if (diffs & (1<<prev)) { \
- SKC_META_LOCAL_STORE(meta,prev); \
- SKC_META_RESET(meta,row); \
- } \
- SKC_META_ADD(meta,prev, \
- valid_blocks, \
- valid_pks, \
- valid);
-
- HS_SLAB_ROWS();
-
- //
- // ATOMICALLY ADD THE CARRIED OUT METAS
- //
-#if 0 // BUG
- if ((valid & (1<<(HS_KEYS_PER_LANE-1))) && (meta != 0))
- SKC_META_LOCAL_ADD(meta);
-#else
- if (meta != 0)
- SKC_META_LOCAL_ADD(meta);
-#endif
-
- //
- // NOW ATOMICALLY ADD ALL METAS TO THE GLOBAL META TABLE
- //
-
- // convert the slab offset to an extent offset
- bool const is_offset = (get_sub_group_local_id() & 3) == 1;
- uint const adjust = is_offset ? gmem_base - 1 : 0;
-
- //
- // only process the meta components found in this slab
- //
- uint const cc_min = c_min * SKC_META_COMPONENTS;
- uint const cc_max = c_max * SKC_META_COMPONENTS + SKC_META_COMPONENTS - 1;
- uint cc = (cc_min & ~HS_LANE_MASK) + get_sub_group_local_id();
-
- if ((cc >= cc_min) && (cc <= cc_max))
- {
- uint const c = shared.c[cc];
-
- if (c != 0)
- atomic_add(metas+cc,c+adjust);
- }
-
- cc += HS_LANES_PER_WARP;
-
- for (; cc<=cc_max; cc+=HS_LANES_PER_WARP)
- {
- uint const c = shared.c[cc];
-
- if (c != 0)
- atomic_add(metas+cc,c+adjust);
- }
-}
-
-//
-//
-//
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can
+ * be found in the LICENSE file.
+ *
+ */
+
+//
+// NOTE THAT THE SEGMENT TTRK KERNEL IS ENTIRELY DEPENDENT ON THE
+// LAYOUT OF THE TTRK KEY. IF THE TTRK KEY IS ALTERED THEN THIS
+// KERNEL WILL NEED TO BE UPDATED
+//
+
+#include "tile.h"
+#include "raster_builder_cl_12.h" // need meta_in structure
+#include "device_cl_12.h"
+
+//
+//
+//
+
+#define HS_KEYS_PER_SLAB (HS_KEYS_PER_LANE * HS_LANES_PER_WARP)
+#define HS_LANE_MASK (HS_LANES_PER_WARP - 1)
+
+//
+// THE BEST TYPE TO ZERO SMEM
+//
+
+#define SKC_ZERO_TYPE ulong
+#define SKC_ZERO_WORDS 2
+
+//
+// THE ORDER OF COMPONENTS IS:
+//
+// 0: blocks
+// 1: offset
+// 2: pk
+// 3: rk
+//
+
+#if (HS_KEYS_PER_SLAB < 256)
+
+#define SKC_META_TYPE uint
+#define SKC_META_WORDS 1
+
+#define SKC_COMPONENT_TYPE uchar
+
+#else
+
+#define SKC_META_TYPE uint2
+#define SKC_META_WORDS 2
+
+#define SKC_COMPONENT_TYPE ushort
+
+#endif
+
+//
+//
+//
+
+#if ( SKC_TTRK_HI_BITS_COHORT <= 8)
+#define SKC_COHORT_TYPE uchar
+#else
+#define SKC_COHORT_TYPE ushort
+#endif
+
+//
+//
+//
+
+#define SKC_COHORT_ID(row) \
+ as_uint2(r##row).hi >> SKC_TTRK_HI_OFFSET_COHORT
+
+//
+// FIXME -- THIS WILL BREAK IF EITHER THE YX BITS OR OFFSET ARE CHANGED
+//
+
+#define SKC_IS_BLOCK(row) \
+ ((as_uint2(r##row).lo & SKC_DEVICE_SUBBLOCKS_PER_BLOCK_MASK) == 0)
+
+#define SKC_YX(row,prev) \
+ (as_uint2(r##row).hi ^ as_uint2(r##prev).hi)
+
+#define SKC_IS_PK(row,prev) \
+ ((uint)(SKC_YX(row,prev) - 1) < SKC_TTRK_HI_MASK_X)
+
+//
+// COHORT SIZE IS ALWAYS A POWER-OF-TWO
+// SUBGROUP SIZE IS ALWAYS A POWER-OF-TWO
+//
+// COHORT SIZE >= SUBGROUP SIZE
+//
+
+#define SKC_COHORT_SIZE (1<<SKC_TTRK_HI_BITS_COHORT)
+
+#define SKC_ZERO_RATIO (SKC_ZERO_WORDS / SKC_META_WORDS)
+#define SKC_META_ZERO_COUNT (SKC_COHORT_SIZE * sizeof(SKC_META_TYPE) / sizeof(SKC_ZERO_TYPE))
+#define SKC_META_ZERO_REM (SKC_META_ZERO_COUNT & SKC_BITS_TO_MASK(HS_LANES_PER_WARP_LOG2))
+
+#define SKC_META_COMPONENTS 4
+#define SKC_META_COMPONENT_COUNT (SKC_COHORT_SIZE * sizeof(SKC_META_TYPE) / sizeof(SKC_COMPONENT_TYPE))
+
+//
+//
+//
+
+__kernel
+__attribute__((intel_reqd_sub_group_size(HS_LANES_PER_WARP)))
+void
+skc_kernel_segment_ttrk(__global HS_KEY_TYPE * SKC_RESTRICT const vout,
+ __global uint * SKC_RESTRICT const metas)
+{
+ __local union
+ {
+ SKC_META_TYPE volatile m[SKC_COHORT_SIZE];
+ SKC_ZERO_TYPE z[SKC_META_ZERO_COUNT];
+ SKC_COMPONENT_TYPE c[SKC_META_COMPONENT_COUNT];
+ } shared;
+
+ uint const global_id = get_global_id(0);
+ uint const gmem_base = (global_id >> HS_LANES_PER_WARP_LOG2) * HS_KEYS_PER_SLAB;
+ uint const gmem_idx = gmem_base + (global_id & HS_LANE_MASK);
+ uint const gmem_off = (global_id & HS_LANE_MASK) * HS_KEYS_PER_LANE;
+
+ //
+ // LOAD ALL THE ROWS
+ //
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ HS_KEY_TYPE const r##row = (vout + gmem_idx)[prev * HS_LANES_PER_WARP];
+
+ HS_SLAB_ROWS();
+
+ //
+ // LOAD LAST REGISTER FROM COLUMN TO LEFT
+ //
+ uint diffs = 0;
+ uint2 r0 = 0;
+
+ if (gmem_base > 0) {
+ // if this is the first key in any slab but the first then it
+ // broadcast loads the last key in previous slab
+ r0.hi = as_uint2(vout[gmem_base - 1]).hi;
+ } else {
+ // otherwise broadcast the first key in the first slab
+ r0.hi = sub_group_broadcast(as_uint2(r1).hi,0);
+ // and mark it as an implicit diff
+ if (get_sub_group_local_id() == 0)
+ diffs = 1;
+ }
+
+ // now shuffle in the last key from the column to the left
+ r0.hi = intel_sub_group_shuffle_up(r0.hi,as_uint2(HS_REG_LAST(r)).hi,1);
+
+ // shift away y/x
+ SKC_COHORT_TYPE const c0 = r0.hi >> SKC_TTRK_HI_OFFSET_COHORT;
+
+ //
+ // EXTRACT ALL COHORT IDS EARLY...
+ //
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ SKC_COHORT_TYPE c##row = SKC_COHORT_ID(row);
+
+ HS_SLAB_ROWS();
+
+ //
+ // DEBUG
+ //
+#if 0
+ if (gmem_base == HS_KEYS_PER_SLAB * 7)
+ {
+ if (get_sub_group_local_id() == 0)
+ printf("\n%llX ",as_ulong(r0));
+ else
+ printf("%llX ",as_ulong(r0));
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ if (get_sub_group_local_id() == 0) \
+ printf("\n%llX ",r##row); \
+ else \
+ printf("%llX ",r##row);
+
+ HS_SLAB_ROWS();
+ }
+#endif
+
+ //
+ // CAPTURE ALL CONDITIONS WE CARE ABOUT
+ //
+ // Diffs must be captured before cohorts
+ //
+ uint valid = 0;
+ uint blocks = 0;
+ uint pks = 0;
+ SKC_COHORT_TYPE c_max = 0;
+
+ //
+ // FIXME -- IT'S UNCLEAR IF SHIFTING THE CONDITION CODE VS. AN
+ // EXPLICIT PREDICATE WILL GENERATE THE SAME CODE
+ //
+#if 0
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ diffs |= ((c##row != c##prev) << prev);
+
+ HS_SLAB_ROWS();
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ blocks |= (SKC_IS_BLOCK(row) << prev);
+
+ HS_SLAB_ROWS();
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ pks |= SKC_IS_PK(row,prev) << prev);
+
+ HS_SLAB_ROWS();
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ valid |= ((r##row != SKC_ULONG_MAX) << prev);
+
+ HS_SLAB_ROWS();
+
+#else
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ if (c##row != c##prev) \
+ diffs |= 1<<prev;
+
+ HS_SLAB_ROWS();
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ if (SKC_IS_BLOCK(row)) \
+ blocks |= 1<<prev;
+
+ HS_SLAB_ROWS();
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ if (SKC_IS_PK(row,prev)) \
+ pks |= 1<<prev;
+
+ HS_SLAB_ROWS();
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ if (r##row != SKC_ULONG_MAX) { \
+ valid |= 1<<prev; \
+ c_max = max(c_max,c##row); \
+ }
+
+ HS_SLAB_ROWS();
+
+#endif
+
+ //
+ // TRANSPOSE THE SLAB AND STORE IT
+ //
+ HS_TRANSPOSE_SLAB();
+
+ // the min cohort is the first key in the slab
+ uint const c_min = sub_group_broadcast(c1,0);
+
+ // the max cohort is the max across all lanes
+ c_max = sub_group_reduce_max(c_max);
+
+#if 0 // REMOVE ME LATER
+ if (get_sub_group_local_id() == 0)
+ printf("%3u : ( %3u , %3u )\n",
+ get_global_id(0)>>HS_LANES_PER_WARP_LOG2,c_min,c_max);
+#endif
+
+ //
+ // ZERO SMEM
+ //
+ // zero only the meta info for the cohort ids found in this slab
+ //
+#if (SKC_ZERO_WORDS >= SKC_META_WORDS)
+ uint zz = ((c_min / SKC_ZERO_RATIO) & ~HS_LANE_MASK) + get_sub_group_local_id();
+ uint const zz_max = (c_max + SKC_ZERO_RATIO - 1) / SKC_ZERO_RATIO;
+
+ for (; zz<=zz_max; zz+=HS_LANES_PER_WARP)
+ shared.z[zz] = 0;
+#else
+ // ERROR -- it's highly unlikely that the zero type is smaller than
+ // the meta type
+#error("Unsupported right now...")
+#endif
+
+ //
+ // ACCUMULATE AND STORE META INFO
+ //
+ uint const valid_blocks = valid & blocks;
+ uint const valid_pks = valid & pks & ~diffs;
+ SKC_META_TYPE meta = ( 0 );
+
+#define SKC_META_LOCAL_ADD(meta) \
+ atomic_add(shared.m+HS_REG_LAST(c),meta);
+
+#define SKC_META_LOCAL_STORE(meta,prev) \
+ shared.m[c##prev] = meta;
+
+ // note this is purposefully off by +1
+#define SKC_META_RESET(meta,curr) \
+ meta = ((gmem_off + curr) << 8);
+
+#if 0
+
+ // FIXME -- this can be tweaked to shift directly
+#define SKC_META_ADD(meta,prev,blocks,pks,rks) \
+ meta += ((((blocks >> prev) & 1) ) | \
+ (((pks >> prev) & 1) << 16) | \
+ (((rks >> prev) & 1) << 24));
+
+#else
+
+#define SKC_META_ADD(meta,prev,blocks,pks,rks) \
+ if (blocks & (1<<prev)) \
+ meta += 1; \
+ if (pks & (1<<prev)) \
+ meta += 1<<16; \
+ if (rks & (1<<prev)) \
+ meta += 1<<24;
+
+#endif
+
+#undef HS_SLAB_ROW
+#define HS_SLAB_ROW(row,prev) \
+ if (diffs & (1<<prev)) { \
+ SKC_META_LOCAL_STORE(meta,prev); \
+ SKC_META_RESET(meta,row); \
+ } \
+ SKC_META_ADD(meta,prev, \
+ valid_blocks, \
+ valid_pks, \
+ valid);
+
+ HS_SLAB_ROWS();
+
+ //
+ // ATOMICALLY ADD THE CARRIED OUT METAS
+ //
+#if 0 // BUG
+ if ((valid & (1<<(HS_KEYS_PER_LANE-1))) && (meta != 0))
+ SKC_META_LOCAL_ADD(meta);
+#else
+ if (meta != 0)
+ SKC_META_LOCAL_ADD(meta);
+#endif
+
+ //
+ // NOW ATOMICALLY ADD ALL METAS TO THE GLOBAL META TABLE
+ //
+
+ // convert the slab offset to an extent offset
+ bool const is_offset = (get_sub_group_local_id() & 3) == 1;
+ uint const adjust = is_offset ? gmem_base - 1 : 0;
+
+ //
+ // only process the meta components found in this slab
+ //
+ uint const cc_min = c_min * SKC_META_COMPONENTS;
+ uint const cc_max = c_max * SKC_META_COMPONENTS + SKC_META_COMPONENTS - 1;
+ uint cc = (cc_min & ~HS_LANE_MASK) + get_sub_group_local_id();
+
+ if ((cc >= cc_min) && (cc <= cc_max))
+ {
+ uint const c = shared.c[cc];
+
+ if (c != 0)
+ atomic_add(metas+cc,c+adjust);
+ }
+
+ cc += HS_LANES_PER_WARP;
+
+ for (; cc<=cc_max; cc+=HS_LANES_PER_WARP)
+ {
+ uint const c = shared.c[cc];
+
+ if (c != 0)
+ atomic_add(metas+cc,c+adjust);
+ }
+}
+
+//
+//
+//
diff --git a/src/compute/skc/path_builder_cl_12.c b/src/compute/skc/platforms/cl_12/path_builder_cl_12.c
index e915dffada..e915dffada 100644
--- a/src/compute/skc/path_builder_cl_12.c
+++ b/src/compute/skc/platforms/cl_12/path_builder_cl_12.c
diff --git a/src/compute/skc/path_builder_cl_12.h b/src/compute/skc/platforms/cl_12/path_builder_cl_12.h
index 20bb13cbdf..20bb13cbdf 100644
--- a/src/compute/skc/path_builder_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/path_builder_cl_12.h
diff --git a/src/compute/skc/raster_builder_cl_12.c b/src/compute/skc/platforms/cl_12/raster_builder_cl_12.c
index 33992cbdfb..33992cbdfb 100644
--- a/src/compute/skc/raster_builder_cl_12.c
+++ b/src/compute/skc/platforms/cl_12/raster_builder_cl_12.c
diff --git a/src/compute/skc/raster_builder_cl_12.h b/src/compute/skc/platforms/cl_12/raster_builder_cl_12.h
index f6e1751ef1..f6e1751ef1 100644
--- a/src/compute/skc/raster_builder_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/raster_builder_cl_12.h
diff --git a/src/compute/skc/runtime_cl.c b/src/compute/skc/platforms/cl_12/runtime_cl.c
index a745ed013e..a745ed013e 100644
--- a/src/compute/skc/runtime_cl.c
+++ b/src/compute/skc/platforms/cl_12/runtime_cl.c
diff --git a/src/compute/skc/runtime_cl.h b/src/compute/skc/platforms/cl_12/runtime_cl.h
index 9e58ca0cc7..9e58ca0cc7 100644
--- a/src/compute/skc/runtime_cl.h
+++ b/src/compute/skc/platforms/cl_12/runtime_cl.h
diff --git a/src/compute/skc/runtime_cl_12.c b/src/compute/skc/platforms/cl_12/runtime_cl_12.c
index fca13edbbd..fca13edbbd 100644
--- a/src/compute/skc/runtime_cl_12.c
+++ b/src/compute/skc/platforms/cl_12/runtime_cl_12.c
diff --git a/src/compute/skc/runtime_cl_12.h b/src/compute/skc/platforms/cl_12/runtime_cl_12.h
index 7e7ffcb284..7e7ffcb284 100644
--- a/src/compute/skc/runtime_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/runtime_cl_12.h
diff --git a/src/compute/skc/styling_cl_12.c b/src/compute/skc/platforms/cl_12/styling_cl_12.c
index 6c84fe6f70..6c84fe6f70 100644
--- a/src/compute/skc/styling_cl_12.c
+++ b/src/compute/skc/platforms/cl_12/styling_cl_12.c
diff --git a/src/compute/skc/styling_cl_12.h b/src/compute/skc/platforms/cl_12/styling_cl_12.h
index a319568ee5..a319568ee5 100644
--- a/src/compute/skc/styling_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/styling_cl_12.h
diff --git a/src/compute/skc/surface_cl_12.h b/src/compute/skc/platforms/cl_12/surface_cl_12.h
index 43ea5428a5..43ea5428a5 100644
--- a/src/compute/skc/surface_cl_12.h
+++ b/src/compute/skc/platforms/cl_12/surface_cl_12.h
diff --git a/src/compute/skc/surface_cl_12_buffer.c b/src/compute/skc/platforms/cl_12/surface_cl_12_buffer.c
index cc7cba5225..cc7cba5225 100644
--- a/src/compute/skc/surface_cl_12_buffer.c
+++ b/src/compute/skc/platforms/cl_12/surface_cl_12_buffer.c
diff --git a/src/compute/skc/types.h b/src/compute/skc/types.h
index 6d6d19aba2..655cea0ad4 100644
--- a/src/compute/skc/types.h
+++ b/src/compute/skc/types.h
@@ -38,12 +38,6 @@
//
//
-#include <stdbool.h>
-
-//
-//
-//
-
#define SKC_TYPE_HELPER(t) skc_##t
#define SKC_TYPE(t) SKC_TYPE_HELPER(t)
@@ -114,16 +108,16 @@ typedef cl_float16 skc_float16;
typedef cl_half skc_half;
-#if defined( __CL_HALF2__)
+#if defined(__CL_HALF2__)
typedef cl_half2 skc_half2;
#endif
-#if defined( __CL_HALF4__)
+#if defined(__CL_HALF4__)
typedef cl_half4 skc_half4;
#endif
-#if defined( __CL_HALF8__)
+#if defined(__CL_HALF8__)
typedef cl_half8 skc_half8;
#endif
-#if defined( __CL_HALF16__)
+#if defined(__CL_HALF16__)
typedef cl_half16 skc_half16;
#endif
@@ -206,16 +200,16 @@ typedef float16 skc_float16;
typedef half skc_half;
-#if defined( __CL_HALF2__)
+#if defined(__CL_HALF2__)
typedef half2 skc_half2;
#endif
-#if defined( __CL_HALF4__)
+#if defined(__CL_HALF4__)
typedef half4 skc_half4;
#endif
-#if defined( __CL_HALF8__)
+#if defined(__CL_HALF8__)
typedef half8 skc_half8;
#endif
-#if defined( __CL_HALF16__)
+#if defined(__CL_HALF16__)
typedef half16 skc_half16;
#endif
@@ -243,12 +237,6 @@ typedef half16 skc_half16;
//
//
-#endif
-
-//
-//
-//
-
#define SKC_UCHAR_MAX 0xFF
#define SKC_SHORT_MAX 0x7FFF
@@ -265,3 +253,9 @@ typedef half16 skc_half16;
//
//
+#endif
+
+//
+//
+//
+