aboutsummaryrefslogtreecommitdiffhomepage
path: root/include/core/SkMatrix44.h
diff options
context:
space:
mode:
authorGravatar reed <reed@google.com>2016-05-03 12:13:21 -0700
committerGravatar Commit bot <commit-bot@chromium.org>2016-05-03 12:13:21 -0700
commit50d3b57c8aaa0f026b981101c45ea30361382940 (patch)
treeca3b1319d55b7fc495406bd13fd238171b48c2d8 /include/core/SkMatrix44.h
parent676ab68b04597c997e3152f31c08090c0d2ccbe4 (diff)
return 4x4 matrix from SkColorSpace
move SkMatrix44 into core (with alias in utils to transition chrome) BUG=skia: GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1943833002 Review-Url: https://codereview.chromium.org/1943833002
Diffstat (limited to 'include/core/SkMatrix44.h')
-rw-r--r--include/core/SkMatrix44.h474
1 files changed, 474 insertions, 0 deletions
diff --git a/include/core/SkMatrix44.h b/include/core/SkMatrix44.h
new file mode 100644
index 0000000000..d64d4b7074
--- /dev/null
+++ b/include/core/SkMatrix44.h
@@ -0,0 +1,474 @@
+/*
+ * Copyright 2011 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkMatrix44_DEFINED
+#define SkMatrix44_DEFINED
+
+#include "SkMatrix.h"
+#include "SkScalar.h"
+
+#ifdef SK_MSCALAR_IS_DOUBLE
+#ifdef SK_MSCALAR_IS_FLOAT
+ #error "can't define MSCALAR both as DOUBLE and FLOAT"
+#endif
+ typedef double SkMScalar;
+
+ static inline double SkFloatToMScalar(float x) {
+ return static_cast<double>(x);
+ }
+ static inline float SkMScalarToFloat(double x) {
+ return static_cast<float>(x);
+ }
+ static inline double SkDoubleToMScalar(double x) {
+ return x;
+ }
+ static inline double SkMScalarToDouble(double x) {
+ return x;
+ }
+ static inline double SkMScalarAbs(double x) {
+ return fabs(x);
+ }
+ static const SkMScalar SK_MScalarPI = 3.141592653589793;
+
+ #define SkMScalarFloor(x) sk_double_floor(x)
+ #define SkMScalarCeil(x) sk_double_ceil(x)
+ #define SkMScalarRound(x) sk_double_round(x)
+
+ #define SkMScalarFloorToInt(x) sk_double_floor2int(x)
+ #define SkMScalarCeilToInt(x) sk_double_ceil2int(x)
+ #define SkMScalarRoundToInt(x) sk_double_round2int(x)
+
+
+#elif defined SK_MSCALAR_IS_FLOAT
+#ifdef SK_MSCALAR_IS_DOUBLE
+ #error "can't define MSCALAR both as DOUBLE and FLOAT"
+#endif
+ typedef float SkMScalar;
+
+ static inline float SkFloatToMScalar(float x) {
+ return x;
+ }
+ static inline float SkMScalarToFloat(float x) {
+ return x;
+ }
+ static inline float SkDoubleToMScalar(double x) {
+ return static_cast<float>(x);
+ }
+ static inline double SkMScalarToDouble(float x) {
+ return static_cast<double>(x);
+ }
+ static inline float SkMScalarAbs(float x) {
+ return sk_float_abs(x);
+ }
+ static const SkMScalar SK_MScalarPI = 3.14159265f;
+
+ #define SkMScalarFloor(x) sk_float_floor(x)
+ #define SkMScalarCeil(x) sk_float_ceil(x)
+ #define SkMScalarRound(x) sk_float_round(x)
+
+ #define SkMScalarFloorToInt(x) sk_float_floor2int(x)
+ #define SkMScalarCeilToInt(x) sk_float_ceil2int(x)
+ #define SkMScalarRoundToInt(x) sk_float_round2int(x)
+
+#endif
+
+#define SkIntToMScalar(n) static_cast<SkMScalar>(n)
+
+#define SkMScalarToScalar(x) SkMScalarToFloat(x)
+#define SkScalarToMScalar(x) SkFloatToMScalar(x)
+
+static const SkMScalar SK_MScalar1 = 1;
+
+///////////////////////////////////////////////////////////////////////////////
+
+struct SkVector4 {
+ SkScalar fData[4];
+
+ SkVector4() {
+ this->set(0, 0, 0, 1);
+ }
+ SkVector4(const SkVector4& src) {
+ memcpy(fData, src.fData, sizeof(fData));
+ }
+ SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
+ fData[0] = x;
+ fData[1] = y;
+ fData[2] = z;
+ fData[3] = w;
+ }
+
+ SkVector4& operator=(const SkVector4& src) {
+ memcpy(fData, src.fData, sizeof(fData));
+ return *this;
+ }
+
+ bool operator==(const SkVector4& v) {
+ return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
+ fData[2] == v.fData[2] && fData[3] == v.fData[3];
+ }
+ bool operator!=(const SkVector4& v) {
+ return !(*this == v);
+ }
+ bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
+ return fData[0] == x && fData[1] == y &&
+ fData[2] == z && fData[3] == w;
+ }
+
+ void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
+ fData[0] = x;
+ fData[1] = y;
+ fData[2] = z;
+ fData[3] = w;
+ }
+};
+
+class SK_API SkMatrix44 {
+public:
+
+ enum Uninitialized_Constructor {
+ kUninitialized_Constructor
+ };
+ enum Identity_Constructor {
+ kIdentity_Constructor
+ };
+
+ SkMatrix44(Uninitialized_Constructor) { }
+ SkMatrix44(Identity_Constructor) { this->setIdentity(); }
+
+ SK_ATTR_DEPRECATED("use the constructors that take an enum")
+ SkMatrix44() { this->setIdentity(); }
+
+ SkMatrix44(const SkMatrix44& src) {
+ memcpy(fMat, src.fMat, sizeof(fMat));
+ fTypeMask = src.fTypeMask;
+ }
+
+ SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
+ this->setConcat(a, b);
+ }
+
+ SkMatrix44& operator=(const SkMatrix44& src) {
+ if (&src != this) {
+ memcpy(fMat, src.fMat, sizeof(fMat));
+ fTypeMask = src.fTypeMask;
+ }
+ return *this;
+ }
+
+ bool operator==(const SkMatrix44& other) const;
+ bool operator!=(const SkMatrix44& other) const {
+ return !(other == *this);
+ }
+
+ /* When converting from SkMatrix44 to SkMatrix, the third row and
+ * column is dropped. When converting from SkMatrix to SkMatrix44
+ * the third row and column remain as identity:
+ * [ a b c ] [ a b 0 c ]
+ * [ d e f ] -> [ d e 0 f ]
+ * [ g h i ] [ 0 0 1 0 ]
+ * [ g h 0 i ]
+ */
+ SkMatrix44(const SkMatrix&);
+ SkMatrix44& operator=(const SkMatrix& src);
+ operator SkMatrix() const;
+
+ /**
+ * Return a reference to a const identity matrix
+ */
+ static const SkMatrix44& I();
+
+ enum TypeMask {
+ kIdentity_Mask = 0,
+ kTranslate_Mask = 0x01, //!< set if the matrix has translation
+ kScale_Mask = 0x02, //!< set if the matrix has any scale != 1
+ kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
+ kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
+ };
+
+ /**
+ * Returns a bitfield describing the transformations the matrix may
+ * perform. The bitfield is computed conservatively, so it may include
+ * false positives. For example, when kPerspective_Mask is true, all
+ * other bits may be set to true even in the case of a pure perspective
+ * transform.
+ */
+ inline TypeMask getType() const {
+ if (fTypeMask & kUnknown_Mask) {
+ fTypeMask = this->computeTypeMask();
+ }
+ SkASSERT(!(fTypeMask & kUnknown_Mask));
+ return (TypeMask)fTypeMask;
+ }
+
+ /**
+ * Return true if the matrix is identity.
+ */
+ inline bool isIdentity() const {
+ return kIdentity_Mask == this->getType();
+ }
+
+ /**
+ * Return true if the matrix contains translate or is identity.
+ */
+ inline bool isTranslate() const {
+ return !(this->getType() & ~kTranslate_Mask);
+ }
+
+ /**
+ * Return true if the matrix only contains scale or translate or is identity.
+ */
+ inline bool isScaleTranslate() const {
+ return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
+ }
+
+ /**
+ * Returns true if the matrix only contains scale or is identity.
+ */
+ inline bool isScale() const {
+ return !(this->getType() & ~kScale_Mask);
+ }
+
+ inline bool hasPerspective() const {
+ return SkToBool(this->getType() & kPerspective_Mask);
+ }
+
+ void setIdentity();
+ inline void reset() { this->setIdentity();}
+
+ /**
+ * get a value from the matrix. The row,col parameters work as follows:
+ * (0, 0) scale-x
+ * (0, 3) translate-x
+ * (3, 0) perspective-x
+ */
+ inline SkMScalar get(int row, int col) const {
+ SkASSERT((unsigned)row <= 3);
+ SkASSERT((unsigned)col <= 3);
+ return fMat[col][row];
+ }
+
+ /**
+ * set a value in the matrix. The row,col parameters work as follows:
+ * (0, 0) scale-x
+ * (0, 3) translate-x
+ * (3, 0) perspective-x
+ */
+ inline void set(int row, int col, SkMScalar value) {
+ SkASSERT((unsigned)row <= 3);
+ SkASSERT((unsigned)col <= 3);
+ fMat[col][row] = value;
+ this->dirtyTypeMask();
+ }
+
+ inline double getDouble(int row, int col) const {
+ return SkMScalarToDouble(this->get(row, col));
+ }
+ inline void setDouble(int row, int col, double value) {
+ this->set(row, col, SkDoubleToMScalar(value));
+ }
+ inline float getFloat(int row, int col) const {
+ return SkMScalarToFloat(this->get(row, col));
+ }
+ inline void setFloat(int row, int col, float value) {
+ this->set(row, col, SkFloatToMScalar(value));
+ }
+
+ /** These methods allow one to efficiently read matrix entries into an
+ * array. The given array must have room for exactly 16 entries. Whenever
+ * possible, they will try to use memcpy rather than an entry-by-entry
+ * copy.
+ */
+ void asColMajorf(float[]) const;
+ void asColMajord(double[]) const;
+ void asRowMajorf(float[]) const;
+ void asRowMajord(double[]) const;
+
+ /** These methods allow one to efficiently set all matrix entries from an
+ * array. The given array must have room for exactly 16 entries. Whenever
+ * possible, they will try to use memcpy rather than an entry-by-entry
+ * copy.
+ */
+ void setColMajorf(const float[]);
+ void setColMajord(const double[]);
+ void setRowMajorf(const float[]);
+ void setRowMajord(const double[]);
+
+#ifdef SK_MSCALAR_IS_FLOAT
+ void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
+ void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
+#else
+ void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
+ void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
+#endif
+
+ /* This sets the top-left of the matrix and clears the translation and
+ * perspective components (with [3][3] set to 1). */
+ void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
+ SkMScalar m10, SkMScalar m11, SkMScalar m12,
+ SkMScalar m20, SkMScalar m21, SkMScalar m22);
+ void set3x3ColMajorf(const float[]);
+
+ void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
+ void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
+ void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
+
+ void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
+ void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
+ void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
+
+ inline void setScale(SkMScalar scale) {
+ this->setScale(scale, scale, scale);
+ }
+ inline void preScale(SkMScalar scale) {
+ this->preScale(scale, scale, scale);
+ }
+ inline void postScale(SkMScalar scale) {
+ this->postScale(scale, scale, scale);
+ }
+
+ void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
+ SkMScalar degrees) {
+ this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
+ }
+
+ /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
+ it will be automatically resized.
+ */
+ void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
+ SkMScalar radians);
+ /** Rotate about the vector [x,y,z]. Does not check the length of the
+ vector, assuming it is unit-length.
+ */
+ void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
+ SkMScalar radians);
+
+ void setConcat(const SkMatrix44& a, const SkMatrix44& b);
+ inline void preConcat(const SkMatrix44& m) {
+ this->setConcat(*this, m);
+ }
+ inline void postConcat(const SkMatrix44& m) {
+ this->setConcat(m, *this);
+ }
+
+ friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
+ return SkMatrix44(a, b);
+ }
+
+ /** If this is invertible, return that in inverse and return true. If it is
+ not invertible, return false and leave the inverse parameter in an
+ unspecified state.
+ */
+ bool invert(SkMatrix44* inverse) const;
+
+ /** Transpose this matrix in place. */
+ void transpose();
+
+ /** Apply the matrix to the src vector, returning the new vector in dst.
+ It is legal for src and dst to point to the same memory.
+ */
+ void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
+ inline void mapScalars(SkScalar vec[4]) const {
+ this->mapScalars(vec, vec);
+ }
+
+ SK_ATTR_DEPRECATED("use mapScalars")
+ void map(const SkScalar src[4], SkScalar dst[4]) const {
+ this->mapScalars(src, dst);
+ }
+
+ SK_ATTR_DEPRECATED("use mapScalars")
+ void map(SkScalar vec[4]) const {
+ this->mapScalars(vec, vec);
+ }
+
+#ifdef SK_MSCALAR_IS_DOUBLE
+ void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
+#elif defined SK_MSCALAR_IS_FLOAT
+ inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
+ this->mapScalars(src, dst);
+ }
+#endif
+ inline void mapMScalars(SkMScalar vec[4]) const {
+ this->mapMScalars(vec, vec);
+ }
+
+ friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
+ SkVector4 dst;
+ m.mapScalars(src.fData, dst.fData);
+ return dst;
+ }
+
+ /**
+ * map an array of [x, y, 0, 1] through the matrix, returning an array
+ * of [x', y', z', w'].
+ *
+ * @param src2 array of [x, y] pairs, with implied z=0 and w=1
+ * @param count number of [x, y] pairs in src2
+ * @param dst4 array of [x', y', z', w'] quads as the output.
+ */
+ void map2(const float src2[], int count, float dst4[]) const;
+ void map2(const double src2[], int count, double dst4[]) const;
+
+ /** Returns true if transformating an axis-aligned square in 2d by this matrix
+ will produce another 2d axis-aligned square; typically means the matrix
+ is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
+ degrees into a perpendicular plane collapses a square to a line, but
+ is still considered to be axis-aligned.
+
+ By default, tolerates very slight error due to float imprecisions;
+ a 90-degree rotation can still end up with 10^-17 of
+ "non-axis-aligned" result.
+ */
+ bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
+
+ void dump() const;
+
+ double determinant() const;
+
+private:
+ SkMScalar fMat[4][4];
+ mutable unsigned fTypeMask;
+
+ enum {
+ kUnknown_Mask = 0x80,
+
+ kAllPublic_Masks = 0xF
+ };
+
+ SkMScalar transX() const { return fMat[3][0]; }
+ SkMScalar transY() const { return fMat[3][1]; }
+ SkMScalar transZ() const { return fMat[3][2]; }
+
+ SkMScalar scaleX() const { return fMat[0][0]; }
+ SkMScalar scaleY() const { return fMat[1][1]; }
+ SkMScalar scaleZ() const { return fMat[2][2]; }
+
+ SkMScalar perspX() const { return fMat[0][3]; }
+ SkMScalar perspY() const { return fMat[1][3]; }
+ SkMScalar perspZ() const { return fMat[2][3]; }
+
+ int computeTypeMask() const;
+
+ inline void dirtyTypeMask() {
+ fTypeMask = kUnknown_Mask;
+ }
+
+ inline void setTypeMask(int mask) {
+ SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
+ fTypeMask = mask;
+ }
+
+ /**
+ * Does not take the time to 'compute' the typemask. Only returns true if
+ * we already know that this matrix is identity.
+ */
+ inline bool isTriviallyIdentity() const {
+ return 0 == fTypeMask;
+ }
+};
+
+#endif