diff options
author | caryclark@google.com <caryclark@google.com@2bbb7eff-a529-9590-31e7-b0007b416f81> | 2012-06-01 17:44:28 +0000 |
---|---|---|
committer | caryclark@google.com <caryclark@google.com@2bbb7eff-a529-9590-31e7-b0007b416f81> | 2012-06-01 17:44:28 +0000 |
commit | a3f05facab01712a1b58e60a70b0dbdb90a39830 (patch) | |
tree | 07ed26e6e37b2b66332a7c1a4af8cbe91f4845ff /experimental | |
parent | 99840553cda3184ec2e32fbb192d104741ceea86 (diff) |
shape ops work in progress
git-svn-id: http://skia.googlecode.com/svn/trunk@4118 2bbb7eff-a529-9590-31e7-b0007b416f81
Diffstat (limited to 'experimental')
19 files changed, 288 insertions, 252 deletions
diff --git a/experimental/Intersection/CubicBounds.cpp b/experimental/Intersection/CubicBounds.cpp index 5d21be6a9e..8d14ea5a9e 100644 --- a/experimental/Intersection/CubicBounds.cpp +++ b/experimental/Intersection/CubicBounds.cpp @@ -1,4 +1,4 @@ -#include "DataTypes.h" +#include "CurveIntersection.h" #include "Extrema.h" static int isBoundedByEndPoints(double a, double b, double c, double d) diff --git a/experimental/Intersection/CubicReduceOrder.cpp b/experimental/Intersection/CubicReduceOrder.cpp index 19c69db944..84f2079826 100644 --- a/experimental/Intersection/CubicReduceOrder.cpp +++ b/experimental/Intersection/CubicReduceOrder.cpp @@ -59,8 +59,7 @@ static int horizontal_line(const Cubic& cubic, Cubic& reduction) { } // check to see if it is a quadratic or a line -static int check_quadratic(const Cubic& cubic, Cubic& reduction, - int minX, int maxX, int minY, int maxY) { +static int check_quadratic(const Cubic& cubic, Cubic& reduction) { double dx10 = cubic[1].x - cubic[0].x; double dx23 = cubic[2].x - cubic[3].x; double midX = cubic[0].x + dx10 * 3 / 2; @@ -228,7 +227,7 @@ int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQua if (result) { return result; } - if (allowQuadratics && (result = check_quadratic(cubic, reduction, minX, maxX, minY, maxY))) { + if (allowQuadratics && (result = check_quadratic(cubic, reduction))) { return result; } memcpy(reduction, cubic, sizeof(Cubic)); diff --git a/experimental/Intersection/DataTypes.cpp b/experimental/Intersection/DataTypes.cpp index 776d0cf991..d4ce962c83 100644 --- a/experimental/Intersection/DataTypes.cpp +++ b/experimental/Intersection/DataTypes.cpp @@ -53,8 +53,7 @@ double t_at(const _Line& line, const _Point& pt) { return (pt.y - line[0].y) / dy; } -static void setMinMax(double x, double y1, double y2, int flags, - double& minX, double& maxX) { +static void setMinMax(double x, int flags, double& minX, double& maxX) { if (minX > x && (flags & (kFindTopMin | kFindBottomMin))) { minX = x; } @@ -81,13 +80,13 @@ void x_at(const _Point& p1, const _Point& p2, double top, double bottom, if (topFlags && (top <= p1.y && top >= p2.y || top >= p1.y && top <= p2.y)) { double x = p1.x + (top - p1.y) * slope; - setMinMax(x, p1.y, p2.y, topFlags, minX, maxX); + setMinMax(x, topFlags, minX, maxX); } int bottomFlags = flags & (kFindBottomMin | kFindBottomMax); if (bottomFlags && (bottom <= p1.y && bottom >= p2.y || bottom >= p1.y && bottom <= p2.y)) { double x = p1.x + (bottom - p1.y) * slope; - setMinMax(x, p1.y, p2.y, bottomFlags, minX, maxX); + setMinMax(x, bottomFlags, minX, maxX); } } diff --git a/experimental/Intersection/EdgeMain.cpp b/experimental/Intersection/EdgeMain.cpp index 0042c9e611..c210beb6e9 100644 --- a/experimental/Intersection/EdgeMain.cpp +++ b/experimental/Intersection/EdgeMain.cpp @@ -7,7 +7,7 @@ #include "Intersection_Tests.h" -int main(int argc, char* argv) { +int main(int /*argc*/, char* /*argv*/) { Intersection_Tests(); return 0; -}
\ No newline at end of file +} diff --git a/experimental/Intersection/EdgeWalker.cpp b/experimental/Intersection/EdgeWalker.cpp index 4aff58f4a2..8baf72794b 100644 --- a/experimental/Intersection/EdgeWalker.cpp +++ b/experimental/Intersection/EdgeWalker.cpp @@ -899,7 +899,7 @@ struct InEdge { InEdge* edge = edges.push_back_n(1); int verbCount = verbEnd - verbStart; edge->fIntercepts.push_back_n(verbCount); - uint8_t* verbs = &fVerbs[verbStart]; + // uint8_t* verbs = &fVerbs[verbStart]; for (int ceptIdx = 0; ceptIdx < verbCount; ++ceptIdx) { edge->fIntercepts[ceptIdx] = fIntercepts[verbStart + ceptIdx]; } @@ -1052,7 +1052,7 @@ struct InEdge { if (!tCount) { continue; } - size_t tIndex = -1; + size_t tIndex = (size_t) -1; SkScalar y = pts[0].fY; int lastSplit = 0; int firstSplit = -1; @@ -1692,7 +1692,7 @@ public: return false; } - bool swapUnordered(const ActiveEdge* edge, SkScalar bottom) const { + bool swapUnordered(const ActiveEdge* edge, SkScalar /* bottom */) const { SkASSERT(fVerb != SkPath::kLine_Verb || edge->fVerb != SkPath::kLine_Verb); if (fDone || edge->fDone) { @@ -1924,9 +1924,9 @@ static void addBottomT(InEdge** currentPtr, InEdge** lastPtr, } } +#if DEBUG_ADD_INTERSECTING_TS static void debugShowLineIntersection(int pts, const WorkEdge& wt, const WorkEdge& wn, const double wtTs[2], const double wnTs[2]) { -#if DEBUG_ADD_INTERSECTING_TS if (!pts) { return; } @@ -1947,8 +1947,12 @@ static void debugShowLineIntersection(int pts, const WorkEdge& wt, if (pts == 2) { SkDebugf("%s wnTs[1]=%g\n", __FUNCTION__, wnTs[1]); } -#endif } +#else +static void debugShowLineIntersection(int , const WorkEdge& , + const WorkEdge& , const double [2], const double [2]) { +} +#endif static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) { InEdge** testPtr = currentPtr - 1; @@ -2140,7 +2144,7 @@ static SkScalar computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges, static SkScalar findBottom(InEdge** currentPtr, InEdge** edgeListEnd, SkTDArray<ActiveEdge>* activeEdges, SkScalar y, - bool asFill, InEdge**& testPtr) { + bool /*asFill*/, InEdge**& testPtr) { InEdge* current = *currentPtr; SkScalar bottom = current->fBounds.fBottom; @@ -2445,13 +2449,17 @@ static SkScalar adjustCoincident(SkTDArray<ActiveEdge*>& edgeList, } // stitch edge and t range that satisfies operation -static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y, +static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar +#if DEBUG_STITCH_EDGE +y +#endif +, SkScalar bottom, int windingMask, bool fill, OutEdgeBuilder& outBuilder) { int winding = 0; ActiveEdge** activeHandle = edgeList.begin() - 1; ActiveEdge** lastActive = edgeList.end(); - const int tab = 7; // FIXME: debugging only #if DEBUG_STITCH_EDGE + const int tab = 7; // FIXME: debugging only SkDebugf("%s y=%1.9g bottom=%1.9g\n", __FUNCTION__, y, bottom); #endif while (++activeHandle != lastActive) { @@ -2588,15 +2596,19 @@ static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y, } } +#if DEBUG_DUMP static void dumpEdgeList(const SkTDArray<InEdge*>& edgeList, const InEdge& edgeSentinel) { -#if DEBUG_DUMP InEdge** debugPtr = edgeList.begin(); do { (*debugPtr++)->dump(); } while (*debugPtr != &edgeSentinel); -#endif } +#else +static void dumpEdgeList(const SkTDArray<InEdge*>& , + const InEdge& ) { +} +#endif void simplify(const SkPath& path, bool asFill, SkPath& simple) { // returns 1 for evenodd, -1 for winding, regardless of inverse-ness diff --git a/experimental/Intersection/EdgeWalker_TestUtility.cpp b/experimental/Intersection/EdgeWalker_TestUtility.cpp index 8a9bcd1def..2a29648a25 100644 --- a/experimental/Intersection/EdgeWalker_TestUtility.cpp +++ b/experimental/Intersection/EdgeWalker_TestUtility.cpp @@ -10,7 +10,7 @@ static bool gShowPath = false; static bool gComparePaths = true; -static bool gDrawLastAsciiPaths = true; +//static bool gDrawLastAsciiPaths = true; static bool gDrawAllAsciiPaths = false; static bool gShowAsciiPaths = false; static bool gComparePathsAssert = true; @@ -92,9 +92,6 @@ static int pathsDrawTheSame(const SkPath& one, const SkPath& two, return errors; } -void bitmapInit(SkBitmap& bits) { -} - bool drawAsciiPaths(const SkPath& one, const SkPath& two, bool drawPaths) { if (!drawPaths) { @@ -149,7 +146,8 @@ bool drawAsciiPaths(const SkPath& one, const SkPath& two, } static int scaledDrawTheSame(const SkPath& one, const SkPath& two, - int a, int b, bool drawPaths, SkBitmap& bitmap, SkCanvas* canvas) { + SkScalar a, SkScalar b, bool drawPaths, SkBitmap& bitmap, + SkCanvas* canvas) { SkMatrix scale; scale.reset(); float aScale = 1.21f; diff --git a/experimental/Intersection/IntersectionUtilities.cpp b/experimental/Intersection/IntersectionUtilities.cpp index e6ece7435f..63a5767866 100644 --- a/experimental/Intersection/IntersectionUtilities.cpp +++ b/experimental/Intersection/IntersectionUtilities.cpp @@ -39,4 +39,4 @@ mantissa >>= 1; exponent++; } -#endif
\ No newline at end of file +#endif diff --git a/experimental/Intersection/LineIntersection.cpp b/experimental/Intersection/LineIntersection.cpp index b505761877..31e857ed41 100644 --- a/experimental/Intersection/LineIntersection.cpp +++ b/experimental/Intersection/LineIntersection.cpp @@ -1,4 +1,4 @@ -#include "DataTypes.h" +#include "CurveIntersection.h" #include "Intersections.h" #include "LineIntersection.h" #include <algorithm> // used for std::swap @@ -170,7 +170,7 @@ int horizontalIntersect(const _Line& line, double left, double right, return result; } -int verticalIntersect(const _Line& line, double x, double tRange[2]) { +static int verticalIntersect(const _Line& line, double x, double tRange[2]) { double min = line[0].x; double max = line[1].x; if (min > max) { diff --git a/experimental/Intersection/LineUtilities.cpp b/experimental/Intersection/LineUtilities.cpp index 8d229e428b..ca94544a13 100644 --- a/experimental/Intersection/LineUtilities.cpp +++ b/experimental/Intersection/LineUtilities.cpp @@ -51,7 +51,10 @@ void sub_divide(const _Line& line, double t1, double t2, _Line& dst) { // =0 for P2 on the line // <0 for P2 right of the line // See: the January 2001 Algorithm on Area of Triangles +#if 0 float isLeft( _Point P0, _Point P1, _Point P2 ) { return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y)); } +#endif + diff --git a/experimental/Intersection/QuadraticBezierClip_Test.cpp b/experimental/Intersection/QuadraticBezierClip_Test.cpp index 289ebdb587..c42cfc6b0b 100644 --- a/experimental/Intersection/QuadraticBezierClip_Test.cpp +++ b/experimental/Intersection/QuadraticBezierClip_Test.cpp @@ -19,7 +19,7 @@ static void oneOffTest() { bezier_clip(quad1, quad2, minT, maxT); } -void standardTestCases() { +static void standardTestCases() { for (size_t index = 0; index < quadraticTests_count; ++index) { const Quadratic& quad1 = quadraticTests[index][0]; const Quadratic& quad2 = quadraticTests[index][1]; diff --git a/experimental/Intersection/QuadraticBounds.cpp b/experimental/Intersection/QuadraticBounds.cpp index 11591b3c17..813fccc67e 100644 --- a/experimental/Intersection/QuadraticBounds.cpp +++ b/experimental/Intersection/QuadraticBounds.cpp @@ -1,4 +1,4 @@ -#include "DataTypes.h" +#include "CurveIntersection.h" #include "Extrema.h" static int isBoundedByEndPoints(double a, double b, double c) diff --git a/experimental/Intersection/QuadraticIntersection_Test.cpp b/experimental/Intersection/QuadraticIntersection_Test.cpp index 582b195633..7c573d487c 100644 --- a/experimental/Intersection/QuadraticIntersection_Test.cpp +++ b/experimental/Intersection/QuadraticIntersection_Test.cpp @@ -90,4 +90,4 @@ static void oneOffTest() { void QuadraticIntersection_Test() { oneOffTest(); standardTestCases(); -}
\ No newline at end of file +} diff --git a/experimental/Intersection/ShapeOps.h b/experimental/Intersection/ShapeOps.h index 95b1b2cb53..9cd22ec5f6 100644 --- a/experimental/Intersection/ShapeOps.h +++ b/experimental/Intersection/ShapeOps.h @@ -4,4 +4,4 @@ void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray); void simplify(const SkPath& path, bool asFill, SkPath& simple); void simplifyx(const SkPath& path, SkPath& simple); -extern const bool gRunTestsInOneThread; // FIXME: remove once debugging is complete
\ No newline at end of file +extern const bool gRunTestsInOneThread; // FIXME: remove once debugging is complete diff --git a/experimental/Intersection/Simplify.cpp b/experimental/Intersection/Simplify.cpp index 0f9a92a93a..7826c09ec0 100644 --- a/experimental/Intersection/Simplify.cpp +++ b/experimental/Intersection/Simplify.cpp @@ -424,12 +424,11 @@ public: // is the common origin, i.e., whether the center is at pts[0] or pts[verb] // practically, this should only be called by addAngle void set(const SkPoint* pts, SkPath::Verb verb, Segment* segment, - int start, int end, bool coincident) { + int start, int end) { SkASSERT(start != end); fSegment = segment; fStart = start; fEnd = end; - fCoincident = coincident; fDx = pts[1].fX - pts[0].fX; // b - a fDy = pts[1].fY - pts[0].fY; if (verb == SkPath::kLine_Verb) { @@ -450,11 +449,10 @@ public: // as lines, so must sort by derivatives as well // if flatness turns out to be a reasonable way to sort, use the below: void setFlat(const SkPoint* pts, SkPath::Verb verb, Segment* segment, - int start, int end, bool coincident) { + int start, int end) { fSegment = segment; fStart = start; fEnd = end; - fCoincident = coincident; fDx = pts[1].fX - pts[0].fX; // b - a fDy = pts[1].fY - pts[0].fY; if (verb == SkPath::kLine_Verb) { @@ -502,6 +500,11 @@ public: int sign() const { return SkSign32(fStart - fEnd); } + + bool slopeEquals(const Angle& rh) const { + return fDx == rh.fDx && fDy == rh.fDy; + + } int start() const { return fStart; @@ -517,7 +520,6 @@ private: Segment* fSegment; int fStart; int fEnd; - bool fCoincident; }; static void sortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) { @@ -567,6 +569,7 @@ struct Span { double fT; Segment* fOther; double fOtherT; // value at fOther[fOtherIndex].fT + mutable SkPoint const * fPt; // lazily computed as needed int fOtherIndex; // can't be used during intersection int fWinding; // accumulated from contours surrounding this one // OPTIMIZATION: coincident needs only 2 bits (values are -1, 0, 1) @@ -582,8 +585,7 @@ public: #endif } - void addAngle(SkTDArray<Angle>& angles, int start, int end, - bool coincident) { + void addAngle(SkTDArray<Angle>& angles, int start, int end) { SkASSERT(start != end); int smaller = SkMin32(start, end); if (fTs[smaller].fDone) { @@ -592,7 +594,7 @@ public: SkPoint edge[4]; (*SegmentSubDivide[fVerb])(fPts, fTs[start].fT, fTs[end].fT, edge); Angle* angle = angles.append(); - angle->set(edge, fVerb, this, start, end, coincident); + angle->set(edge, fVerb, this, start, end); } void addCubic(const SkPoint pts[4]) { @@ -634,9 +636,7 @@ public: } void addMoveTo(int tIndex, SkPath& path) { - SkPoint pt; - double firstT = t(tIndex); - xyAtT(firstT, &pt); + const SkPoint& pt = xyAtT(&fTs[tIndex]); #if DEBUG_PATH_CONSTRUCTION SkDebugf("%s (%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY); #endif @@ -655,6 +655,7 @@ public: fBounds.setQuadBounds(pts); } + // edges are sorted by T, then by coincidence int addT(double newT, Segment& other, int coincident) { // FIXME: in the pathological case where there is a ton of intercepts, // binary search? @@ -668,7 +669,8 @@ public: // This could later limit segment tests to the two adjacent // neighbors, although it doesn't help with determining which // circular direction to go in. - if (newT <= fTs[idx2].fT) { + if (newT < fTs[idx2].fT || (newT == fTs[idx2].fT && + coincident <= fTs[idx2].fCoincident)) { insertedAt = idx2; span = fTs.insert(idx2); goto finish; @@ -679,26 +681,24 @@ public: finish: span->fT = newT; span->fOther = &other; + span->fPt = NULL; span->fWinding = 0; if (span->fDone = newT == 1) { ++fDoneSpans; } span->fCoincident = coincident; - fCoincident |= coincident; + fCoincident |= coincident; // OPTIMIZATION: ever used? return insertedAt; } - void addTwoAngles(int start, int end, const SkPoint& endLoc, - const Span* endSpan, bool startCo, SkTDArray<Angle>& angles) { + void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) { // add edge leading into junction - addAngle(angles, end, start, startCo); + addAngle(angles, end, start); // add edge leading away from junction - bool coincident; int step = SkSign32(end - start); - int tIndex = nextSpan(end, step, endLoc, endSpan, NULL, coincident); + int tIndex = nextSpan(end, step); if (tIndex >= 0) { - lastSpan(tIndex, step, endLoc, endSpan->fT, coincident); - addAngle(angles, end, tIndex, coincident); + addAngle(angles, end, tIndex); } } @@ -706,41 +706,41 @@ finish: return fBounds; } - void buildAngles(int index, int last, int step, const SkPoint& loc, - SkTDArray<Angle>& angles) const { - SkASSERT(index - last != 0); - SkASSERT((index - last < 0) ^ (step < 0)); - int end = last + step; + void buildAngles(int index, SkTDArray<Angle>& angles) const { + SkASSERT(!done()); + double referenceT = fTs[index].fT; + int lesser = index; + while (--lesser >= 0 && referenceT == fTs[lesser].fT) { + buildAnglesInner(lesser, angles); + } do { - Span* span = &fTs[index]; - Segment* other = span->fOther; - if (other->done()) { - continue; - } - // if there is only one live crossing, and no coincidence, continue - // in the same direction - // if there is coincidence, the only choice may be to reverse direction - // find edge on either side of intersection - int oIndex = span->fOtherIndex; - Span* otherSpan = &other->fTs[oIndex]; - SkASSERT(otherSpan->fOther == this); - // if done == -1, prior span has already been processed - bool otherCo; - int localStep = step; - int next = other->nextSpan(oIndex, localStep, loc, otherSpan, - NULL, otherCo); - if (next < 0) { - localStep = -step; - next = other->nextSpan(oIndex, localStep, loc, otherSpan, - NULL, otherCo); - } - other->lastSpan(next, localStep, loc, otherSpan->fT, otherCo); - // add candidate into and away from junction - other->addTwoAngles(next, oIndex, loc, span, otherCo, angles); - - } while ((index += step) != end); + buildAnglesInner(index, angles); + } while (++index < fTs.count() && referenceT == fTs[index].fT); } - + + void buildAnglesInner(int index, SkTDArray<Angle>& angles) const { + Span* span = &fTs[index]; + Segment* other = span->fOther; + if (other->done()) { + return; + } + // if there is only one live crossing, and no coincidence, continue + // in the same direction + // if there is coincidence, the only choice may be to reverse direction + // find edge on either side of intersection + int oIndex = span->fOtherIndex; + // if done == -1, prior span has already been processed + int step = 1; + int next = other->nextSpanEnd(oIndex, step); + if (next < 0) { + step = -step; + next = other->nextSpanEnd(oIndex, step); + } + oIndex = other->coincidentEnd(oIndex, -step); + // add candidate into and away from junction + other->addTwoAngles(next, oIndex, angles); + } + // figure out if the segment's ascending T goes clockwise or not // not enough context to write this as shown // instead, add all segments meeting at the top @@ -752,49 +752,53 @@ finish: return false; } - bool coincident(int index, const Angle* angle) const { - Span* span; - double referenceT = fTs[index].fT; - int lesser = index; - while (--lesser >= 0 && referenceT == fTs[lesser].fT) { - span = &fTs[lesser]; - if (span->fOther == angle->segment()) { - goto checkOther; - } + static bool Coincident(const Angle* current, const Angle* next) { + const Segment* segment = current->segment(); + const Span& span = segment->fTs[current->start()]; + if (!span.fCoincident) { + return false; } - do { - span = &fTs[index]; - if (span->fOther == angle->segment()) { + const Segment* nextSegment = next->segment(); + const Span& nextSpan = nextSegment->fTs[next->start()]; + if (!nextSpan.fCoincident) { + return false; + } + // use angle dx/dy instead of other since 3 or more may be coincident + return current->slopeEquals(*next); + } + + static bool CoincidentCancels(const Angle* current, const Angle* next) { + return SkSign32(current->start() - current->end()) + != SkSign32(next->start() - next->end()); + } + + int coincidentEnd(int from, int step) const { + double fromT = fTs[from].fT; + int count = fTs.count(); + int to = from; + while (step > 0 ? ++to < count : --to >= 0) { + const Span& span = fTs[to]; + if (fromT != span.fT) { + // FIXME: we assume that if the T changes, we don't care about + // coincident -- but in nextSpan, we require that both the T + // and actual loc change to represent a span. This asymettry may + // be OK or may be trouble -- if trouble, probably will need to + // detect coincidence earlier or sort differently break; } - - } while (++index < fTs.count() && referenceT == fTs[index].fT); - checkOther: - SkASSERT(!span->fDone); - return span->fCoincident; + if (span.fCoincident == step) { + return to; + } + SkASSERT(step > 0 || !span.fDone); + } + return from; } - + bool done() const { SkASSERT(fDoneSpans <= fTs.count()); return fDoneSpans == fTs.count(); } - int findCoincidentEnd(int start) const { - int tCount = fTs.count(); - SkASSERT(start < tCount); - const Span& span = fTs[start]; - SkASSERT(span.fCoincident); - for (int index = start + 1; index < tCount; ++index) { - const Span& match = fTs[index]; - if (match.fOther == span.fOther) { - SkASSERT(match.fCoincident); - return index; - } - } - SkASSERT(0); // should never get here - return -1; - } - // start is the index of the beginning T of this edge // it is guaranteed to have an end which describes a non-zero length (?) // winding -1 means ccw, 1 means cw @@ -806,7 +810,6 @@ finish: int count = fTs.count(); SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); - Span* startSpan = &fTs[startIndex]; // FIXME: // since Ts can be stepped either way, done markers must be careful // not to assume that segment was only ascending in T. This shouldn't @@ -815,27 +818,19 @@ finish: int step = SkSign32(endIndex - startIndex); - SkPoint startLoc; // OPTIMIZATION: store this in the t span? - xyAtT(startSpan->fT, &startLoc); - SkPoint endLoc; - bool startCo; - int end = nextSpan(startIndex, step, startLoc, startSpan, &endLoc, - startCo); + int end = nextSpanEnd(startIndex, step); SkASSERT(end >= 0); // preflight for coincidence -- if present, it may change winding // considerations and whether reversed edges can be followed - bool many; - int last = lastSpan(end, step, endLoc, fTs[end].fT, startCo, &many); - + // Discard opposing direction candidates if no coincidence was found. Span* endSpan = &fTs[end]; Segment* other; - if (!many) { + if (isSimple(end, step)) { // mark the smaller of startIndex, endIndex done, and all adjacent // spans with the same T value (but not 'other' spans) markDone(SkMin32(startIndex, endIndex), winding); - SkASSERT(!startCo); // move in winding direction until edge in correct direction // balance wrong direction edges before finding correct one // this requres that the intersection is angularly sorted @@ -847,13 +842,12 @@ finish: SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); return other; } - // more than one viable candidate -- measure angles to find best SkTDArray<Angle> angles; SkASSERT(startIndex - endIndex != 0); SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); - addTwoAngles(startIndex, end, endLoc, endSpan, startCo, angles); - buildAngles(end, last, step, endLoc, angles); + addTwoAngles(startIndex, end, angles); + buildAngles(end, angles); SkTDArray<Angle*> sorted; sortAngles(angles, sorted); // find the starting edge @@ -881,38 +875,50 @@ finish: int startWinding = winding; int nextIndex = firstIndex; const Angle* nextAngle; + Segment* nextSegment; do { if (++nextIndex == angleCount) { nextIndex = 0; } SkASSERT(nextIndex != firstIndex); // should never wrap around nextAngle = sorted[nextIndex]; + nextSegment = nextAngle->segment(); + bool pairCoincides = Coincident(angle, nextAngle); int maxWinding = winding; winding -= nextAngle->sign(); - if (abs(maxWinding) < abs(winding)) { - maxWinding = winding; - } - other = nextAngle->segment(); if (!winding) { - if (!startCo || !coincident(startIndex, nextAngle)) { + if (!pairCoincides || !CoincidentCancels(angle, nextAngle)) { break; } - markAndChaseCoincident(startIndex, endIndex, other); + markAndChaseCoincident(startIndex, endIndex, nextSegment); return NULL; + } + if (pairCoincides) { + bool markNext = abs(maxWinding) < abs(winding); + if (markNext) { + nextSegment->markDone(SkMin32(nextAngle->start(), + nextAngle->end()), winding); + } else { + angle->segment()->markDone(SkMin32(angle->start(), + angle->end()), maxWinding); + } } // if the winding is non-zero, nextAngle does not connect to // current chain. If we haven't done so already, mark the angle // as done, record the winding value, and mark connected unambiguous // segments as well. - if (other->winding(nextAngle) == 0) { - other->markAndChaseWinding(nextAngle, maxWinding); + else if (nextSegment->winding(nextAngle) == 0) { + if (abs(maxWinding) < abs(winding)) { + maxWinding = winding; + } + nextSegment->markAndChaseWinding(nextAngle, maxWinding); } - + angle = nextAngle; } while (true); markDone(SkMin32(startIndex, endIndex), startWinding); nextStart = nextAngle->start(); nextEnd = nextAngle->end(); - return other; + return nextSegment; } @@ -958,9 +964,8 @@ finish: return; } } while (true); // require t=0, x, 1 at minimum - SkPoint matchPt; // OPTIMIZATION: defer matchPt until qualifying toCount is found? - xyAtT(match->fT, &matchPt); + const SkPoint* matchPt = &xyAtT(match); // look for a pair of nearby T values that map to the same (x,y) value // if found, see if the pair of other segments share a common point. If // so, the span from here to there is coincident. @@ -974,9 +979,8 @@ finish: if (toCount < 3) { // require t=0, x, 1 at minimum continue; } - SkPoint testPt; - xyAtT(test->fT, &testPt); - if (matchPt != testPt) { + const SkPoint* testPt = &xyAtT(test); + if (*matchPt != *testPt) { matchIndex = index; moCount = toCount; match = test; @@ -1042,6 +1046,7 @@ finish: || !tOther->isLinear(toStart, toEnd)) { continue; } + // FIXME: may need to resort if we depend on coincidence first, last mOther->fTs[moStart].fCoincident = -1; tOther->fTs[toStart].fCoincident = -1; mOther->fTs[moEnd].fCoincident = 1; @@ -1057,6 +1062,7 @@ finish: // topmost tangent from y-min to first pt is closer to horizontal int firstT = 0; int lastT = 0; + int firstCoinT = 0; SkScalar topY = fPts[0].fY; int count = fTs.count(); int index; @@ -1066,9 +1072,12 @@ finish: SkScalar yIntercept = t == 1 ? fPts[fVerb].fY : yAtT(t); if (topY > yIntercept) { topY = yIntercept; - firstT = lastT = index; + firstT = lastT = firstCoinT = index; } else if (topY == yIntercept) { lastT = index; + if (span.fCoincident) { + firstCoinT = index; + } } } // if there's only a pair of segments, go with the endpoint chosen above @@ -1078,22 +1087,19 @@ finish: return this; } // sort the edges to find the leftmost - SkPoint startLoc; // OPTIMIZATION: store this in the t span? - const Span* startSpan = &fTs[firstT]; - xyAtT(startSpan->fT, &startLoc); - SkPoint endLoc; - bool nextCo; - int end = nextSpan(firstT, 1, startLoc, startSpan, &endLoc, nextCo); + int step = 1; + int end = nextSpan(firstT, step); if (end == -1) { - end = nextSpan(firstT, -1, startLoc, startSpan, &endLoc, nextCo); + step = -1; + end = nextSpan(firstT, step); SkASSERT(end != -1); } // if the topmost T is not on end, or is three-way or more, find left // look for left-ness from tLeft to firstT (matching y of other) SkTDArray<Angle> angles; SkASSERT(firstT - end != 0); - addTwoAngles(end, firstT, endLoc, &fTs[firstT], nextCo, angles); - buildAngles(firstT, lastT, 1, startLoc, angles); + addTwoAngles(end, firstCoinT, angles); + buildAngles(firstT, angles); SkTDArray<Angle*> sorted; sortAngles(angles, sorted); Segment* leftSegment = sorted[0]->segment(); @@ -1155,11 +1161,11 @@ finish: Segment* next; Segment* nextOther; if (step < 0) { - next = start->fT <= 0 ? NULL : this; - nextOther = other->fTs[start->fOtherIndex].fT >= 1 ? NULL : other; + next = start->fT == 0 ? NULL : this; + nextOther = other->fTs[start->fOtherIndex].fT == 1 ? NULL : other; } else { - next = end->fT >= 1 ? NULL : this; - nextOther = other->fTs[end->fOtherIndex].fT <= 0 ? NULL : other; + next = end->fT == 1 ? NULL : this; + nextOther = other->fTs[end->fOtherIndex].fT == 0 ? NULL : other; } SkASSERT(!next || !nextOther); for (index = 0; index < count; ++index) { @@ -1167,10 +1173,10 @@ finish: if (span.fCoincident || span.fOther == other) { continue; } - bool checkNext = !next && (step < 0 ? span.fT <= 0 - && span.fOtherT >= 1 : span.fT >= 1 && span.fOtherT <= 0); + bool checkNext = !next && (step < 0 ? span.fT == 0 + && span.fOtherT == 1 : span.fT == 1 && span.fOtherT == 0); bool checkOther = !nextOther && (step < 0 ? span.fT == start->fT - && span.fOtherT <= 0 : span.fT == end->fT && span.fOtherT >= 1); + && span.fOtherT == 0 : span.fT == end->fT && span.fOtherT == 1); if (!checkNext && !checkOther) { continue; } @@ -1187,11 +1193,11 @@ finish: if (!oSpan.fCoincident) { continue; } - if (checkNext && (oSpan.fT <= 0 ^ step < 0)) { + if (checkNext && (oSpan.fT == 0 ^ step < 0)) { next = oSegment; checkNext = false; } - if (checkOther && (oSpan.fT >= 1 ^ step < 0)) { + if (checkOther && (oSpan.fT == 1 ^ step < 0)) { nextOther = oSegment; checkOther = false; } @@ -1206,18 +1212,16 @@ finish: // OPTIMIZATION: uses tail recursion. Unwise? void innerChase(int index, int step, int winding) { - SkPoint loc; // OPTIMIZATION: store this in the t span? - bool coincident; - int end = nextSpan(index, step, &loc, coincident); + int end = nextSpan(index, step); bool many; - lastSpan(end, step, loc, fTs[end].fT, coincident, &many); + lastSpan(end, step, &many); if (many) { return; } Span* endSpan = &fTs[end]; Segment* other = endSpan->fOther; index = endSpan->fOtherIndex; - int otherEnd = other->nextSpan(index, step, &loc, coincident); + int otherEnd = other->nextSpan(index, step); other->innerChase(index, step, winding); other->markDone(SkMin32(index, otherEnd), winding); } @@ -1248,6 +1252,29 @@ finish: return CubicIsLinear(cPart); } } + + bool isSimple(int index, int step) const { + int count = fTs.count(); + if (count == 2) { + return true; + } + double spanT = fTs[index].fT; + if (spanT > 0 && spanT < 1) { + return false; + } + if (step < 0) { + const Span& secondSpan = fTs[1]; + if (secondSpan.fT == 0) { + return false; + } + return xyAtT(&fTs[0]) != xyAtT(&secondSpan); + } + const Span& penultimateSpan = fTs[count - 2]; + if (penultimateSpan.fT == 1) { + return false; + } + return xyAtT(&fTs[count - 1]) != xyAtT(&penultimateSpan); + } bool isHorizontal() const { return fBounds.fTop == fBounds.fBottom; @@ -1258,27 +1285,25 @@ finish: } // last does not check for done spans because done is only set for the start - int lastSpan(int end, int step, const SkPoint& startLoc, - double startT, bool& coincident, bool* manyPtr = NULL) const { + int lastSpan(int end, int step, bool* manyPtr = NULL) const { int last = end; int count = fTs.count(); - SkPoint lastLoc; int found = 0; + const Span& endSpan = fTs[end]; + double endT = endSpan.fT; do { end = last; - if (fTs[end].fCoincident == -step) { - coincident = true; - } if (step > 0 ? ++last >= count : --last < 0) { break; } const Span& lastSpan = fTs[last]; - if (lastSpan.fT == startT) { + if (lastSpan.fT == endT) { ++found; continue; } - xyAtT(lastSpan.fT, &lastLoc); - if (startLoc != lastLoc) { + const SkPoint& lastLoc = xyAtT(&lastSpan); + const SkPoint& endLoc = xyAtT(&endSpan); + if (endLoc != lastLoc) { break; } ++found; @@ -1333,70 +1358,45 @@ finish: } // note the assert logic looks for unexpected done of span start - // FIXME: compute fromLoc on the fly - int nextSpan(int from, int step, const SkPoint& fromLoc, - const Span* fromSpan, SkPoint* toLoc, bool& coincident) const { - coincident = false; + // This has callers for two different situations: one establishes the end + // of the current span, and one establishes the beginning of the next span + // (thus the name). When this is looking for the end of the current span, + // coincidence is found when the beginning Ts contain -step and the end + // contains step. When it is looking for the beginning of the next, the + // first Ts found can be ignored and the last Ts should contain -step. + + int nextSpan(int from, int step) const { SkASSERT(!done()); - int count = fTs.count(); - int to = from; - while (step > 0 ? ++to < count : --to >= 0) { - Span* span = &fTs[to]; - if (span->fCoincident == step) { - coincident = true; - } - if (fromSpan->fT == span->fT) { - continue; - } - SkPoint loc; - xyAtT(span->fT, &loc); - if (fromLoc == loc) { - continue; - } - SkASSERT(step < 0 || !fTs[from].fDone); - SkASSERT(step > 0 || !span->fDone); - if (toLoc) { - *toLoc = loc; - } - return to; - } - return -1; - } - - int nextSpan(int from, int step, SkPoint* toLoc, bool& coincident) const { const Span& fromSpan = fTs[from]; - coincident = false; - SkASSERT(!done()); int count = fTs.count(); int to = from; - SkPoint fromLoc; - fromLoc.fX = SK_ScalarNaN; while (step > 0 ? ++to < count : --to >= 0) { const Span& span = fTs[to]; - if (span.fCoincident == step) { - coincident = true; - } if (fromSpan.fT == span.fT) { continue; } - SkPoint loc; - xyAtT(span.fT, &loc); - if (SkScalarIsNaN(fromLoc.fX)) { - xyAtT(fromSpan.fT, &fromLoc); - } + const SkPoint& loc = xyAtT(&span); + const SkPoint& fromLoc = xyAtT(&fromSpan); if (fromLoc == loc) { continue; } SkASSERT(step < 0 || !fromSpan.fDone); SkASSERT(step > 0 || !span.fDone); - if (toLoc) { - *toLoc = loc; - } return to; } return -1; } + // once past current span, if step>0, look for coicident==1 + // if step<0, look for coincident==-1 + int nextSpanEnd(int from, int step) const { + int result = nextSpan(from, step); + if (result < 0) { + return result; + } + return coincidentEnd(result, step); + } + const SkPoint* pts() const { return fPts; } @@ -1408,9 +1408,12 @@ finish: } // OPTIMIZATION: mark as debugging only if used solely by tests + const Span& span(int tIndex) const { + return fTs[tIndex]; + } + + // OPTIMIZATION: mark as debugging only if used solely by tests double t(int tIndex) const { - SkASSERT(tIndex >= 0); - SkASSERT(tIndex < fTs.count()); return fTs[tIndex].fT; } @@ -1435,9 +1438,19 @@ finish: return (*SegmentXAtT[fVerb])(fPts, t); } - void xyAtT(double t, SkPoint* pt) const { - SkASSERT(t >= 0 && t <= 1); - (*SegmentXYAtT[fVerb])(fPts, t, pt); + const SkPoint& xyAtT(const Span* span) const { + if (!span->fPt) { + if (span->fT == 0) { + span->fPt = &fPts[0]; + } else if (span->fT == 1) { + span->fPt = &fPts[fVerb]; + } else { + SkPoint* pt = fIntersections.append(); + (*SegmentXYAtT[fVerb])(fPts, span->fT, pt); + span->fPt = pt; + } + } + return *span->fPt; } SkScalar yAtT(double t) const { @@ -1469,6 +1482,10 @@ private: SkPath::Verb fVerb; Bounds fBounds; SkTDArray<Span> fTs; // two or more (always includes t=0 t=1) + // OPTIMIZATION:if intersections array is a pointer, the it could only + // be allocated as needed instead of always initialized -- though maybe + // the initialization is lightweight enough that it hardly matters + mutable SkTDArray<SkPoint> fIntersections; // FIXME: coincident only needs two bits (-1, 0, 1) int fCoincident; // non-zero if some coincident span inside int fDoneSpans; // used for quick check that segment is finished @@ -2100,16 +2117,25 @@ static bool addIntersectTs(Contour* test, Contour* next) { SkASSERT(0); } // in addition to recording T values, record matching segment - int coincident = pts == 2 && wn.segmentType() <= Work::kLine_Segment - && wt.segmentType() <= Work::kLine_Segment ? -1 :0; + int testCoin; + int nextCoin; + if (pts == 2 && wn.segmentType() <= Work::kLine_Segment + && wt.segmentType() <= Work::kLine_Segment) { + // pass coincident so that smaller T is -1, larger T is 1 + testCoin = ts.fT[swap][0] < ts.fT[swap][1] ? -1 : 1; + nextCoin = ts.fT[!swap][0] < ts.fT[!swap][1] ? -1 : 1; + } else { + testCoin = nextCoin = 0; + } for (int pt = 0; pt < pts; ++pt) { SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); - int testTAt = wt.addT(ts.fT[swap][pt], wn, coincident); - int nextTAt = wn.addT(ts.fT[!swap][pt], wt, coincident); + int testTAt = wt.addT(ts.fT[swap][pt], wn, testCoin); + int nextTAt = wn.addT(ts.fT[!swap][pt], wt, nextCoin); wt.addOtherT(testTAt, ts.fT[!swap][pt], nextTAt); wn.addOtherT(nextTAt, ts.fT[swap][pt], testTAt); - coincident = -coincident; + testCoin = -testCoin; + nextCoin = -nextCoin; } } while (wn.advance()); } while (wt.advance()); diff --git a/experimental/Intersection/SimplifyAngle_Test.cpp b/experimental/Intersection/SimplifyAngle_Test.cpp index 89123bd80f..aa291c00c9 100644 --- a/experimental/Intersection/SimplifyAngle_Test.cpp +++ b/experimental/Intersection/SimplifyAngle_Test.cpp @@ -61,9 +61,9 @@ static void testLines(bool testFlat) { for (x = 0; x < lineCount; ++x) { SimplifyAngleTest::Angle* angle = angles.append(); if (testFlat) { - angle->setFlat(lines[x], SkPath::kLine_Verb, 0, x, x + 1, false); + angle->setFlat(lines[x], SkPath::kLine_Verb, 0, x, x + 1); } else { - angle->set(lines[x], SkPath::kLine_Verb, 0, x, x + 1, false); + angle->set(lines[x], SkPath::kLine_Verb, 0, x, x + 1); } double arcTan = atan2(lines[x][0].fX - lines[x][1].fX, lines[x][0].fY - lines[x][1].fY); @@ -112,9 +112,9 @@ static void testQuads(bool testFlat) { for (x = 0; x < quadCount; ++x) { SimplifyAngleTest::Angle* angle = angles.append(); if (testFlat) { - angle->setFlat(quads[x], SkPath::kQuad_Verb, 0, x, x + 1, false); + angle->setFlat(quads[x], SkPath::kQuad_Verb, 0, x, x + 1); } else { - angle->set(quads[x], SkPath::kQuad_Verb, 0, x, x + 1, false); + angle->set(quads[x], SkPath::kQuad_Verb, 0, x, x + 1); } } for (x = 0; x < quadCount; ++x) { @@ -138,9 +138,9 @@ static void testCubics(bool testFlat) { for (size_t x = 0; x < cubicCount; ++x) { SimplifyAngleTest::Angle* angle = angles.append(); if (testFlat) { - angle->setFlat(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1, false); + angle->setFlat(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1); } else { - angle->set(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1, false); + angle->set(cubics[x], SkPath::kCubic_Verb, 0, x, x + 1); } angleList.push(angle); } @@ -180,4 +180,4 @@ void SimplifyAngle_Test() { (*tests[index])(true); firstTestComplete = true; } -}
\ No newline at end of file +} diff --git a/experimental/Intersection/SimplifyFindNext_Test.cpp b/experimental/Intersection/SimplifyFindNext_Test.cpp index e30908d253..c83de89531 100644 --- a/experimental/Intersection/SimplifyFindNext_Test.cpp +++ b/experimental/Intersection/SimplifyFindNext_Test.cpp @@ -29,13 +29,11 @@ static const SimplifyFindNextTest::Segment* testCommon( fixOtherTIndex(contourList); SimplifyFindNextTest::Segment& segment = contours[0].fSegments[0]; SkPoint pts[2]; - double startT = segment.t(endIndex); - segment.xyAtT(startT, &pts[0]); + pts[0] = segment.xyAtT(&segment.span(endIndex)); int nextStart, nextEnd; SimplifyFindNextTest::Segment* next = segment.findNext(winding, startIndex, endIndex, nextStart, nextEnd); - double endT = next->t(nextStart); - next->xyAtT(endT, &pts[1]); + pts[1] = next->xyAtT(&segment.span(nextStart)); SkASSERT(pts[0] == pts[1]); return next; } diff --git a/experimental/Intersection/SimplifyFindTop_Test.cpp b/experimental/Intersection/SimplifyFindTop_Test.cpp index 9c9548e321..2abde363cb 100644 --- a/experimental/Intersection/SimplifyFindTop_Test.cpp +++ b/experimental/Intersection/SimplifyFindTop_Test.cpp @@ -51,7 +51,7 @@ static void test(const SkPath& path, SkScalar x1, SkScalar y1, testCommon(contours, index, end); SkPoint pts[2]; double firstT = topSegment->t(index); - topSegment->xyAtT(firstT, &pts[0]); + pts[0] = topSegment->xyAtT(&topSegment->span(index)); int direction = index < end ? 1 : -1; do { index += direction; @@ -59,7 +59,7 @@ static void test(const SkPath& path, SkScalar x1, SkScalar y1, if (nextT == firstT) { continue; } - topSegment->xyAtT(nextT, &pts[1]); + pts[1] = topSegment->xyAtT(&topSegment->span(index)); if (pts[0] != pts[1]) { break; } diff --git a/experimental/Intersection/SimplifyNew_Test.cpp b/experimental/Intersection/SimplifyNew_Test.cpp index 3a27bc10a6..9098f69fa2 100644 --- a/experimental/Intersection/SimplifyNew_Test.cpp +++ b/experimental/Intersection/SimplifyNew_Test.cpp @@ -104,7 +104,7 @@ static void (*tests[])() = { static const size_t testCount = sizeof(tests) / sizeof(tests[0]); -static void (*firstTest)() = testLine5; +static void (*firstTest)() = 0; static bool skipAll = false; void SimplifyNew_Test() { @@ -119,6 +119,7 @@ void SimplifyNew_Test() { } bool firstTestComplete = false; for ( ; index < testCount; ++index) { + SkDebugf("%s [%d]\n", __FUNCTION__, index + 1); (*tests[index])(); firstTestComplete = true; } diff --git a/experimental/Intersection/thingsToDo.txt b/experimental/Intersection/thingsToDo.txt index 7dd60d9a40..e3aec3e9cd 100644 --- a/experimental/Intersection/thingsToDo.txt +++ b/experimental/Intersection/thingsToDo.txt @@ -163,4 +163,4 @@ and/or to determine whether one curve is to the inside or outside of another. According to Mike/Rob, the flatness for quadratics increases by 4 for each subdivision, and a crude guess of the curvature can be had by comparing P1 to (P0+P2)/2. By looking at the ULPS of the numbers, I can guess what value of -T may be far enough that the curves diverge but don't cross.
\ No newline at end of file +T may be far enough that the curves diverge but don't cross. |