aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar msarett <msarett@google.com>2016-05-02 11:12:14 -0700
committerGravatar Commit bot <commit-bot@chromium.org>2016-05-02 11:12:14 -0700
commitffc2aea3cb6981a5cc26f6c0f2ebf889ca5eb73f (patch)
tree9e66bb7012cea8b36482936760cb3d7f373351bf
parentc578b06319f271ac46ac78e3b86f74fbceed360e (diff)
Introduce SkGammas type to represent ICC gamma curves
-rw-r--r--src/codec/SkPngCodec.cpp20
-rw-r--r--src/core/SkColorSpace.cpp103
-rw-r--r--src/core/SkColorSpace.h118
-rw-r--r--tests/ColorSpaceTest.cpp24
4 files changed, 163 insertions, 102 deletions
diff --git a/src/codec/SkPngCodec.cpp b/src/codec/SkPngCodec.cpp
index 1ad7f8006e..b34c80c6ed 100644
--- a/src/codec/SkPngCodec.cpp
+++ b/src/codec/SkPngCodec.cpp
@@ -210,7 +210,7 @@ sk_sp<SkColorSpace> read_color_space(png_structp png_ptr, png_infop info_ptr) {
png_fixed_point XYZ[9];
SkFloat3x3 toXYZD50;
png_fixed_point gamma;
- SkFloat3 gammas;
+ SkColorSpace::SkGammas gammas;
if (png_get_cHRM_XYZ_fixed(png_ptr, info_ptr, &XYZ[0], &XYZ[1], &XYZ[2], &XYZ[3], &XYZ[4],
&XYZ[5], &XYZ[6], &XYZ[7], &XYZ[8])) {
@@ -225,16 +225,17 @@ sk_sp<SkColorSpace> read_color_space(png_structp png_ptr, png_infop info_ptr) {
}
if (PNG_INFO_gAMA == png_get_gAMA_fixed(png_ptr, info_ptr, &gamma)) {
- gammas.fVec[0] = gammas.fVec[1] = gammas.fVec[2] =
- png_inverted_fixed_point_to_float(gamma);
+ float value = png_inverted_fixed_point_to_float(gamma);
+ gammas = SkColorSpace::SkGammas(value, value, value);
+
} else {
- // If the image does not specify gamma, let's choose linear. Should we default
- // to sRGB? Most images are intended to be sRGB (gamma = 2.2f).
- gammas.fVec[0] = gammas.fVec[1] = gammas.fVec[2] = 1.0f;
+ // Default to sRGB (gamma = 2.2f) if the image has color space information,
+ // but does not specify gamma.
+ gammas = SkColorSpace::SkGammas(2.2f, 2.2f, 2.2f);
}
- return SkColorSpace::NewRGB(toXYZD50, gammas);
+ return SkColorSpace::NewRGB(toXYZD50, std::move(gammas));
}
// Last, check for gamma.
@@ -247,9 +248,10 @@ sk_sp<SkColorSpace> read_color_space(png_structp png_ptr, png_infop info_ptr) {
toXYZD50.fMat[0] = toXYZD50.fMat[4] = toXYZD50.fMat[8] = 1.0f;
// Set the gammas.
- gammas.fVec[0] = gammas.fVec[1] = gammas.fVec[2] = png_inverted_fixed_point_to_float(gamma);
+ float value = png_inverted_fixed_point_to_float(gamma);
+ gammas = SkColorSpace::SkGammas(value, value, value);
- return SkColorSpace::NewRGB(toXYZD50, gammas);
+ return SkColorSpace::NewRGB(toXYZD50, std::move(gammas));
}
#endif // LIBPNG >= 1.6
diff --git a/src/core/SkColorSpace.cpp b/src/core/SkColorSpace.cpp
index 43c424f1dc..54495de940 100644
--- a/src/core/SkColorSpace.cpp
+++ b/src/core/SkColorSpace.cpp
@@ -23,29 +23,28 @@ void SkFloat3x3::dump() const {
static int32_t gUniqueColorSpaceID;
-SkColorSpace::SkColorSpace(const SkFloat3& gamma, const SkFloat3x3& toXYZD50, Named named)
- : fGamma(gamma)
+SkColorSpace::SkColorSpace(SkGammas gammas, const SkFloat3x3& toXYZD50, Named named)
+ : fGammas(std::move(gammas))
, fToXYZD50(toXYZD50)
, fToXYZOffset({{ 0.0f, 0.0f, 0.0f }})
, fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID))
, fNamed(named)
{}
-SkColorSpace::SkColorSpace(SkColorLookUpTable colorLUT, const SkFloat3& gamma,
+SkColorSpace::SkColorSpace(SkColorLookUpTable colorLUT, SkGammas gammas,
const SkFloat3x3& toXYZD50, const SkFloat3& toXYZOffset)
: fColorLUT(std::move(colorLUT))
- , fGamma(gamma)
+ , fGammas(std::move(gammas))
, fToXYZD50(toXYZD50)
, fToXYZOffset(toXYZOffset)
, fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID))
, fNamed(kUnknown_Named)
{}
-sk_sp<SkColorSpace> SkColorSpace::NewRGB(const SkFloat3x3& toXYZD50, const SkFloat3& gamma) {
- return sk_sp<SkColorSpace>(new SkColorSpace(gamma, toXYZD50, kUnknown_Named));
+sk_sp<SkColorSpace> SkColorSpace::NewRGB(const SkFloat3x3& toXYZD50, SkGammas gammas) {
+ return sk_sp<SkColorSpace>(new SkColorSpace(std::move(gammas), toXYZD50, kUnknown_Named));
}
-const SkFloat3 gSRGB_gamma {{ 2.2f, 2.2f, 2.2f }};
const SkFloat3x3 gSRGB_toXYZD50 {{
0.4358f, 0.2224f, 0.0139f, // * R
0.3853f, 0.7170f, 0.0971f, // * G
@@ -55,7 +54,8 @@ const SkFloat3x3 gSRGB_toXYZD50 {{
sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) {
switch (named) {
case kSRGB_Named:
- return sk_sp<SkColorSpace>(new SkColorSpace(gSRGB_gamma, gSRGB_toXYZD50, kSRGB_Named));
+ return sk_sp<SkColorSpace>(new SkColorSpace(SkGammas(2.2f, 2.2f, 2.2f), gSRGB_toXYZD50,
+ kSRGB_Named));
default:
break;
}
@@ -264,9 +264,8 @@ bool load_xyz(float dst[3], const uint8_t* src, size_t len) {
static const uint32_t kTAG_CurveType = SkSetFourByteTag('c', 'u', 'r', 'v');
static const uint32_t kTAG_ParaCurveType = SkSetFourByteTag('p', 'a', 'r', 'a');
-// FIXME (msarett):
-// We need to handle the possibility that the gamma curve does not correspond to 2.2f.
-static bool load_gammas(float* gammas, uint32_t numGammas, const uint8_t* src, size_t len) {
+bool SkColorSpace::LoadGammas(SkGammaCurve* gammas, uint32_t numGammas, const uint8_t* src,
+ size_t len) {
for (uint32_t i = 0; i < numGammas; i++) {
if (len < 12) {
// FIXME (msarett):
@@ -289,7 +288,7 @@ static bool load_gammas(float* gammas, uint32_t numGammas, const uint8_t* src, s
// Some tags require a gamma curve, but the author doesn't actually want
// to transform the data. In this case, it is common to see a curve with
// a count of 0.
- gammas[i] = 1.0f;
+ gammas[i].fValue = 1.0f;
break;
} else if (len < 12 + 2 * count) {
SkColorSpacePrintf("gamma tag is too small (%d bytes)", len);
@@ -298,27 +297,31 @@ static bool load_gammas(float* gammas, uint32_t numGammas, const uint8_t* src, s
const uint16_t* table = (const uint16_t*) (src + 12);
if (1 == count) {
- // Table entry is the exponent (bias 256).
+ // The table entry is the gamma (with a bias of 256).
uint16_t value = read_big_endian_short((const uint8_t*) table);
- gammas[i] = value / 256.0f;
+ gammas[i].fValue = value / 256.0f;
SkColorSpacePrintf("gamma %d %g\n", value, *gamma);
break;
}
- // Print the interpolation table. For now, we ignore this and guess 2.2f.
+ // Fill in the interpolation table.
+ // FIXME (msarett):
+ // We should recognize commonly occurring tables and just set gamma to 2.2f.
+ gammas[i].fTableSize = count;
+ gammas[i].fTable = std::unique_ptr<float[]>(new float[count]);
for (uint32_t j = 0; j < count; j++) {
- SkColorSpacePrintf("curve[%d] %d\n", j,
- read_big_endian_short((const uint8_t*) &table[j]));
+ gammas[i].fTable[j] =
+ (read_big_endian_short((const uint8_t*) &table[j])) / 65535.0f;
}
-
- gammas[i] = 2.2f;
break;
}
case kTAG_ParaCurveType:
// Guess 2.2f.
+ // FIXME (msarett): Handle parametric curves.
SkColorSpacePrintf("parametric curve\n");
- gammas[i] = 2.2f;
+ gammas[i].fValue = 2.2f;
+ // Determine the size of the parametric curve tag.
switch(read_big_endian_short(src + 8)) {
case 0:
tagBytes = 12 + 4;
@@ -358,28 +361,19 @@ static bool load_gammas(float* gammas, uint32_t numGammas, const uint8_t* src, s
}
}
- // If all of the gammas we encounter are 1.0f, indicate that we failed to load gammas.
- // There is no need to apply a gamma of 1.0f.
- for (uint32_t i = 0; i < numGammas; i++) {
- if (1.0f != gammas[i]) {
- return true;
- }
- }
-
- return false;
+ return true;
}
static const uint32_t kTAG_AtoBType = SkSetFourByteTag('m', 'A', 'B', ' ');
-bool load_color_lut(SkColorLookUpTable* colorLUT, uint32_t inputChannels, uint32_t outputChannels,
- const uint8_t* src, size_t len) {
+bool SkColorSpace::LoadColorLUT(SkColorLookUpTable* colorLUT, uint32_t inputChannels,
+ uint32_t outputChannels, const uint8_t* src, size_t len) {
if (len < 20) {
SkColorSpacePrintf("Color LUT tag is too small (%d bytes).", len);
return false;
}
- SkASSERT(inputChannels <= SkColorLookUpTable::kMaxChannels &&
- outputChannels <= SkColorLookUpTable::kMaxChannels);
+ SkASSERT(inputChannels <= SkColorLookUpTable::kMaxChannels && 3 == outputChannels);
colorLUT->fInputChannels = inputChannels;
colorLUT->fOutputChannels = outputChannels;
uint32_t numEntries = 1;
@@ -441,8 +435,8 @@ bool load_matrix(SkFloat3x3* toXYZ, SkFloat3* toXYZOffset, const uint8_t* src, s
return true;
}
-bool load_a2b0(SkColorLookUpTable* colorLUT, SkFloat3* gamma, SkFloat3x3* toXYZ,
- SkFloat3* toXYZOffset, const uint8_t* src, size_t len) {
+bool SkColorSpace::LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkFloat3x3* toXYZ,
+ SkFloat3* toXYZOffset, const uint8_t* src, size_t len) {
if (len < 32) {
SkColorSpacePrintf("A to B tag is too small (%d bytes).", len);
return false;
@@ -460,7 +454,7 @@ bool load_a2b0(SkColorLookUpTable* colorLUT, SkFloat3* gamma, SkFloat3x3* toXYZ,
uint8_t inputChannels = src[8];
uint8_t outputChannels = src[9];
if (0 == inputChannels || inputChannels > SkColorLookUpTable::kMaxChannels ||
- 0 < outputChannels || outputChannels > SkColorLookUpTable::kMaxChannels) {
+ 3 != outputChannels) {
// The color LUT assumes that there are at most 16 input channels. For RGB
// profiles, output channels should be 3.
SkColorSpacePrintf("Too many input or output channels in A to B tag.\n");
@@ -483,16 +477,16 @@ bool load_a2b0(SkColorLookUpTable* colorLUT, SkFloat3* gamma, SkFloat3x3* toXYZ,
uint32_t offsetToColorLUT = read_big_endian_int(src + 24);
if (0 != offsetToColorLUT && offsetToColorLUT < len) {
- if (!load_color_lut(colorLUT, inputChannels, outputChannels, src + offsetToColorLUT,
- len - offsetToColorLUT)) {
+ if (!SkColorSpace::LoadColorLUT(colorLUT, inputChannels, outputChannels,
+ src + offsetToColorLUT, len - offsetToColorLUT)) {
SkColorSpacePrintf("Failed to read color LUT from A to B tag.\n");
}
}
uint32_t offsetToMCurves = read_big_endian_int(src + 20);
if (0 != offsetToMCurves && offsetToMCurves < len) {
- if (!load_gammas(gamma->fVec, outputChannels, src + offsetToMCurves, len - offsetToMCurves))
- {
+ if (!SkColorSpace::LoadGammas(&gammas->fRed, outputChannels, src + offsetToMCurves,
+ len - offsetToMCurves)) {
SkColorSpacePrintf("Failed to read M curves from A to B tag.\n");
}
}
@@ -567,42 +561,39 @@ sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* base, size_t len) {
// It is not uncommon to see missing or empty gamma tags. This indicates
// that we should use unit gamma.
- SkFloat3 gamma {{ 1.0f, 1.0f, 1.0f }};
+ SkGammas gammas;
r = ICCTag::Find(tags.get(), tagCount, kTAG_rTRC);
g = ICCTag::Find(tags.get(), tagCount, kTAG_gTRC);
b = ICCTag::Find(tags.get(), tagCount, kTAG_bTRC);
- if (!r ||
- !load_gammas(&gamma.fVec[0], 1, r->addr((const uint8_t*) base), r->fLength))
- {
+ if (!r || !SkColorSpace::LoadGammas(&gammas.fRed, 1,
+ r->addr((const uint8_t*) base), r->fLength)) {
SkColorSpacePrintf("Failed to read R gamma tag.\n");
}
- if (!g ||
- !load_gammas(&gamma.fVec[1], 1, g->addr((const uint8_t*) base), g->fLength))
- {
+ if (!g || !SkColorSpace::LoadGammas(&gammas.fGreen, 1,
+ g->addr((const uint8_t*) base), g->fLength)) {
SkColorSpacePrintf("Failed to read G gamma tag.\n");
}
- if (!b ||
- !load_gammas(&gamma.fVec[2], 1, b->addr((const uint8_t*) base), b->fLength))
- {
+ if (!b || !SkColorSpace::LoadGammas(&gammas.fBlue, 1,
+ b->addr((const uint8_t*) base), b->fLength)) {
SkColorSpacePrintf("Failed to read B gamma tag.\n");
}
- return SkColorSpace::NewRGB(toXYZ, gamma);
+ return SkColorSpace::NewRGB(toXYZ, std::move(gammas));
}
// Recognize color profile specified by A2B0 tag.
const ICCTag* a2b0 = ICCTag::Find(tags.get(), tagCount, kTAG_A2B0);
if (a2b0) {
SkColorLookUpTable colorLUT;
- SkFloat3 gamma;
+ SkGammas gammas;
SkFloat3x3 toXYZ;
SkFloat3 toXYZOffset;
- if (!load_a2b0(&colorLUT, &gamma, &toXYZ, &toXYZOffset,
- a2b0->addr((const uint8_t*) base), a2b0->fLength)) {
+ if (!SkColorSpace::LoadA2B0(&colorLUT, &gammas, &toXYZ, &toXYZOffset,
+ a2b0->addr((const uint8_t*) base), a2b0->fLength)) {
return_null("Failed to parse A2B0 tag");
}
- return sk_sp<SkColorSpace>(new SkColorSpace(std::move(colorLUT), gamma, toXYZ,
- toXYZOffset));
+ return sk_sp<SkColorSpace>(new SkColorSpace(std::move(colorLUT), std::move(gammas),
+ toXYZ, toXYZOffset));
}
}
diff --git a/src/core/SkColorSpace.h b/src/core/SkColorSpace.h
index 2b3b15fe95..a1ccf13fe0 100644
--- a/src/core/SkColorSpace.h
+++ b/src/core/SkColorSpace.h
@@ -35,57 +35,121 @@ struct SkFloat3x3 {
void dump() const;
};
-struct SkColorLookUpTable {
- static const uint8_t kMaxChannels = 16;
-
- uint8_t fInputChannels;
- uint8_t fOutputChannels;
- uint8_t fGridPoints[kMaxChannels];
- std::unique_ptr<float[]> fTable;
-
- SkColorLookUpTable() {
- memset(this, 0, sizeof(struct SkColorLookUpTable));
- }
-
- SkColorLookUpTable(SkColorLookUpTable&& that)
- : fInputChannels(that.fInputChannels)
- , fOutputChannels(that.fOutputChannels)
- , fTable(std::move(that.fTable))
- {
- memcpy(fGridPoints, that.fGridPoints, kMaxChannels);
- }
-};
-
class SkColorSpace : public SkRefCnt {
+private:
+ struct SkGammaCurve {
+ bool isValue() const {
+ bool result = (0.0f != fValue);
+ SkASSERT(!result || (0 == fTableSize));
+ return result;
+ }
+
+ bool isTable() const {
+ bool result = (0 != fTableSize);
+ SkASSERT(!result || (0.0f == fValue));
+ SkASSERT(!result || fTable);
+ return result;
+ }
+
+ bool isParametric() const { return false; }
+
+ // We have three different ways to represent gamma.
+ // (1) A single value:
+ float fValue;
+
+ // (2) A lookup table:
+ uint32_t fTableSize;
+ std::unique_ptr<float[]> fTable;
+
+ // (3) Parameters for a curve:
+ // FIXME (msarett): Handle parametric curves.
+
+ SkGammaCurve() {
+ memset(this, 0, sizeof(struct SkGammaCurve));
+ }
+
+ SkGammaCurve(float value)
+ : fValue(value)
+ , fTableSize(0)
+ , fTable(nullptr)
+ {}
+ };
+
+ struct SkColorLookUpTable {
+ static const uint8_t kMaxChannels = 16;
+
+ uint8_t fInputChannels;
+ uint8_t fOutputChannels;
+ uint8_t fGridPoints[kMaxChannels];
+ std::unique_ptr<float[]> fTable;
+
+ SkColorLookUpTable() {
+ memset(this, 0, sizeof(struct SkColorLookUpTable));
+ }
+ };
+
public:
enum Named {
kUnknown_Named,
kSRGB_Named,
};
+ struct SkGammas {
+ public:
+ SkGammas(float red, float green, float blue)
+ : fRed(red)
+ , fGreen(green)
+ , fBlue(blue)
+ {}
+
+ SkGammas() {}
+
+ SkDEBUGCODE(float red() const { return fRed.fValue; })
+ SkDEBUGCODE(float green() const { return fGreen.fValue; })
+ SkDEBUGCODE(float blue() const { return fBlue.fValue; })
+
+ private:
+ SkGammaCurve fRed;
+ SkGammaCurve fGreen;
+ SkGammaCurve fBlue;
+
+ friend class SkColorSpace;
+ };
+
/**
* Return a colorspace instance, given a 3x3 transform from linear_RGB to D50_XYZ
* and the src-gamma, return a ColorSpace
*/
- static sk_sp<SkColorSpace> NewRGB(const SkFloat3x3& toXYZD50, const SkFloat3& gamma);
+ static sk_sp<SkColorSpace> NewRGB(const SkFloat3x3& toXYZD50, SkGammas gammas);
static sk_sp<SkColorSpace> NewNamed(Named);
static sk_sp<SkColorSpace> NewICC(const void*, size_t);
- SkFloat3 gamma() const { return fGamma; }
+ const SkGammas& gammas() const { return fGammas; }
SkFloat3x3 xyz() const { return fToXYZD50; }
SkFloat3 xyzOffset() const { return fToXYZOffset; }
Named named() const { return fNamed; }
uint32_t uniqueID() const { return fUniqueID; }
private:
- SkColorSpace(const SkFloat3& gamma, const SkFloat3x3& toXYZ, Named);
- SkColorSpace(SkColorLookUpTable colorLUT, const SkFloat3& gamma, const SkFloat3x3& toXYZ,
- const SkFloat3& toXYZOffset);
+ static bool LoadGammas(SkGammaCurve* gammas, uint32_t num, const uint8_t* src, size_t len);
+
+
+ static bool LoadColorLUT(SkColorLookUpTable* colorLUT, uint32_t inputChannels,
+ uint32_t outputChannels, const uint8_t* src, size_t len);
+
+
+ static bool LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkFloat3x3* toXYZ,
+ SkFloat3* toXYZOffset, const uint8_t* src, size_t len);
+
+ SkColorSpace(SkGammas gammas, const SkFloat3x3& toXYZ, Named);
+
+ SkColorSpace(SkColorLookUpTable colorLUT, SkGammas gammas,
+ const SkFloat3x3& toXYZ, const SkFloat3& toXYZOffset);
const SkColorLookUpTable fColorLUT;
- const SkFloat3 fGamma;
+ const SkGammas fGammas;
const SkFloat3x3 fToXYZD50;
const SkFloat3 fToXYZOffset;
diff --git a/tests/ColorSpaceTest.cpp b/tests/ColorSpaceTest.cpp
index 313eed86f1..e5ecbc8346 100644
--- a/tests/ColorSpaceTest.cpp
+++ b/tests/ColorSpaceTest.cpp
@@ -35,12 +35,14 @@ DEF_TEST(ColorSpaceParsePngICCProfile, r) {
SkColorSpace* colorSpace = codec->getColorSpace();
REPORTER_ASSERT(r, nullptr != colorSpace);
- // No need to use almost equal here. The color profile that we have extracted
- // actually has a table of gammas. And our current implementation guesses 2.2f.
- SkFloat3 gammas = colorSpace->gamma();
- REPORTER_ASSERT(r, 2.2f == gammas.fVec[0]);
- REPORTER_ASSERT(r, 2.2f == gammas.fVec[1]);
- REPORTER_ASSERT(r, 2.2f == gammas.fVec[2]);
+ // The color profile that we have extracted has represents gamma with a lookup table.
+ // So we expect the gamma value to be zero.
+#ifdef SK_DEBUG
+ const SkColorSpace::SkGammas& gammas = colorSpace->gammas();
+ REPORTER_ASSERT(r, 0.0f == gammas.red());
+ REPORTER_ASSERT(r, 0.0f == gammas.green());
+ REPORTER_ASSERT(r, 0.0f == gammas.blue());
+#endif
// These nine values were extracted from the color profile in isolation (before
// we embedded it in the png). Here we check that we still extract the same values.
@@ -75,10 +77,12 @@ DEF_TEST(ColorSpaceParseJpegICCProfile, r) {
// It's important to use almost equal here. This profile sets gamma as
// 563 / 256, which actually comes out to about 2.19922.
- SkFloat3 gammas = colorSpace->gamma();
- REPORTER_ASSERT(r, almost_equal(2.2f, gammas.fVec[0]));
- REPORTER_ASSERT(r, almost_equal(2.2f, gammas.fVec[1]));
- REPORTER_ASSERT(r, almost_equal(2.2f, gammas.fVec[2]));
+#ifdef SK_DEBUG
+ const SkColorSpace::SkGammas& gammas = colorSpace->gammas();
+ REPORTER_ASSERT(r, almost_equal(2.2f, gammas.red()));
+ REPORTER_ASSERT(r, almost_equal(2.2f, gammas.green()));
+ REPORTER_ASSERT(r, almost_equal(2.2f, gammas.blue()));
+#endif
// These nine values were extracted from the color profile. Until we know any
// better, we'll assume these are the right values and test that we continue