aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar robertphillips@google.com <robertphillips@google.com@2bbb7eff-a529-9590-31e7-b0007b416f81>2012-09-04 12:48:01 +0000
committerGravatar robertphillips@google.com <robertphillips@google.com@2bbb7eff-a529-9590-31e7-b0007b416f81>2012-09-04 12:48:01 +0000
commitb78765e63b5de5a7dfe5f9f6813f6df81cae14ae (patch)
tree292bb289b1309e4c31981aa9a1f18586b24247a8
parent4f55d39a175afe70c1231eb7389790633210106f (diff)
Reverting r5364 (Update ARM and NEON optimizations for S32A_Opaque_BlitRow32)
git-svn-id: http://skia.googlecode.com/svn/trunk@5378 2bbb7eff-a529-9590-31e7-b0007b416f81
-rw-r--r--bench/BitmapBench.cpp205
-rw-r--r--src/opts/SkBlitRow_opts_arm.cpp314
-rw-r--r--src/opts/SkBlitRow_opts_arm_neon.cpp186
3 files changed, 48 insertions, 657 deletions
diff --git a/bench/BitmapBench.cpp b/bench/BitmapBench.cpp
index 59ea16dde9..5f06f884a8 100644
--- a/bench/BitmapBench.cpp
+++ b/bench/BitmapBench.cpp
@@ -21,6 +21,25 @@ static const char* gConfigName[] = {
"ERROR", "a1", "a8", "index8", "565", "4444", "8888"
};
+static void drawIntoBitmap(const SkBitmap& bm) {
+ const int w = bm.width();
+ const int h = bm.height();
+
+ SkCanvas canvas(bm);
+ SkPaint p;
+ p.setAntiAlias(true);
+ p.setColor(SK_ColorRED);
+ canvas.drawCircle(SkIntToScalar(w)/2, SkIntToScalar(h)/2,
+ SkIntToScalar(SkMin32(w, h))*3/8, p);
+
+ SkRect r;
+ r.set(0, 0, SkIntToScalar(w), SkIntToScalar(h));
+ p.setStyle(SkPaint::kStroke_Style);
+ p.setStrokeWidth(SkIntToScalar(4));
+ p.setColor(SK_ColorBLUE);
+ canvas.drawRect(r, p);
+}
+
static int conv6ToByte(int x) {
return x * 0xFF / 5;
}
@@ -83,23 +102,38 @@ class BitmapBench : public SkBenchmark {
bool fIsOpaque;
bool fForceUpdate; //bitmap marked as dirty before each draw. forces bitmap to be updated on device cache
int fTileX, fTileY; // -1 means don't use shader
- bool fIsVolatile;
- SkBitmap::Config fConfig;
SkString fName;
enum { N = SkBENCHLOOP(300) };
- enum { W = 128 };
- enum { H = 128 };
public:
BitmapBench(void* param, bool isOpaque, SkBitmap::Config c,
bool forceUpdate = false, bool bitmapVolatile = false,
int tx = -1, int ty = -1)
- : INHERITED(param)
- , fIsOpaque(isOpaque)
- , fForceUpdate(forceUpdate)
- , fIsVolatile(bitmapVolatile)
- , fTileX(tx)
- , fTileY(ty)
- , fConfig(c) {
+ : INHERITED(param), fIsOpaque(isOpaque), fForceUpdate(forceUpdate), fTileX(tx), fTileY(ty) {
+ const int w = 128;
+ const int h = 128;
+ SkBitmap bm;
+
+ if (SkBitmap::kIndex8_Config == c) {
+ bm.setConfig(SkBitmap::kARGB_8888_Config, w, h);
+ } else {
+ bm.setConfig(c, w, h);
+ }
+ bm.allocPixels();
+ bm.eraseColor(isOpaque ? SK_ColorBLACK : 0);
+
+ drawIntoBitmap(bm);
+
+ if (SkBitmap::kIndex8_Config == c) {
+ convertToIndex666(bm, &fBitmap);
+ } else {
+ fBitmap = bm;
+ }
+
+ if (fBitmap.getColorTable()) {
+ fBitmap.getColorTable()->setIsOpaque(isOpaque);
+ }
+ fBitmap.setIsOpaque(isOpaque);
+ fBitmap.setIsVolatile(bitmapVolatile);
}
protected:
@@ -111,43 +145,16 @@ protected:
fName.appendf("_%s", gTileName[fTileY]);
}
}
- fName.appendf("_%s%s", gConfigName[fConfig],
+ fName.appendf("_%s%s", gConfigName[fBitmap.config()],
fIsOpaque ? "" : "_A");
if (fForceUpdate)
fName.append("_update");
- if (fIsVolatile)
+ if (fBitmap.isVolatile())
fName.append("_volatile");
return fName.c_str();
}
- virtual void onPreDraw() {
- SkBitmap bm;
-
- if (SkBitmap::kIndex8_Config == fConfig) {
- bm.setConfig(SkBitmap::kARGB_8888_Config, W, H);
- } else {
- bm.setConfig(fConfig, W, H);
- }
-
- bm.allocPixels();
- bm.eraseColor(fIsOpaque ? SK_ColorBLACK : 0);
-
- onDrawIntoBitmap(bm);
-
- if (SkBitmap::kIndex8_Config == fConfig) {
- convertToIndex666(bm, &fBitmap);
- } else {
- fBitmap = bm;
- }
-
- if (fBitmap.getColorTable()) {
- fBitmap.getColorTable()->setIsOpaque(fIsOpaque);
- }
- fBitmap.setIsOpaque(fIsOpaque);
- fBitmap.setIsVolatile(fIsVolatile);
- }
-
virtual void onDraw(SkCanvas* canvas) {
SkIPoint dim = this->getSize();
SkRandom rand;
@@ -170,25 +177,6 @@ protected:
}
}
- virtual void onDrawIntoBitmap(const SkBitmap& bm) {
- const int w = bm.width();
- const int h = bm.height();
-
- SkCanvas canvas(bm);
- SkPaint p;
- p.setAntiAlias(true);
- p.setColor(SK_ColorRED);
- canvas.drawCircle(SkIntToScalar(w)/2, SkIntToScalar(h)/2,
- SkIntToScalar(SkMin32(w, h))*3/8, p);
-
- SkRect r;
- r.set(0, 0, SkIntToScalar(w), SkIntToScalar(h));
- p.setStyle(SkPaint::kStroke_Style);
- p.setStrokeWidth(SkIntToScalar(4));
- p.setColor(SK_ColorBLUE);
- canvas.drawRect(r, p);
- }
-
private:
typedef SkBenchmark INHERITED;
};
@@ -253,95 +241,6 @@ private:
typedef BitmapBench INHERITED;
};
-/** Verify optimizations that test source alpha values. */
-
-class SourceAlphaBitmapBench : public BitmapBench {
-public:
- enum SourceAlpha { kOpaque_SourceAlpha, kTransparent_SourceAlpha,
- kTwoStripes_SourceAlpha, kThreeStripes_SourceAlpha};
-private:
- SkString fFullName;
- SourceAlpha fSourceAlpha;
-public:
- SourceAlphaBitmapBench(void* param, SourceAlpha alpha, SkBitmap::Config c,
- bool forceUpdate = false, bool bitmapVolatile = false,
- int tx = -1, int ty = -1)
- : INHERITED(param, false, c, forceUpdate, bitmapVolatile, tx, ty)
- , fSourceAlpha(alpha) {
- }
-
-protected:
- virtual const char* onGetName() {
- fFullName.set(INHERITED::onGetName());
-
- if (fSourceAlpha == kOpaque_SourceAlpha) {
- fFullName.append("_source_opaque");
- } else if (fSourceAlpha == kTransparent_SourceAlpha) {
- fFullName.append("_source_transparent");
- } else if (fSourceAlpha == kTwoStripes_SourceAlpha) {
- fFullName.append("_source_stripes_two");
- } else if (fSourceAlpha == kThreeStripes_SourceAlpha) {
- fFullName.append("_source_stripes_three");
- }
-
- return fFullName.c_str();
- }
-
- virtual void onDrawIntoBitmap(const SkBitmap& bm) SK_OVERRIDE {
- const int w = bm.width();
- const int h = bm.height();
-
- if (kOpaque_SourceAlpha == fSourceAlpha) {
- bm.eraseColor(SK_ColorBLACK);
- } else if (kTransparent_SourceAlpha == fSourceAlpha) {
- bm.eraseColor(0);
- } else if (kTwoStripes_SourceAlpha == fSourceAlpha) {
- bm.eraseColor(0);
-
- SkCanvas canvas(bm);
- SkPaint p;
- p.setAntiAlias(false);
- p.setStyle(SkPaint::kFill_Style);
- p.setColor(SK_ColorRED);
-
- // Draw red vertical stripes on transparent background
- SkRect r;
- for (int x = 0; x < w; x+=2)
- {
- r.set(SkIntToScalar(x), 0, SkIntToScalar(x+1), SkIntToScalar(h));
- canvas.drawRect(r, p);
- }
-
- } else if (kThreeStripes_SourceAlpha == fSourceAlpha) {
- bm.eraseColor(0);
-
- SkCanvas canvas(bm);
- SkPaint p;
- p.setAntiAlias(false);
- p.setStyle(SkPaint::kFill_Style);
-
- // Draw vertical stripes on transparent background with a pattern
- // where the first pixel is fully transparent, the next is semi-transparent
- // and the third is fully opaque.
- SkRect r;
- for (int x = 0; x < w; x++)
- {
- if (x % 3 == 0) {
- continue; // Keep transparent
- } else if (x % 3 == 1) {
- p.setColor(SkColorSetARGB(127, 127, 127, 127)); // Semi-transparent
- } else if (x % 3 == 2) {
- p.setColor(SK_ColorRED); // Opaque
- }
- r.set(SkIntToScalar(x), 0, SkIntToScalar(x+1), SkIntToScalar(h));
- canvas.drawRect(r, p);
- }
- }
- }
-
-private:
- typedef BitmapBench INHERITED;
-};
static SkBenchmark* Fact0(void* p) { return new BitmapBench(p, false, SkBitmap::kARGB_8888_Config); }
static SkBenchmark* Fact1(void* p) { return new BitmapBench(p, true, SkBitmap::kARGB_8888_Config); }
static SkBenchmark* Fact2(void* p) { return new BitmapBench(p, true, SkBitmap::kRGB_565_Config); }
@@ -364,12 +263,6 @@ static SkBenchmark* Fact14(void* p) { return new FilterBitmapBench(p, true, SkBi
static SkBenchmark* Fact15(void* p) { return new FilterBitmapBench(p, true, SkBitmap::kARGB_8888_Config, true, true, -1, -1, true, true, true); }
static SkBenchmark* Fact16(void* p) { return new FilterBitmapBench(p, true, SkBitmap::kARGB_8888_Config, true, false, -1, -1, true, true, true); }
-// source alpha tests -> S32A_Opaque_BlitRow32_{arm,neon}
-static SkBenchmark* Fact17(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kOpaque_SourceAlpha, SkBitmap::kARGB_8888_Config); }
-static SkBenchmark* Fact18(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kTransparent_SourceAlpha, SkBitmap::kARGB_8888_Config); }
-static SkBenchmark* Fact19(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kTwoStripes_SourceAlpha, SkBitmap::kARGB_8888_Config); }
-static SkBenchmark* Fact20(void* p) { return new SourceAlphaBitmapBench(p, SourceAlphaBitmapBench::kThreeStripes_SourceAlpha, SkBitmap::kARGB_8888_Config); }
-
static BenchRegistry gReg0(Fact0);
static BenchRegistry gReg1(Fact1);
static BenchRegistry gReg2(Fact2);
@@ -390,7 +283,3 @@ static BenchRegistry gReg14(Fact14);
static BenchRegistry gReg15(Fact15);
static BenchRegistry gReg16(Fact16);
-static BenchRegistry gReg17(Fact17);
-static BenchRegistry gReg18(Fact18);
-static BenchRegistry gReg19(Fact19);
-static BenchRegistry gReg20(Fact20);
diff --git a/src/opts/SkBlitRow_opts_arm.cpp b/src/opts/SkBlitRow_opts_arm.cpp
index 36bed97ccb..f6e6ba2966 100644
--- a/src/opts/SkBlitRow_opts_arm.cpp
+++ b/src/opts/SkBlitRow_opts_arm.cpp
@@ -185,306 +185,6 @@ static void S32A_Opaque_BlitRow32_arm(SkPMColor* SK_RESTRICT dst,
: "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "ip", "memory"
);
}
-
-static void __attribute__((naked)) S32A_Opaque_BlitRow32_arm_src_alpha
- (SkPMColor* SK_RESTRICT dst,
- const SkPMColor* SK_RESTRICT src,
- int count, U8CPU alpha) {
-
-/* Optimizes for alpha == 0, alpha == 255, and 1 < alpha < 255 cases individually */
-/* Predicts that the next pixel will have the same alpha type as the current pixel */
-
-asm volatile (
-
- "\tSTMDB r13!, {r4-r12, r14} \n" /* saving r4-r12, lr on the stack */
- /* we should not save r0-r3 according to ABI */
-
- "\tCMP r2, #0 \n" /* if (count == 0) */
- "\tBEQ 9f \n" /* go to EXIT */
-
- "\tMOV r12, #0xff \n" /* load the 0xff mask in r12 */
- "\tORR r12, r12, r12, LSL #16 \n" /* convert it to 0xff00ff in r12 */
-
- "\tMOV r14, #255 \n" /* r14 = 255 */
- /* will be used later for left-side comparison */
-
- "\tADD r2, %[src], r2, LSL #2 \n" /* r2 points to last array element which can be used */
- "\tSUB r2, r2, #16 \n" /* as a base for 4-way processing algorithm */
-
- "\tCMP %[src], r2 \n" /* if our current [src] array pointer is bigger than */
- "\tBGT 8f \n" /* calculated marker for 4-way -> */
- /* use simple one-by-one processing */
-
- /* START OF DISPATCHING BLOCK */
-
- "\t0: \n"
-
- "\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
-
- "\tLSR r7, r3, #24 \n" /* if not all src alphas of 4-way block are equal -> */
- "\tCMP r7, r4, LSR #24 \n"
- "\tCMPEQ r7, r5, LSR #24 \n"
- "\tCMPEQ r7, r6, LSR #24 \n"
- "\tBNE 1f \n" /* -> go to general 4-way processing routine */
-
- "\tCMP r14, r7 \n" /* if all src alphas are equal to 255 */
- "\tBEQ 3f \n" /* go to alpha == 255 optimized routine */
-
- "\tCMP r7, #0 \n" /* if all src alphas are equal to 0 */
- "\tBEQ 6f \n" /* go to alpha == 0 optimized routine */
-
- /* END OF DISPATCHING BLOCK */
-
- /* START OF BLOCK OPTIMIZED FOR 0 < ALPHA < 255 */
-
- "\t1: \n"
- /* we do not have enough registers to make */
- /* 4-way [dst] loading -> we are using 2 * 2-way */
-
- "\tLDM %[dst], {r7, r8} \n" /* 1st 2-way loading of dst values to r7-r8 */
-
- /* PROCESSING BLOCK 1 */
- /* r3 = src, r7 = dst */
-
- "\tLSR r11, r3, #24 \n" /* extracting alpha from source and storing to r11 */
- "\tAND r9, r12, r7 \n" /* r9 = br masked by r12 (0xff00ff) */
- "\tRSB r11, r11, #256 \n" /* subtracting the alpha from 255 -> r11 = scale */
- "\tAND r10, r12, r7, LSR #8 \n" /* r10 = ag masked by r12 (0xff00ff) */
- "\tMUL r9, r9, r11 \n" /* br = br * scale */
- "\tAND r9, r12, r9, LSR #8 \n" /* lsr br by 8 and mask it */
- "\tMUL r10, r10, r11 \n" /* ag = ag * scale */
- "\tAND r10, r10, r12, LSL #8 \n" /* mask ag with reverse mask */
- "\tORR r7, r9, r10 \n" /* br | ag */
- "\tADD r7, r3, r7 \n" /* dst = src + calc dest(r8) */
-
- /* PROCESSING BLOCK 2 */
- /* r4 = src, r8 = dst */
-
- "\tLSR r11, r4, #24 \n" /* see PROCESSING BLOCK 1 */
- "\tAND r9, r12, r8 \n"
- "\tRSB r11, r11, #256 \n"
- "\tAND r10, r12, r8, LSR #8 \n"
- "\tMUL r9, r9, r11 \n"
- "\tAND r9, r12, r9, LSR #8 \n"
- "\tMUL r10, r10, r11 \n"
- "\tAND r10, r10, r12, LSL #8 \n"
- "\tORR r8, r9, r10 \n"
- "\tADD r8, r4, r8 \n"
-
- "\tSTM %[dst]!, {r7, r8} \n" /* 1st 2-way storing of processed dst values */
-
- "\tLDM %[dst], {r9, r10} \n" /* 2nd 2-way loading of dst values to r9-r10 */
-
- /* PROCESSING BLOCK 3 */
- /* r5 = src, r9 = dst */
-
- "\tLSR r11, r5, #24 \n" /* see PROCESSING BLOCK 1 */
- "\tAND r7, r12, r9 \n"
- "\tRSB r11, r11, #256 \n"
- "\tAND r8, r12, r9, LSR #8 \n"
- "\tMUL r7, r7, r11 \n"
- "\tAND r7, r12, r7, LSR #8 \n"
- "\tMUL r8, r8, r11 \n"
- "\tAND r8, r8, r12, LSL #8 \n"
- "\tORR r9, r7, r8 \n"
- "\tADD r9, r5, r9 \n"
-
- /* PROCESSING BLOCK 4 */
- /* r6 = src, r10 = dst */
-
- "\tLSR r11, r6, #24 \n" /* see PROCESSING BLOCK 1 */
- "\tAND r7, r12, r10 \n"
- "\tRSB r11, r11, #256 \n"
- "\tAND r8, r12, r10, LSR #8 \n"
- "\tMUL r7, r7, r11 \n"
- "\tAND r7, r12, r7, LSR #8 \n"
- "\tMUL r8, r8, r11 \n"
- "\tAND r8, r8, r12, LSL #8 \n"
- "\tORR r10, r7, r8 \n"
- "\tADD r10, r6, r10 \n"
-
- "\tSTM %[dst]!, {r9, r10} \n" /* 2nd 2-way storing of processed dst values */
-
- "\tCMP %[src], r2 \n" /* if our current [src] pointer <= calculated marker */
- "\tBLE 0b \n" /* we could run 4-way processing -> go to dispatcher */
- "\tBGT 8f \n" /* else -> use simple one-by-one processing */
-
- /* END OF BLOCK OPTIMIZED FOR 0 < ALPHA < 255 */
-
- /* START OF BLOCK OPTIMIZED FOR ALPHA == 255 */
-
- "\t2: \n" /* ENTRY 1: LOADING [src] to registers */
-
- "\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
-
- "\tAND r7, r3, r4 \n" /* if not all alphas == 255 -> */
- "\tAND r8, r5, r6 \n"
- "\tAND r9, r7, r8 \n"
- "\tCMP r14, r9, LSR #24 \n"
- "\tBNE 4f \n" /* -> go to alpha == 0 check */
-
- "\t3: \n" /* ENTRY 2: [src] already loaded by DISPATCHER */
-
- "\tSTM %[dst]!, {r3, r4, r5, r6} \n" /* all alphas == 255 -> 4-way copy [src] to [dst] */
-
- "\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
- "\tBLE 2b \n" /* we could run 4-way processing */
- /* because now we're in ALPHA == 255 state */
- /* run next cycle with priority alpha == 255 checks */
-
- "\tBGT 8f \n" /* if our current [src] array pointer > marker */
- /* use simple one-by-one processing */
-
- "\t4: \n"
-
- "\tORR r7, r3, r4 \n" /* if not all alphas == 0 -> */
- "\tORR r8, r5, r6 \n"
- "\tORR r9, r7, r8 \n"
- "\tLSRS r9, #24 \n"
- "\tBNE 1b \n" /* -> go to general processing mode */
- /* (we already checked for alpha == 255) */
-
- "\tADD %[dst], %[dst], #16 \n" /* all src alphas == 0 -> do not change dst values */
-
- "\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
- "\tBLE 5f \n" /* we could run 4-way processing one more time */
- /* because now we're in ALPHA == 0 state */
- /* run next cycle with priority alpha == 0 checks */
-
- "\tBGT 8f \n" /* if our current [src] array pointer > marker */
- /* use simple one-by-one processing */
-
- /* END OF BLOCK OPTIMIZED FOR ALPHA == 255 */
-
- /* START OF BLOCK OPTIMIZED FOR ALPHA == 0 */
-
- "\t5: \n" /* ENTRY 1: LOADING [src] to registers */
-
- "\tLDM %[src]!, {r3, r4, r5, r6} \n" /* 4-way loading of source values to r3-r6 */
-
- "\tORR r7, r3, r4 \n" /* if not all alphas == 0 -> */
- "\tORR r8, r5, r6 \n"
- "\tORR r9, r7, r8 \n"
- "\tLSRS r9, #24 \n"
- "\tBNE 7f \n" /* -> go to alpha == 255 check */
-
- "\t6: \n" /* ENTRY 2: [src] already loaded by DISPATCHER */
-
- "\tADD %[dst], %[dst], #16 \n" /* all src alphas == 0 -> do not change dst values */
-
- "\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
- "\tBLE 5b \n" /* we could run 4-way processing one more time */
- /* because now we're in ALPHA == 0 state */
- /* run next cycle with priority alpha == 0 checks */
-
- "\tBGT 8f \n" /* if our current [src] array pointer > marker */
- /* use simple one-by-one processing */
- "\t7: \n"
-
- "\tAND r7, r3, r4 \n" /* if not all alphas == 255 -> */
- "\tAND r8, r5, r6 \n"
- "\tAND r9, r7, r8 \n"
- "\tCMP r14, r9, LSR #24 \n"
- "\tBNE 1b \n" /* -> go to general processing mode */
- /* (we already checked for alpha == 0) */
-
- "\tSTM %[dst]!, {r3, r4, r5, r6} \n" /* all alphas == 255 -> 4-way copy [src] to [dst] */
-
- "\tCMP %[src], r2 \n" /* if our current [src] array pointer <= marker */
- "\tBLE 2b \n" /* we could run 4-way processing one more time */
- /* because now we're in ALPHA == 255 state */
- /* run next cycle with priority alpha == 255 checks */
-
- "\tBGT 8f \n" /* if our current [src] array pointer > marker */
- /* use simple one-by-one processing */
-
- /* END OF BLOCK OPTIMIZED FOR ALPHA == 0 */
-
- /* START OF TAIL BLOCK */
- /* (used when array is too small to be processed with 4-way algorithm)*/
-
- "\t8: \n"
-
- "\tADD r2, r2, #16 \n" /* now r2 points to the element just after array */
- /* we've done r2 = r2 - 16 at procedure start */
-
- "\tCMP %[src], r2 \n" /* if our current [src] array pointer > final marker */
- "\tBEQ 9f \n" /* goto EXIT */
-
- /* TAIL PROCESSING BLOCK 1 */
-
- "\tLDR r3, [%[src]], #4 \n" /* r3 = *src, src++ */
- "\tLDR r7, [%[dst]] \n" /* r7 = *dst */
-
- "\tLSR r11, r3, #24 \n" /* extracting alpha from source */
- "\tAND r9, r12, r7 \n" /* r9 = br masked by r12 (0xff00ff) */
- "\tRSB r11, r11, #256 \n" /* subtracting the alpha from 255 -> r11 = scale */
- "\tAND r10, r12, r7, LSR #8 \n" /* r10 = ag masked by r12 (0xff00ff) */
- "\tMUL r9, r9, r11 \n" /* br = br * scale */
- "\tAND r9, r12, r9, LSR #8 \n" /* lsr br by 8 and mask it */
- "\tMUL r10, r10, r11 \n" /* ag = ag * scale */
- "\tAND r10, r10, r12, LSL #8 \n" /* mask ag with reverse mask */
- "\tORR r7, r9, r10 \n" /* br | ag */
- "\tADD r7, r3, r7 \n" /* dst = src + calc dest(r8) */
-
- "\tSTR r7, [%[dst]], #4 \n" /* *dst = r7; dst++ */
-
- "\tCMP %[src], r2 \n" /* if our current [src] array pointer > final marker */
- "\tBEQ 9f \n" /* goto EXIT */
-
- /* TAIL PROCESSING BLOCK 2 */
-
- "\tLDR r3, [%[src]], #4 \n" /* see TAIL PROCESSING BLOCK 1 */
- "\tLDR r7, [%[dst]] \n"
-
- "\tLSR r11, r3, #24 \n"
- "\tAND r9, r12, r7 \n"
- "\tRSB r11, r11, #256 \n"
- "\tAND r10, r12, r7, LSR #8 \n"
- "\tMUL r9, r9, r11 \n"
- "\tAND r9, r12, r9, LSR #8 \n"
- "\tMUL r10, r10, r11 \n"
- "\tAND r10, r10, r12, LSL #8 \n"
- "\tORR r7, r9, r10 \n"
- "\tADD r7, r3, r7 \n"
-
- "\tSTR r7, [%[dst]], #4 \n"
-
- "\tCMP %[src], r2 \n"
- "\tBEQ 9f \n"
-
- /* TAIL PROCESSING BLOCK 3 */
-
- "\tLDR r3, [%[src]], #4 \n" /* see TAIL PROCESSING BLOCK 1 */
- "\tLDR r7, [%[dst]] \n"
-
- "\tLSR r11, r3, #24 \n"
- "\tAND r9, r12, r7 \n"
- "\tRSB r11, r11, #256 \n"
- "\tAND r10, r12, r7, LSR #8 \n"
- "\tMUL r9, r9, r11 \n"
- "\tAND r9, r12, r9, LSR #8 \n"
- "\tMUL r10, r10, r11 \n"
- "\tAND r10, r10, r12, LSL #8 \n"
- "\tORR r7, r9, r10 \n"
- "\tADD r7, r3, r7 \n"
-
- "\tSTR r7, [%[dst]], #4 \n"
-
- /* END OF TAIL BLOCK */
-
- "\t9: \n" /* EXIT */
-
- "\tLDMIA r13!, {r4-r12, r14} \n" /* restoring r4-r12, lr from stack */
- "\tBX lr \n" /* return */
-
- : [dst] "+r" (dst), [src] "+r" (src)
- :
- : "cc", "r2", "r3", "memory"
-
- );
-
-}
#endif // USE_ARM_CODE
/*
@@ -666,21 +366,7 @@ const SkBlitRow::Proc sk_blitrow_platform_4444_procs_arm[] = {
const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm[] = {
NULL, // S32_Opaque,
NULL, // S32_Blend,
- /*
- * We have two choices for S32A_Opaque procs. The one reads the src alpha
- * value and attempts to optimize accordingly. The optimization is
- * sensitive to the source content and is not a win in all cases. For
- * example, if there are a lot of transitions between the alpha states,
- * the performance will almost certainly be worse. However, for many
- * common cases the performance is equivalent or better than the standard
- * case where we do not inspect the src alpha.
- */
-#if SK_A32_SHIFT == 24
- // This proc assumes the alpha value occupies bits 24-32 of each SkPMColor
- S32A_Opaque_BlitRow32_arm_src_alpha, // S32A_Opaque,
-#else
S32A_Opaque_BlitRow32_arm, // S32A_Opaque,
-#endif
S32A_Blend_BlitRow32_arm // S32A_Blend
};
#endif
diff --git a/src/opts/SkBlitRow_opts_arm_neon.cpp b/src/opts/SkBlitRow_opts_arm_neon.cpp
index 686c8e0476..14d59682e1 100644
--- a/src/opts/SkBlitRow_opts_arm_neon.cpp
+++ b/src/opts/SkBlitRow_opts_arm_neon.cpp
@@ -517,176 +517,6 @@ void S32A_Opaque_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
}
}
-void S32A_Opaque_BlitRow32_neon_src_alpha(SkPMColor* SK_RESTRICT dst,
- const SkPMColor* SK_RESTRICT src,
- int count, U8CPU alpha) {
- SkASSERT(255 == alpha);
-
- if (count <= 0)
- return;
-
- /* Use these to check if src is transparent or opaque */
- const unsigned int ALPHA_OPAQ = 0xFF000000;
- const unsigned int ALPHA_TRANS = 0x00FFFFFF;
-
-#define UNROLL 4
- const SkPMColor* SK_RESTRICT src_end = src + count - (UNROLL + 1);
- const SkPMColor* SK_RESTRICT src_temp = src;
-
- /* set up the NEON variables */
- uint8x8_t alpha_mask;
- static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7};
- alpha_mask = vld1_u8(alpha_mask_setup);
-
- uint8x8_t src_raw, dst_raw, dst_final;
- uint8x8_t src_raw_2, dst_raw_2, dst_final_2;
- uint8x8_t dst_cooked;
- uint16x8_t dst_wide;
- uint8x8_t alpha_narrow;
- uint16x8_t alpha_wide;
-
- /* choose the first processing type */
- if( src >= src_end)
- goto TAIL;
- if(*src <= ALPHA_TRANS)
- goto ALPHA_0;
- if(*src >= ALPHA_OPAQ)
- goto ALPHA_255;
- /* fall-thru */
-
-ALPHA_1_TO_254:
- do {
-
- /* get the source */
- src_raw = vreinterpret_u8_u32(vld1_u32(src));
- src_raw_2 = vreinterpret_u8_u32(vld1_u32(src+2));
-
- /* get and hold the dst too */
- dst_raw = vreinterpret_u8_u32(vld1_u32(dst));
- dst_raw_2 = vreinterpret_u8_u32(vld1_u32(dst+2));
-
-
- /* get the alphas spread out properly */
- alpha_narrow = vtbl1_u8(src_raw, alpha_mask);
- /* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
- /* we collapsed (255-a)+1 ... */
- alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
-
- /* spread the dest */
- dst_wide = vmovl_u8(dst_raw);
-
- /* alpha mul the dest */
- dst_wide = vmulq_u16 (dst_wide, alpha_wide);
- dst_cooked = vshrn_n_u16(dst_wide, 8);
-
- /* sum -- ignoring any byte lane overflows */
- dst_final = vadd_u8(src_raw, dst_cooked);
-
- alpha_narrow = vtbl1_u8(src_raw_2, alpha_mask);
- /* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
- /* we collapsed (255-a)+1 ... */
- alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
-
- /* spread the dest */
- dst_wide = vmovl_u8(dst_raw_2);
-
- /* alpha mul the dest */
- dst_wide = vmulq_u16 (dst_wide, alpha_wide);
- dst_cooked = vshrn_n_u16(dst_wide, 8);
-
- /* sum -- ignoring any byte lane overflows */
- dst_final_2 = vadd_u8(src_raw_2, dst_cooked);
-
- vst1_u32(dst, vreinterpret_u32_u8(dst_final));
- vst1_u32(dst+2, vreinterpret_u32_u8(dst_final_2));
-
- src += UNROLL;
- dst += UNROLL;
-
- /* if 2 of the next pixels aren't between 1 and 254
- it might make sense to go to the optimized loops */
- if((src[0] <= ALPHA_TRANS && src[1] <= ALPHA_TRANS) || (src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ))
- break;
-
- } while(src < src_end);
-
- if (src >= src_end)
- goto TAIL;
-
- if(src[0] >= ALPHA_OPAQ && src[1] >= ALPHA_OPAQ)
- goto ALPHA_255;
-
- /*fall-thru*/
-
-ALPHA_0:
-
- /*In this state, we know the current alpha is 0 and
- we optimize for the next alpha also being zero. */
- src_temp = src; //so we don't have to increment dst every time
- do {
- if(*(++src) > ALPHA_TRANS)
- break;
- if(*(++src) > ALPHA_TRANS)
- break;
- if(*(++src) > ALPHA_TRANS)
- break;
- if(*(++src) > ALPHA_TRANS)
- break;
- } while(src < src_end);
-
- dst += (src - src_temp);
-
- /* no longer alpha 0, so determine where to go next. */
- if( src >= src_end)
- goto TAIL;
- if(*src >= ALPHA_OPAQ)
- goto ALPHA_255;
- else
- goto ALPHA_1_TO_254;
-
-ALPHA_255:
- while((src[0] & src[1] & src[2] & src[3]) >= ALPHA_OPAQ) {
- dst[0]=src[0];
- dst[1]=src[1];
- dst[2]=src[2];
- dst[3]=src[3];
- src+=UNROLL;
- dst+=UNROLL;
- if(src >= src_end)
- goto TAIL;
- }
-
- //Handle remainder.
- if(*src >= ALPHA_OPAQ) { *dst++ = *src++;
- if(*src >= ALPHA_OPAQ) { *dst++ = *src++;
- if(*src >= ALPHA_OPAQ) { *dst++ = *src++; }
- }
- }
-
- if( src >= src_end)
- goto TAIL;
- if(*src <= ALPHA_TRANS)
- goto ALPHA_0;
- else
- goto ALPHA_1_TO_254;
-
-TAIL:
- /* do any residual iterations */
- src_end += UNROLL + 1; //goto the real end
- while(src != src_end) {
- if( *src != 0 ) {
- if( *src >= ALPHA_OPAQ ) {
- *dst = *src;
- }
- else {
- *dst = SkPMSrcOver(*src, *dst);
- }
- }
- src++;
- dst++;
- }
- return;
-}
/* Neon version of S32_Blend_BlitRow32()
* portable version is in src/core/SkBlitRow_D32.cpp
@@ -1277,20 +1107,6 @@ const SkBlitRow::Proc sk_blitrow_platform_4444_procs_arm_neon[] = {
const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm_neon[] = {
NULL, // S32_Opaque,
S32_Blend_BlitRow32_neon, // S32_Blend,
- /*
- * We have two choices for S32A_Opaque procs. The one reads the src alpha
- * value and attempts to optimize accordingly. The optimization is
- * sensitive to the source content and is not a win in all cases. For
- * example, if there are a lot of transitions between the alpha states,
- * the performance will almost certainly be worse. However, for many
- * common cases the performance is equivalent or better than the standard
- * case where we do not inspect the src alpha.
- */
-#if SK_A32_SHIFT == 24
- // This proc assumes the alpha value occupies bits 24-32 of each SkPMColor
- S32A_Opaque_BlitRow32_neon_src_alpha, // S32A_Opaque,
-#else
- S32A_Opaque_BlitRow32_neon, // S32A_Opaque,
-#endif
+ S32A_Opaque_BlitRow32_neon, // S32A_Opaque,
S32A_Blend_BlitRow32_arm // S32A_Blend
};