aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar krajcevski <krajcevski@google.com>2014-07-21 11:44:37 -0700
committerGravatar Commit bot <commit-bot@chromium.org>2014-07-21 11:44:37 -0700
commitad1df153a16b7723d2d4afd13627919fc3ee87ce (patch)
treea1e9b82484e704e1d9a61e119c3337b296e28e58
parent518d83dbc1c899e316e8c896af5defb58b83120f (diff)
First pass at a blitter for R11 EAC alpha masks. This shaves 10ms off
of the polygon gpu benchmark on the Nexus 7v2 (which is about 6.7% faster). R=robertphillips@google.com Author: krajcevski@google.com Review URL: https://codereview.chromium.org/406693002
-rw-r--r--src/utils/SkTextureCompressor.cpp309
-rw-r--r--src/utils/SkTextureCompressor.h162
2 files changed, 471 insertions, 0 deletions
diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp
index 2b33a13469..a593b36880 100644
--- a/src/utils/SkTextureCompressor.cpp
+++ b/src/utils/SkTextureCompressor.cpp
@@ -732,6 +732,69 @@ static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
}
#endif // COMPRESS_R11_EAC_FASTEST
+// The R11 EAC format expects that indices are given in column-major order. Since
+// we receive alpha values in raster order, this usually means that we have to use
+// pack6 above to properly pack our indices. However, if our indices come from the
+// blitter, then each integer will be a column of indices, and hence can be efficiently
+// packed. This function takes the bottom three bits of each byte and places them in
+// the least significant 12 bits of the resulting integer.
+static inline uint32_t pack_indices_vertical(uint32_t x) {
+#if defined (SK_CPU_BENDIAN)
+ return
+ (x & 7) |
+ ((x >> 5) & (7 << 3)) |
+ ((x >> 10) & (7 << 6)) |
+ ((x >> 15) & (7 << 9));
+#else
+ return
+ ((x >> 24) & 7) |
+ ((x >> 13) & (7 << 3)) |
+ ((x >> 2) & (7 << 6)) |
+ ((x << 9) & (7 << 9));
+#endif
+}
+
+// This function returns the compressed format of a block given as four columns of
+// alpha values. Each column is assumed to be loaded from top to bottom, and hence
+// must first be converted to indices and then packed into the resulting 64-bit
+// integer.
+static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0,
+ const uint32_t alphaColumn1,
+ const uint32_t alphaColumn2,
+ const uint32_t alphaColumn3) {
+
+ if (alphaColumn0 == alphaColumn1 &&
+ alphaColumn2 == alphaColumn3 &&
+ alphaColumn0 == alphaColumn2) {
+
+ if (0 == alphaColumn0) {
+ // Transparent
+ return 0x0020000000002000ULL;
+ }
+ else if (0xFFFFFFFF == alphaColumn0) {
+ // Opaque
+ return 0xFFFFFFFFFFFFFFFFULL;
+ }
+ }
+
+ const uint32_t indexColumn0 = convert_indices(alphaColumn0);
+ const uint32_t indexColumn1 = convert_indices(alphaColumn1);
+ const uint32_t indexColumn2 = convert_indices(alphaColumn2);
+ const uint32_t indexColumn3 = convert_indices(alphaColumn3);
+
+ const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
+ const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
+ const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
+ const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
+
+ return SkEndian_SwapBE64(0x8490000000000000ULL |
+ (static_cast<uint64_t>(packedIndexColumn0) << 36) |
+ (static_cast<uint64_t>(packedIndexColumn1) << 24) |
+ static_cast<uint64_t>(packedIndexColumn2 << 12) |
+ static_cast<uint64_t>(packedIndexColumn3));
+
+}
+
static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
@@ -743,6 +806,35 @@ static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src,
#endif
}
+// Updates the block whose columns are stored in blockColN. curAlphai is expected
+// to store, as an integer, the four alpha values that will be placed within each
+// of the columns in the range [col, col+colsLeft).
+static inline void update_block_columns(
+ uint32_t* blockCol1, uint32_t* blockCol2, uint32_t* blockCol3, uint32_t* blockCol4,
+ const int col, const int colsLeft, const uint32_t curAlphai) {
+ SkASSERT(NULL != blockCol1);
+ SkASSERT(NULL != blockCol2);
+ SkASSERT(NULL != blockCol3);
+ SkASSERT(NULL != blockCol4);
+ SkASSERT(col + colsLeft <= 4);
+ for (int i = col; i < (col + colsLeft); ++i) {
+ switch(i) {
+ case 0:
+ *blockCol1 = curAlphai;
+ break;
+ case 1:
+ *blockCol2 = curAlphai;
+ break;
+ case 2:
+ *blockCol3 = curAlphai;
+ break;
+ case 3:
+ *blockCol4 = curAlphai;
+ break;
+ }
+ }
+}
+
////////////////////////////////////////////////////////////////////////////////
namespace SkTextureCompressor {
@@ -820,4 +912,221 @@ SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) {
return NULL;
}
+R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer)
+ // 0x7FFE is one minus the largest positive 16-bit int. We use it for
+ // debugging to make sure that we're properly setting the nextX distance
+ // in flushRuns().
+ : kLongestRun(0x7FFE), kZeroAlpha(0)
+ , fNextRun(0)
+ , fWidth(width)
+ , fHeight(height)
+ , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer))
+{
+ SkASSERT((width % kR11_EACBlockSz) == 0);
+ SkASSERT((height % kR11_EACBlockSz) == 0);
+}
+
+void R11_EACBlitter::blitAntiH(int x, int y,
+ const SkAlpha* antialias,
+ const int16_t* runs) {
+ // Make sure that the new row to blit is either the first
+ // row that we're blitting, or it's exactly the next scan row
+ // since the last row that we blit. This is to ensure that when
+ // we go to flush the runs, that they are all the same four
+ // runs.
+ if (fNextRun > 0 &&
+ ((x != fBufferedRuns[fNextRun-1].fX) ||
+ (y-1 != fBufferedRuns[fNextRun-1].fY))) {
+ this->flushRuns();
+ }
+
+ // Align the rows to a block boundary. If we receive rows that
+ // are not on a block boundary, then fill in the preceding runs
+ // with zeros. We do this by producing a single RLE that says
+ // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
+ const int row = y & ~3;
+ while ((row + fNextRun) < y) {
+ fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
+ fBufferedRuns[fNextRun].fRuns = &kLongestRun;
+ fBufferedRuns[fNextRun].fX = 0;
+ fBufferedRuns[fNextRun].fY = row + fNextRun;
+ ++fNextRun;
+ }
+
+ // Make sure that our assumptions aren't violated...
+ SkASSERT(fNextRun == (y & 3));
+ SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
+
+ // Set the values of the next run
+ fBufferedRuns[fNextRun].fAlphas = antialias;
+ fBufferedRuns[fNextRun].fRuns = runs;
+ fBufferedRuns[fNextRun].fX = x;
+ fBufferedRuns[fNextRun].fY = y;
+
+ // If we've output four scanlines in a row that don't violate our
+ // assumptions, then it's time to flush them...
+ if (4 == ++fNextRun) {
+ this->flushRuns();
+ }
+}
+
+void R11_EACBlitter::flushRuns() {
+
+ // If we don't have any runs, then just return.
+ if (0 == fNextRun) {
+ return;
+ }
+
+#ifndef NDEBUG
+ // Make sure that if we have any runs, they all match
+ for (int i = 1; i < fNextRun; ++i) {
+ SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
+ SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
+ }
+#endif
+
+ // If we dont have as many runs as we have rows, fill in the remaining
+ // runs with constant zeros.
+ for (int i = fNextRun; i < kR11_EACBlockSz; ++i) {
+ fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
+ fBufferedRuns[i].fX = fBufferedRuns[0].fX;
+ fBufferedRuns[i].fAlphas = &kZeroAlpha;
+ fBufferedRuns[i].fRuns = &kLongestRun;
+ }
+
+ // Make sure that our assumptions aren't violated.
+ SkASSERT(fNextRun > 0 && fNextRun <= 4);
+ SkASSERT((fBufferedRuns[0].fY & 3) == 0);
+
+ // The following logic walks four rows at a time and outputs compressed
+ // blocks to the buffer passed into the constructor.
+ // We do the following:
+ //
+ // c1 c2 c3 c4
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[0]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[1]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[2]
+ // -----------------------------------------------------------------------
+ // ... | | | | | ----> fBufferedRuns[3]
+ // -----------------------------------------------------------------------
+ //
+ // curX -- the macro X value that we've gotten to.
+ // c1, c2, c3, c4 -- the integers that represent the columns of the current block
+ // that we're operating on
+ // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns.
+ // nextX -- for each run, the next point at which we need to update curAlphaColumn
+ // after the value of curX.
+ // finalX -- the minimum of all the nextX values.
+ //
+ // curX advances to finalX outputting any blocks that it passes along
+ // the way. Since finalX will not change when we reach the end of a
+ // run, the termination criteria will be whenever curX == finalX at the
+ // end of a loop.
+
+ // Setup:
+ uint32_t c1 = 0;
+ uint32_t c2 = 0;
+ uint32_t c3 = 0;
+ uint32_t c4 = 0;
+
+ uint32_t curAlphaColumn = 0;
+ SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
+
+ int nextX[kR11_EACBlockSz];
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ nextX[i] = 0x7FFFFF;
+ }
+
+ uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
+
+ // Populate the first set of runs and figure out how far we need to
+ // advance on the first step
+ int curX = 0;
+ int finalX = 0xFFFFF;
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ nextX[i] = *(fBufferedRuns[i].fRuns);
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+
+ finalX = SkMin32(nextX[i], finalX);
+ }
+
+ // Make sure that we have a valid right-bound X value
+ SkASSERT(finalX < 0xFFFFF);
+
+ // Run the blitter...
+ while (curX != finalX) {
+ SkASSERT(finalX >= curX);
+
+ // Do we need to populate the rest of the block?
+ if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) {
+ const int col = curX & 3;
+ const int colsLeft = 4 - col;
+ SkASSERT(curX + colsLeft <= finalX);
+
+ update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn);
+
+ // Write this block
+ *outPtr = compress_block_vertical(c1, c2, c3, c4);
+ ++outPtr;
+ curX += colsLeft;
+ }
+
+ // If we can advance even further, then just keep memsetting the block
+ if ((finalX - curX) >= kR11_EACBlockSz) {
+ SkASSERT((curX & 3) == 0);
+
+ const int col = 0;
+ const int colsLeft = kR11_EACBlockSz;
+
+ update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn);
+
+ // While we can keep advancing, just keep writing the block.
+ uint64_t lastBlock = compress_block_vertical(c1, c2, c3, c4);
+ while((finalX - curX) >= kR11_EACBlockSz) {
+ *outPtr = lastBlock;
+ ++outPtr;
+ curX += kR11_EACBlockSz;
+ }
+ }
+
+ // If we haven't advanced within the block then do so.
+ if (curX < finalX) {
+ const int col = curX & 3;
+ const int colsLeft = finalX - curX;
+
+ update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn);
+
+ curX += colsLeft;
+ }
+
+ SkASSERT(curX == finalX);
+
+ // Figure out what the next advancement is...
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ if (nextX[i] == finalX) {
+ const int16_t run = *(fBufferedRuns[i].fRuns);
+ fBufferedRuns[i].fRuns += run;
+ fBufferedRuns[i].fAlphas += run;
+ curAlpha[i] = *(fBufferedRuns[i].fAlphas);
+ nextX[i] += *(fBufferedRuns[i].fRuns);
+ }
+ }
+
+ finalX = 0xFFFFF;
+ for (int i = 0; i < kR11_EACBlockSz; ++i) {
+ finalX = SkMin32(nextX[i], finalX);
+ }
+ }
+
+ // If we didn't land on a block boundary, output the block...
+ if ((curX & 3) > 1) {
+ *outPtr = compress_block_vertical(c1, c2, c3, c4);
+ }
+
+ fNextRun = 0;
+}
+
} // namespace SkTextureCompressor
diff --git a/src/utils/SkTextureCompressor.h b/src/utils/SkTextureCompressor.h
index ec6153ace9..ea57934c64 100644
--- a/src/utils/SkTextureCompressor.h
+++ b/src/utils/SkTextureCompressor.h
@@ -9,6 +9,7 @@
#define SkTextureCompressor_DEFINED
#include "SkImageInfo.h"
+#include "SkBlitter.h"
class SkBitmap;
class SkData;
@@ -42,6 +43,167 @@ namespace SkTextureCompressor {
// allows SIMD optimized compression functions to be implemented.
typedef bool (*CompressionProc)(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes);
+
+ // This class implements a blitter that blits directly into a buffer that will
+ // be used as an R11 EAC compressed texture. We compute this buffer by
+ // buffering four scan lines and then outputting them all at once. This blitter
+ // is only expected to be used with alpha masks, i.e. kAlpha8_SkColorType.
+ class R11_EACBlitter : public SkBlitter {
+ public:
+ R11_EACBlitter(int width, int height, void *compressedBuffer);
+ virtual ~R11_EACBlitter() { this->flushRuns(); }
+
+ // Blit a horizontal run of one or more pixels.
+ virtual void blitH(int x, int y, int width) SK_OVERRIDE {
+ // This function is intended to be called from any standard RGB
+ // buffer, so we should never encounter it. However, if some code
+ // path does end up here, then this needs to be investigated.
+ SkFAIL("Not implemented!");
+ }
+
+ /// Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
+ /// zero-terminated run-length encoding of spans of constant alpha values.
+ virtual void blitAntiH(int x, int y,
+ const SkAlpha antialias[],
+ const int16_t runs[]) SK_OVERRIDE;
+
+ // Blit a vertical run of pixels with a constant alpha value.
+ virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented in one of two ways:
+ // 1. Buffer each vertical column value and then construct a list
+ // of alpha values and output all of the blocks at once. This only
+ // requires a write to the compressed buffer
+ // 2. Replace the indices of each block with the proper indices based
+ // on the alpha value. This requires a read and write of the compressed
+ // buffer, but much less overhead.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a solid rectangle one or more pixels wide.
+ virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
+ // Analogous to blitRow, this function is intended for RGB targets
+ // and should never be called by this blitter. Any calls to this function
+ // are probably a bug and should be investigated.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a rectangle with one alpha-blended column on the left,
+ // width (zero or more) opaque pixels, and one alpha-blended column
+ // on the right. The result will always be at least two pixels wide.
+ virtual void blitAntiRect(int x, int y, int width, int height,
+ SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented as follows:
+ // 1. If width/height are smaller than a block, then update the
+ // indices of the affected blocks.
+ // 2. If width/height are larger than a block, then construct a 9-patch
+ // of block encodings that represent the rectangle, and write them
+ // to the compressed buffer as necessary. Whether or not the blocks
+ // are overwritten by zeros or just their indices are updated is up
+ // to debate.
+ SkFAIL("Not implemented!");
+ }
+
+ // Blit a pattern of pixels defined by a rectangle-clipped mask;
+ // typically used for text.
+ virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE {
+ // This function is currently not implemented. It is not explicitly
+ // required by the contract, but if at some time a code path runs into
+ // this function (which is entirely possible), it needs to be implemented.
+ //
+ // TODO (krajcevski):
+ // This function will be most easily implemented in the same way as
+ // blitAntiRect above.
+ SkFAIL("Not implemented!");
+ }
+
+ // If the blitter just sets a single value for each pixel, return the
+ // bitmap it draws into, and assign value. If not, return NULL and ignore
+ // the value parameter.
+ virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
+ return NULL;
+ }
+
+ /**
+ * Compressed texture blitters only really work correctly if they get
+ * four blocks at a time. That being said, this blitter tries it's best
+ * to preserve semantics if blitAntiH doesn't get called in too many
+ * weird ways...
+ */
+ virtual int requestRowsPreserved() const { return kR11_EACBlockSz; }
+
+ protected:
+ virtual void onNotifyFinished() { this->flushRuns(); }
+
+ private:
+ static const int kR11_EACBlockSz = 4;
+ static const int kPixelsPerBlock = kR11_EACBlockSz * kR11_EACBlockSz;
+
+ // The longest possible run of pixels that this blitter will receive.
+ // This is initialized in the constructor to 0x7FFE, which is one less
+ // than the largest positive 16-bit integer. We make sure that it's one
+ // less for debugging purposes. We also don't make this variable static
+ // in order to make sure that we can construct a valid pointer to it.
+ const int16_t kLongestRun;
+
+ // Usually used in conjunction with kLongestRun. This is initialized to
+ // zero.
+ const SkAlpha kZeroAlpha;
+
+ // This is the information that we buffer whenever we're asked to blit
+ // a row with this blitter.
+ struct BufferedRun {
+ const SkAlpha* fAlphas;
+ const int16_t* fRuns;
+ int fX, fY;
+ } fBufferedRuns[kR11_EACBlockSz];
+
+ // The next row (0-3) that we need to blit. This value should never exceed
+ // the number of rows that we have (kR11_EACBlockSz)
+ int fNextRun;
+
+ // The width and height of the image that we're blitting
+ const int fWidth;
+ const int fHeight;
+
+ // The R11 EAC buffer that we're blitting into. It is assumed that the buffer
+ // is large enough to store a compressed image of size fWidth*fHeight.
+ uint64_t* const fBuffer;
+
+ // Various utility functions
+ int blocksWide() const { return fWidth / kR11_EACBlockSz; }
+ int blocksTall() const { return fHeight / kR11_EACBlockSz; }
+ int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
+
+ // Returns the block index for the block containing pixel (x, y). Block
+ // indices start at zero and proceed in raster order.
+ int getBlockOffset(int x, int y) const {
+ SkASSERT(x < fWidth);
+ SkASSERT(y < fHeight);
+ const int blockCol = x / kR11_EACBlockSz;
+ const int blockRow = y / kR11_EACBlockSz;
+ return blockRow * this->blocksWide() + blockCol;
+ }
+
+ // Returns a pointer to the block containing pixel (x, y)
+ uint64_t *getBlock(int x, int y) const {
+ return fBuffer + this->getBlockOffset(x, y);
+ }
+
+ // The following function writes the buffered runs to compressed blocks.
+ // If fNextRun < 4, then we fill the runs that we haven't buffered with
+ // the constant zero buffer.
+ void flushRuns();
+ };
}
#endif