aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar Greg Daniel <egdaniel@google.com>2018-05-25 11:02:16 -0400
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2018-05-25 15:24:42 +0000
commit26c0e4c1f54759249c2d61b50fb5430bd73793f2 (patch)
tree42dee870d6db76cc4a532f77914bfbf837918be1
parente7e6e22912cec1bd59348fd3889c7d8ae7b6bdc4 (diff)
Create API for GrVkMemoryAllocator and impliment use of AMD VulkanMemoryAllocator on this API.
Bug: skia: Change-Id: I1e122e1b11ab308c2f83cb98c36c81511f4507d0 Reviewed-on: https://skia-review.googlesource.com/129980 Commit-Queue: Greg Daniel <egdaniel@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com> Reviewed-by: Jim Van Verth <jvanverth@google.com>
-rw-r--r--BUILD.gn1
-rw-r--r--gn/gn_to_bp.py4
-rw-r--r--gn/gpu.gni3
-rw-r--r--include/gpu/vk/GrVkDefines.h76
-rw-r--r--include/gpu/vk/GrVkMemoryAllocator.h89
-rw-r--r--include/gpu/vk/GrVkTypes.h15
-rw-r--r--src/gpu/vk/GrVkAMDMemoryAllocator.cpp267
-rw-r--r--src/gpu/vk/GrVkAMDMemoryAllocator.h56
-rw-r--r--third_party/vulkanmemoryallocator/BUILD.gn26
-rw-r--r--third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp16
-rw-r--r--third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h18
-rw-r--r--third_party/vulkanmemoryallocator/include/LICENSE.txt19
-rw-r--r--third_party/vulkanmemoryallocator/include/vk_mem_alloc.h9363
13 files changed, 9949 insertions, 4 deletions
diff --git a/BUILD.gn b/BUILD.gn
index 8ccad68fdd..dd509c26d9 100644
--- a/BUILD.gn
+++ b/BUILD.gn
@@ -616,6 +616,7 @@ optional("gpu") {
# they want. For example this would allow us to remove the fuchsia specific vulkan code in our
# vulkan files.
public_deps += [ "third_party/vulkan" ]
+ deps += [ "third_party/vulkanmemoryallocator" ]
sources += skia_vk_sources
if (skia_enable_vulkan_debug_layers) {
public_defines += [ "SK_ENABLE_VK_LAYERS" ]
diff --git a/gn/gn_to_bp.py b/gn/gn_to_bp.py
index 8ad221c93a..b274c446cb 100644
--- a/gn/gn_to_bp.py
+++ b/gn/gn_to_bp.py
@@ -251,6 +251,10 @@ srcs .add("third_party/skcms/skcms.c")
local_includes.add("third_party/skcms")
dm_includes .add("third_party/skcms")
+# need to manually include the vulkanmemoryallocator headers. If HWUI ever needs
+# direct access to the allocator we need to add it to export_includes as well.
+local_includes.add("third_party/vulkanmemoryallocator/")
+
# No need to list headers.
srcs = {s for s in srcs if not s.endswith('.h')}
dm_srcs = {s for s in dm_srcs if not s.endswith('.h')}
diff --git a/gn/gpu.gni b/gn/gpu.gni
index d050df9ca9..85000a8bf4 100644
--- a/gn/gpu.gni
+++ b/gn/gpu.gni
@@ -535,8 +535,11 @@ skia_vk_sources = [
"$_include/gpu/vk/GrVkBackendContext.h",
"$_include/gpu/vk/GrVkDefines.h",
"$_include/gpu/vk/GrVkInterface.h",
+ "$_include/gpu/vk/GrVkMemoryAllocator.h",
"$_include/gpu/vk/GrVkTypes.h",
"$_include/private/GrVkTypesPriv.h",
+ "$_src/gpu/vk/GrVkAMDMemoryAllocator.cpp",
+ "$_src/gpu/vk/GrVkAMDMemoryAllocator.h",
"$_src/gpu/vk/GrVkBackendContext.cpp",
"$_src/gpu/vk/GrVkBuffer.cpp",
"$_src/gpu/vk/GrVkBuffer.h",
diff --git a/include/gpu/vk/GrVkDefines.h b/include/gpu/vk/GrVkDefines.h
index d17300a550..0fd405d55c 100644
--- a/include/gpu/vk/GrVkDefines.h
+++ b/include/gpu/vk/GrVkDefines.h
@@ -51,6 +51,82 @@
#error "Vulkan header version is too low"
#endif
+// The AMD VulkanMemoryAllocator needs the objects from this extension to be declared.
+#ifndef VK_KHR_get_memory_requirements2
+
+#define VK_KHR_get_memory_requirements2 1
+#define VK_KHR_GET_MEMORY_REQUIREMENTS_2_SPEC_VERSION 1
+#define VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME "VK_KHR_get_memory_requirements2"
+
+typedef struct VkBufferMemoryRequirementsInfo2KHR {
+ VkStructureType sType;
+ const void* pNext;
+ VkBuffer buffer;
+} VkBufferMemoryRequirementsInfo2KHR;
+
+typedef struct VkImageMemoryRequirementsInfo2KHR {
+ VkStructureType sType;
+ const void* pNext;
+ VkImage image;
+} VkImageMemoryRequirementsInfo2KHR;
+
+typedef struct VkImageSparseMemoryRequirementsInfo2KHR {
+ VkStructureType sType;
+ const void* pNext;
+ VkImage image;
+} VkImageSparseMemoryRequirementsInfo2KHR;
+
+typedef struct VkMemoryRequirements2KHR {
+ VkStructureType sType;
+ void* pNext;
+ VkMemoryRequirements memoryRequirements;
+} VkMemoryRequirements2KHR;
+
+typedef struct VkSparseImageMemoryRequirements2KHR {
+ VkStructureType sType;
+ void* pNext;
+ VkSparseImageMemoryRequirements memoryRequirements;
+} VkSparseImageMemoryRequirements2KHR;
+
+
+typedef void (VKAPI_PTR *PFN_vkGetImageMemoryRequirements2KHR)(VkDevice device, const VkImageMemoryRequirementsInfo2KHR* pInfo, VkMemoryRequirements2KHR* pMemoryRequirements);
+typedef void (VKAPI_PTR *PFN_vkGetBufferMemoryRequirements2KHR)(VkDevice device, const VkBufferMemoryRequirementsInfo2KHR* pInfo, VkMemoryRequirements2KHR* pMemoryRequirements);
+typedef void (VKAPI_PTR *PFN_vkGetImageSparseMemoryRequirements2KHR)(VkDevice device, const VkImageSparseMemoryRequirementsInfo2KHR* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements);
+
+static constexpr VkStructureType VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR = (VkStructureType) 1000146000;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR = (VkStructureType) 1000146001;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_IMAGE_SPARSE_MEMORY_REQUIREMENTS_INFO_2_KHR = (VkStructureType) 1000146002;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR = (VkStructureType) 1000146003;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_SPARSE_IMAGE_MEMORY_REQUIREMENTS_2_KHR = (VkStructureType) 1000146004;
+
+#endif // VK_KHR_get_memory_requirements2
+
+// Also needed for VulkanMemoryAllocator
+#ifndef VK_KHR_dedicated_allocation
+
+#define VK_KHR_dedicated_allocation 1
+#define VK_KHR_DEDICATED_ALLOCATION_SPEC_VERSION 3
+#define VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME "VK_KHR_dedicated_allocation"
+
+typedef struct VkMemoryDedicatedRequirementsKHR {
+ VkStructureType sType;
+ void* pNext;
+ VkBool32 prefersDedicatedAllocation;
+ VkBool32 requiresDedicatedAllocation;
+} VkMemoryDedicatedRequirementsKHR;
+
+typedef struct VkMemoryDedicatedAllocateInfoKHR {
+ VkStructureType sType;
+ const void* pNext;
+ VkImage image;
+ VkBuffer buffer;
+} VkMemoryDedicatedAllocateInfoKHR;
+
+static constexpr VkStructureType VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR = (VkStructureType) 1000127000;
+static constexpr VkStructureType VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR = (VkStructureType) 1000127001;
+
+#endif // VK_KHR_dedicated_allocation
+
#endif
#endif
diff --git a/include/gpu/vk/GrVkMemoryAllocator.h b/include/gpu/vk/GrVkMemoryAllocator.h
new file mode 100644
index 0000000000..0e73586c3b
--- /dev/null
+++ b/include/gpu/vk/GrVkMemoryAllocator.h
@@ -0,0 +1,89 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef GrVkMemoryAllocator_DEFINED
+#define GrVkMemoryAllocator_DEFINED
+
+#include "SkRefCnt.h"
+#include "GrTypes.h"
+#include "GrVkDefines.h"
+#include "GrVkTypes.h"
+
+class GrVkMemoryAllocator : public SkRefCnt {
+public:
+ enum class AllocationPropertyFlags {
+ kNone = 0,
+ // Allocation will be placed in its own VkDeviceMemory and not suballocated from some larger
+ // block.
+ kDedicatedAllocation = 0x1,
+ // Says that the backing memory can only be accessed by the device. Additionally the device
+ // may lazily allocate the memory. This cannot be used with buffers that will be host
+ // visible. Setting this flag does not guarantee that we will allocate memory that respects
+ // it, but we will try to prefer memory that can respect it.
+ kLazyAllocation = 0x2,
+ // The allocation will be mapped immediately and stay mapped until it is destroyed. This
+ // flag is only valid for buffers which are host visible (i.e. must have a usage other than
+ // BufferUsage::kGpuOnly).
+ kPersistentlyMapped = 0x3,
+ };
+
+ GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AllocationPropertyFlags);
+
+ enum class BufferUsage {
+ // Buffers that will only be accessed from the device (large const buffers). Will always be
+ // in device local memory.
+ kGpuOnly,
+ // Buffers that will be accessed on the host and copied to and from a GPU resource (transfer
+ // buffers). Will always be mappable and coherent memory.
+ kCpuOnly,
+ // Buffers that typically will be updated multiple times by the host and read on the gpu
+ // (e.g. uniform or vertex buffers). Will always be mappable memory, and will prefer to be
+ // in device local memory.
+ kCpuWritesGpuReads,
+ // Buffers which are typically writted to by the GPU and then read on the host. Will always
+ // be mappable memory, and will prefer coherent and cached memory.
+ kGpuWritesCpuReads,
+ };
+
+ virtual bool allocateMemoryForImage(VkImage image, AllocationPropertyFlags flags,
+ GrVkBackendMemory*) = 0;
+
+ virtual bool allocateMemoryForBuffer(VkBuffer buffer, BufferUsage usage,
+ AllocationPropertyFlags flags, GrVkBackendMemory*) = 0;
+
+ // Fills out the passed in GrVkAlloc struct for the passed in GrVkBackendMemory.
+ virtual void getAllocInfo(const GrVkBackendMemory&, GrVkAlloc*) const = 0;
+
+ // Maps the entire allocation and returns a pointer to the start of the allocation. The
+ // implementation may map more memory than just the allocation, but the returned pointer must
+ // point at the start of the memory for the requested allocation.
+ virtual void* mapMemory(const GrVkBackendMemory&) = 0;
+ virtual void unmapMemory(const GrVkBackendMemory&) = 0;
+
+ // The following two calls are used for managing non-coherent memory. The offset is relative to
+ // the start of the allocation and not the underlying VkDeviceMemory. Additionaly the client
+ // must make sure that the offset + size passed in is less that or equal to the allocation size.
+ // It is the responsibility of the implementation to make sure all alignment requirements are
+ // followed. The client should not have to deal with any sort of alignment issues.
+ virtual void flushMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+ VkDeviceSize size) = 0;
+ virtual void invalidateMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+ VkDeviceSize size)= 0;
+
+ virtual void freeMemory(const GrVkBackendMemory&) = 0;
+
+ // Returns the total amount of memory that is allocated and in use by an allocation for this
+ // allocator.
+ virtual uint64_t totalUsedMemory() const = 0;
+
+ // Returns the total amount of memory that is allocated by this allocator.
+ virtual uint64_t totalAllocatedMemory() const = 0;
+};
+
+GR_MAKE_BITFIELD_CLASS_OPS(GrVkMemoryAllocator::AllocationPropertyFlags);
+
+#endif
diff --git a/include/gpu/vk/GrVkTypes.h b/include/gpu/vk/GrVkTypes.h
index 0f7ff71d2e..2e31250324 100644
--- a/include/gpu/vk/GrVkTypes.h
+++ b/include/gpu/vk/GrVkTypes.h
@@ -26,6 +26,9 @@
///////////////////////////////////////////////////////////////////////////////
+
+typedef intptr_t GrVkBackendMemory;
+
/**
* Types for interacting with Vulkan resources created externally to Skia. GrBackendObjects for
* Vulkan textures are really const GrVkImageInfo*
@@ -36,6 +39,7 @@ struct GrVkAlloc {
, fOffset(0)
, fSize(0)
, fFlags(0)
+ , fBackendMemory(0)
, fUsesSystemHeap(false) {}
GrVkAlloc(VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size, uint32_t flags)
@@ -43,15 +47,18 @@ struct GrVkAlloc {
, fOffset(offset)
, fSize(size)
, fFlags(flags)
+ , fBackendMemory(0)
, fUsesSystemHeap(false) {}
- VkDeviceMemory fMemory; // can be VK_NULL_HANDLE iff is an RT and is borrowed
- VkDeviceSize fOffset;
- VkDeviceSize fSize; // this can be indeterminate iff Tex uses borrow semantics
- uint32_t fFlags;
+ VkDeviceMemory fMemory; // can be VK_NULL_HANDLE iff is an RT and is borrowed
+ VkDeviceSize fOffset;
+ VkDeviceSize fSize; // this can be indeterminate iff Tex uses borrow semantics
+ uint32_t fFlags;
+ GrVkBackendMemory fBackendMemory; // handle to memory allocated via GrVkMemoryAllocator.
enum Flag {
kNoncoherent_Flag = 0x1, // memory must be flushed to device after mapping
+ kMappable_Flag = 0x2, // memory is able to be mapped.
};
bool operator==(const GrVkAlloc& that) const {
diff --git a/src/gpu/vk/GrVkAMDMemoryAllocator.cpp b/src/gpu/vk/GrVkAMDMemoryAllocator.cpp
new file mode 100644
index 0000000000..0b838ece3a
--- /dev/null
+++ b/src/gpu/vk/GrVkAMDMemoryAllocator.cpp
@@ -0,0 +1,267 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "GrVkAMDMemoryAllocator.h"
+
+#include "vk/GrVkInterface.h"
+#include "GrVkUtil.h"
+
+GrVkAMDMemoryAllocator::GrVkAMDMemoryAllocator(VkPhysicalDevice physicalDevice,
+ VkDevice device,
+ sk_sp<const GrVkInterface> interface)
+ : fAllocator(VK_NULL_HANDLE)
+ , fInterface(std::move(interface))
+ , fDevice(device) {
+#define GR_COPY_FUNCTION(NAME) functions.vk##NAME = fInterface->fFunctions.f##NAME;
+
+ VmaVulkanFunctions functions;
+ GR_COPY_FUNCTION(GetPhysicalDeviceProperties);
+ GR_COPY_FUNCTION(GetPhysicalDeviceMemoryProperties);
+ GR_COPY_FUNCTION(AllocateMemory);
+ GR_COPY_FUNCTION(FreeMemory);
+ GR_COPY_FUNCTION(MapMemory);
+ GR_COPY_FUNCTION(UnmapMemory);
+ GR_COPY_FUNCTION(BindBufferMemory);
+ GR_COPY_FUNCTION(BindImageMemory);
+ GR_COPY_FUNCTION(GetBufferMemoryRequirements);
+ GR_COPY_FUNCTION(GetImageMemoryRequirements);
+ GR_COPY_FUNCTION(CreateBuffer);
+ GR_COPY_FUNCTION(DestroyBuffer);
+ GR_COPY_FUNCTION(CreateImage);
+ GR_COPY_FUNCTION(DestroyImage);
+
+ // Skia current doesn't support VK_KHR_dedicated_allocation
+ functions.vkGetBufferMemoryRequirements2KHR = nullptr;
+ functions.vkGetImageMemoryRequirements2KHR = nullptr;
+
+ VmaAllocatorCreateInfo info;
+ info.flags = 0;
+ info.physicalDevice = physicalDevice;
+ info.device = device;
+ info.preferredLargeHeapBlockSize = 0;
+ info.pAllocationCallbacks = nullptr;
+ info.pDeviceMemoryCallbacks = nullptr;
+ info.frameInUseCount = 0;
+ info.pHeapSizeLimit = nullptr;
+ info.pVulkanFunctions = &functions;
+
+ vmaCreateAllocator(&info, &fAllocator);
+}
+
+GrVkAMDMemoryAllocator::~GrVkAMDMemoryAllocator() {
+ vmaDestroyAllocator(fAllocator);
+ fAllocator = VK_NULL_HANDLE;
+}
+
+bool GrVkAMDMemoryAllocator::allocateMemoryForImage(VkImage image, AllocationPropertyFlags flags,
+ GrVkBackendMemory* backendMemory) {
+ VmaAllocationCreateInfo info;
+ info.flags = 0;
+ info.usage = VMA_MEMORY_USAGE_UNKNOWN;
+ info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ info.preferredFlags = 0;
+ info.memoryTypeBits = 0;
+ info.pool = VK_NULL_HANDLE;
+ info.pUserData = nullptr;
+
+ if (AllocationPropertyFlags::kDedicatedAllocation & flags) {
+ info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+ }
+
+ if (AllocationPropertyFlags::kLazyAllocation & flags) {
+ info.preferredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
+ }
+
+ VmaAllocation allocation;
+ VkResult result = vmaAllocateMemoryForImage(fAllocator, image, &info, &allocation, nullptr);
+ if (VK_SUCCESS != result) {
+ return false;
+ }
+ *backendMemory = (GrVkBackendMemory)allocation;
+ return true;
+}
+
+bool GrVkAMDMemoryAllocator::allocateMemoryForBuffer(VkBuffer buffer, BufferUsage usage,
+ AllocationPropertyFlags flags,
+ GrVkBackendMemory* backendMemory) {
+ VmaAllocationCreateInfo info;
+ info.flags = 0;
+ info.usage = VMA_MEMORY_USAGE_UNKNOWN;
+ info.memoryTypeBits = 0;
+ info.pool = VK_NULL_HANDLE;
+ info.pUserData = nullptr;
+
+ switch (usage) {
+ case BufferUsage::kGpuOnly:
+ info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ info.preferredFlags = 0;
+ break;
+ case BufferUsage::kCpuOnly:
+ info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+ VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+ info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+ break;
+ case BufferUsage::kCpuWritesGpuReads:
+ // First attempt to try memory is also device local
+ info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
+ VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+ break;
+ case BufferUsage::kGpuWritesCpuReads:
+ info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ info.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
+ VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+ break;
+ }
+
+ if (AllocationPropertyFlags::kDedicatedAllocation & flags) {
+ info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+ }
+
+ if ((AllocationPropertyFlags::kLazyAllocation & flags) && BufferUsage::kGpuOnly == usage) {
+ info.preferredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
+ }
+
+ if ((AllocationPropertyFlags::kPersistentlyMapped & flags) && BufferUsage::kGpuOnly != usage) {
+ info.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
+ }
+
+ VmaAllocation allocation;
+ VkResult result = vmaAllocateMemoryForBuffer(fAllocator, buffer, &info, &allocation, nullptr);
+ if (VK_SUCCESS != result) {
+ if (usage == BufferUsage::kCpuWritesGpuReads) {
+ // We try again but this time drop the requirement for device local
+ info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ result = vmaAllocateMemoryForBuffer(fAllocator, buffer, &info, &allocation, nullptr);
+ }
+ }
+ if (VK_SUCCESS != result) {
+ return false;
+ }
+ *backendMemory = (GrVkBackendMemory)allocation;
+ return true;
+}
+
+void GrVkAMDMemoryAllocator::freeMemory(const GrVkBackendMemory& memoryHandle) {
+ const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+ vmaFreeMemory(fAllocator, allocation);
+}
+
+void GrVkAMDMemoryAllocator::getAllocInfo(const GrVkBackendMemory& memoryHandle,
+ GrVkAlloc* alloc) const {
+ const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+ VmaAllocationInfo vmaInfo;
+ vmaGetAllocationInfo(fAllocator, allocation, &vmaInfo);
+
+ VkMemoryPropertyFlags memFlags;
+ vmaGetMemoryTypeProperties(fAllocator, vmaInfo.memoryType, &memFlags);
+
+ uint32_t flags = 0;
+ if (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT & memFlags) {
+ flags |= GrVkAlloc::kMappable_Flag;
+ }
+ if (!SkToBool(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT & memFlags)) {
+ flags |= GrVkAlloc::kNoncoherent_Flag;
+ }
+
+ alloc->fMemory = vmaInfo.deviceMemory;
+ alloc->fOffset = vmaInfo.offset;
+ alloc->fSize = vmaInfo.size;
+ alloc->fFlags = flags;
+ alloc->fBackendMemory = memoryHandle;
+}
+
+void* GrVkAMDMemoryAllocator::mapMemory(const GrVkBackendMemory& memoryHandle) {
+ const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+ void* mapPtr;
+ vmaMapMemory(fAllocator, allocation, &mapPtr);
+ return mapPtr;
+}
+
+void GrVkAMDMemoryAllocator::unmapMemory(const GrVkBackendMemory& memoryHandle) {
+ const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
+ vmaUnmapMemory(fAllocator, allocation);
+}
+
+void GrVkAMDMemoryAllocator::flushMappedMemory(const GrVkBackendMemory& memoryHandle,
+ VkDeviceSize offset, VkDeviceSize size) {
+ GrVkAlloc info;
+ this->getAllocInfo(memoryHandle, &info);
+
+ if (GrVkAlloc::kNoncoherent_Flag & info.fFlags) {
+ // We need to store the nonCoherentAtomSize for non-coherent flush/invalidate alignment.
+ const VkPhysicalDeviceProperties* physDevProps;
+ vmaGetPhysicalDeviceProperties(fAllocator, &physDevProps);
+ VkDeviceSize alignment = physDevProps->limits.nonCoherentAtomSize;
+
+ offset = offset + info.fOffset;
+ VkDeviceSize offsetDiff = offset & (alignment -1);
+ offset = offset - offsetDiff;
+ size = (size + alignment - 1) & ~(alignment - 1);
+#ifdef SK_DEBUG
+ SkASSERT(offset >= info.fOffset);
+ SkASSERT(offset + size <= info.fOffset + info.fSize);
+ SkASSERT(0 == (offset & (alignment-1)));
+ SkASSERT(size > 0);
+ SkASSERT(0 == (size & (alignment-1)));
+#endif
+
+ VkMappedMemoryRange mappedMemoryRange;
+ memset(&mappedMemoryRange, 0, sizeof(VkMappedMemoryRange));
+ mappedMemoryRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
+ mappedMemoryRange.memory = info.fMemory;
+ mappedMemoryRange.offset = offset;
+ mappedMemoryRange.size = size;
+ GR_VK_CALL(fInterface, FlushMappedMemoryRanges(fDevice, 1, &mappedMemoryRange));
+ }
+}
+
+void GrVkAMDMemoryAllocator::invalidateMappedMemory(const GrVkBackendMemory& memoryHandle,
+ VkDeviceSize offset, VkDeviceSize size) {
+ GrVkAlloc info;
+ this->getAllocInfo(memoryHandle, &info);
+
+ if (GrVkAlloc::kNoncoherent_Flag & info.fFlags) {
+ // We need to store the nonCoherentAtomSize for non-coherent flush/invalidate alignment.
+ const VkPhysicalDeviceProperties* physDevProps;
+ vmaGetPhysicalDeviceProperties(fAllocator, &physDevProps);
+ VkDeviceSize alignment = physDevProps->limits.nonCoherentAtomSize;
+
+ offset = offset + info.fOffset;
+ VkDeviceSize offsetDiff = offset & (alignment -1);
+ offset = offset - offsetDiff;
+ size = (size + alignment - 1) & ~(alignment - 1);
+#ifdef SK_DEBUG
+ SkASSERT(offset >= info.fOffset);
+ SkASSERT(offset + size <= info.fOffset + info.fSize);
+ SkASSERT(0 == (offset & (alignment-1)));
+ SkASSERT(size > 0);
+ SkASSERT(0 == (size & (alignment-1)));
+#endif
+
+ VkMappedMemoryRange mappedMemoryRange;
+ memset(&mappedMemoryRange, 0, sizeof(VkMappedMemoryRange));
+ mappedMemoryRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
+ mappedMemoryRange.memory = info.fMemory;
+ mappedMemoryRange.offset = offset;
+ mappedMemoryRange.size = size;
+ GR_VK_CALL(fInterface, InvalidateMappedMemoryRanges(fDevice, 1, &mappedMemoryRange));
+ }
+}
+
+uint64_t GrVkAMDMemoryAllocator::totalUsedMemory() const {
+ VmaStats stats;
+ vmaCalculateStats(fAllocator, &stats);
+ return stats.total.usedBytes;
+}
+
+uint64_t GrVkAMDMemoryAllocator::totalAllocatedMemory() const {
+ VmaStats stats;
+ vmaCalculateStats(fAllocator, &stats);
+ return stats.total.usedBytes + stats.total.unusedBytes;
+}
+
diff --git a/src/gpu/vk/GrVkAMDMemoryAllocator.h b/src/gpu/vk/GrVkAMDMemoryAllocator.h
new file mode 100644
index 0000000000..297b0adaf7
--- /dev/null
+++ b/src/gpu/vk/GrVkAMDMemoryAllocator.h
@@ -0,0 +1,56 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef GrVkAMDMemoryAllocator_DEFINED
+#define GrVkAMDMemoryAllocator_DEFINED
+
+#include "vk/GrVkMemoryAllocator.h"
+
+#include "GrVulkanMemoryAllocator.h"
+
+struct GrVkInterface;
+
+class GrVkAMDMemoryAllocator : public GrVkMemoryAllocator {
+public:
+ GrVkAMDMemoryAllocator(VkPhysicalDevice physicalDevice, VkDevice device,
+ sk_sp<const GrVkInterface> interface);
+
+ ~GrVkAMDMemoryAllocator() override;
+
+ bool allocateMemoryForImage(VkImage image, AllocationPropertyFlags flags, GrVkBackendMemory*) override;
+
+ bool allocateMemoryForBuffer(VkBuffer buffer, BufferUsage usage,
+ AllocationPropertyFlags flags, GrVkBackendMemory*) override;
+
+ void freeMemory(const GrVkBackendMemory&) override;
+
+ void getAllocInfo(const GrVkBackendMemory&, GrVkAlloc*) const override;
+
+ void* mapMemory(const GrVkBackendMemory&) override;
+ void unmapMemory(const GrVkBackendMemory&) override;
+
+ void flushMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+ VkDeviceSize size) override;
+ void invalidateMappedMemory(const GrVkBackendMemory&, VkDeviceSize offset,
+ VkDeviceSize size) override;
+
+ uint64_t totalUsedMemory() const override;
+ uint64_t totalAllocatedMemory() const override;
+
+private:
+ VmaAllocator fAllocator;
+
+ // If a future version of the AMD allocator has helper functions for flushing and invalidating
+ // memory, then we won't need to save the GrVkInterface here since we won't need to make direct
+ // vulkan calls.
+ sk_sp<const GrVkInterface> fInterface;
+ VkDevice fDevice;
+
+ typedef GrVkMemoryAllocator INHERITED;
+};
+
+#endif
diff --git a/third_party/vulkanmemoryallocator/BUILD.gn b/third_party/vulkanmemoryallocator/BUILD.gn
new file mode 100644
index 0000000000..cf64e2b57e
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/BUILD.gn
@@ -0,0 +1,26 @@
+# Copyright 2018 Google Inc.
+#
+# Use of this source code is governed by a BSD-style license that can be
+# found in the LICENSE file.
+
+import("../third_party.gni")
+
+third_party("vulkanmemoryallocator") {
+ public_include_dirs = [ "./" ]
+ include_dirs = []
+ if (defined(is_skia_standalone) && is_skia_standalone && !is_official_build) {
+ include_dirs += [ "../../tools/gpu/vk" ]
+ include_dirs += [ "../../include/core" ]
+ include_dirs += [ "../../include/config" ]
+ }
+
+ # TODO: As described in the main skia BUILD.gn file we eventually want to move this to be
+ # //third_party/vulkan once clients have created their own //third_party/vulkan directory.
+ deps = [
+ "../vulkan",
+ ]
+ sources = [
+ "GrVulkanMemoryAllocator.cpp",
+ "GrVulkanMemoryAllocator.h",
+ ]
+}
diff --git a/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp
new file mode 100644
index 0000000000..58884630c5
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.cpp
@@ -0,0 +1,16 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+// Workaround to make sure we align non-coherent memory to nonCoherentAtomSize.
+#define VMA_DEBUG_ALIGNMENT 256
+
+// We use our own functions pointers
+#define VMA_STATIC_VULKAN_FUNCTIONS 0
+
+#define VMA_IMPLEMENTATION
+#include "GrVulkanMemoryAllocator.h"
+
diff --git a/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h
new file mode 100644
index 0000000000..d1cbebc5e6
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/GrVulkanMemoryAllocator.h
@@ -0,0 +1,18 @@
+/*
+ * Copyright 2018 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+// We use this header to include vk_mem_alloc.h to make sure we always include GrVkDefines.h first.
+// We need to do this so that the corect defines are setup before we include vulkan.h inside of
+// vk_mem_alloc.h
+
+#ifndef GrVulkanMemoryAllocator_DEFINED
+#define GrVulkanMemoryAllocator_DEFINED
+
+#include "../../include/gpu/vk/GrVkDefines.h"
+#include "include/vk_mem_alloc.h"
+
+#endif
diff --git a/third_party/vulkanmemoryallocator/include/LICENSE.txt b/third_party/vulkanmemoryallocator/include/LICENSE.txt
new file mode 100644
index 0000000000..dbfe253391
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/include/LICENSE.txt
@@ -0,0 +1,19 @@
+Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved.
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in
+all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+THE SOFTWARE.
diff --git a/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h b/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
new file mode 100644
index 0000000000..b621fe7e14
--- /dev/null
+++ b/third_party/vulkanmemoryallocator/include/vk_mem_alloc.h
@@ -0,0 +1,9363 @@
+//
+// Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+//
+
+#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
+#define AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** \mainpage Vulkan Memory Allocator
+
+<b>Version 2.0.0</b> (2018-03-19)
+
+Copyright (c) 2017-2018 Advanced Micro Devices, Inc. All rights reserved. \n
+License: MIT
+
+Documentation of all members: vk_mem_alloc.h
+
+\section main_table_of_contents Table of contents
+
+- <b>User guide</b>
+ - \subpage quick_start
+ - [Project setup](@ref quick_start_project_setup)
+ - [Initialization](@ref quick_start_initialization)
+ - [Resource allocation](@ref quick_start_resource_allocation)
+ - \subpage choosing_memory_type
+ - [Usage](@ref choosing_memory_type_usage)
+ - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
+ - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
+ - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
+ - \subpage memory_mapping
+ - [Mapping functions](@ref memory_mapping_mapping_functions)
+ - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
+ - [Cache control](@ref memory_mapping_cache_control)
+ - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)
+ - \subpage custom_memory_pools
+ - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
+ - \subpage defragmentation
+ - \subpage lost_allocations
+ - \subpage statistics
+ - [Numeric statistics](@ref statistics_numeric_statistics)
+ - [JSON dump](@ref statistics_json_dump)
+ - \subpage allocation_annotation
+ - [Allocation user data](@ref allocation_user_data)
+ - [Allocation names](@ref allocation_names)
+- \subpage usage_patterns
+ - [Simple patterns](@ref usage_patterns_simple)
+ - [Advanced patterns](@ref usage_patterns_advanced)
+- \subpage configuration
+ - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
+ - [Custom host memory allocator](@ref custom_memory_allocator)
+ - [Device memory allocation callbacks](@ref allocation_callbacks)
+ - [Device heap memory limit](@ref heap_memory_limit)
+ - \subpage vk_khr_dedicated_allocation
+- \subpage general_considerations
+ - [Thread safety](@ref general_considerations_thread_safety)
+ - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
+ - [Features not supported](@ref general_considerations_features_not_supported)
+
+\section main_see_also See also
+
+- [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
+- [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
+
+
+
+
+\page quick_start Quick start
+
+\section quick_start_project_setup Project setup
+
+Vulkan Memory Allocator comes in form of a single header file.
+You don't need to build it as a separate library project.
+You can add this file directly to your project and submit it to code repository next to your other source files.
+
+"Single header" doesn't mean that everything is contained in C/C++ declarations,
+like it tends to be in case of inline functions or C++ templates.
+It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
+If you don't do it properly, you will get linker errors.
+
+To do it properly:
+
+-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
+ This includes declarations of all members of the library.
+-# In exacly one CPP file define following macro before this include.
+ It enables also internal definitions.
+
+\code
+#define VMA_IMPLEMENTATION
+#include "vk_mem_alloc.h"
+\endcode
+
+It may be a good idea to create dedicated CPP file just for this purpose.
+
+\section quick_start_initialization Initialization
+
+At program startup:
+
+-# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.
+-# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
+ calling vmaCreateAllocator().
+
+\code
+VmaAllocatorCreateInfo allocatorInfo = {};
+allocatorInfo.physicalDevice = physicalDevice;
+allocatorInfo.device = device;
+
+VmaAllocator allocator;
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+\section quick_start_resource_allocation Resource allocation
+
+When you want to create a buffer or image:
+
+-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
+-# Fill VmaAllocationCreateInfo structure.
+-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
+ already allocated and bound to it.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+Don't forget to destroy your objects when no longer needed:
+
+\code
+vmaDestroyBuffer(allocator, buffer, allocation);
+vmaDestroyAllocator(allocator);
+\endcode
+
+
+\page choosing_memory_type Choosing memory type
+
+Physical devices in Vulkan support various combinations of memory heaps and
+types. Help with choosing correct and optimal memory type for your specific
+resource is one of the key features of this library. You can use it by filling
+appropriate members of VmaAllocationCreateInfo structure, as described below.
+You can also combine multiple methods.
+
+-# If you just want to find memory type index that meets your requirements, you
+ can use function vmaFindMemoryTypeIndex().
+-# If you want to allocate a region of device memory without association with any
+ specific image or buffer, you can use function vmaAllocateMemory(). Usage of
+ this function is not recommended and usually not needed.
+-# If you already have a buffer or an image created, you want to allocate memory
+ for it and then you will bind it yourself, you can use function
+ vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
+ For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory().
+-# If you want to create a buffer or an image, allocate memory for it and bind
+ them together, all in one call, you can use function vmaCreateBuffer(),
+ vmaCreateImage(). This is the recommended way to use this library.
+
+When using 3. or 4., the library internally queries Vulkan for memory types
+supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
+and uses only one of these types.
+
+If no memory type can be found that meets all the requirements, these functions
+return `VK_ERROR_FEATURE_NOT_PRESENT`.
+
+You can leave VmaAllocationCreateInfo structure completely filled with zeros.
+It means no requirements are specified for memory type.
+It is valid, although not very useful.
+
+\section choosing_memory_type_usage Usage
+
+The easiest way to specify memory requirements is to fill member
+VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
+It defines high level, common usage types.
+For more details, see description of this enum.
+
+For example, if you want to create a uniform buffer that will be filled using
+transfer only once or infrequently and used for rendering every frame, you can
+do it using following code:
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_required_preferred_flags Required and preferred flags
+
+You can specify more detailed requirements by filling members
+VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
+with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
+if you want to create a buffer that will be persistently mapped on host (so it
+must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
+use following code:
+
+\code
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+A memory type is chosen that has all the required flags and as many preferred
+flags set as possible.
+
+If you use VmaAllocationCreateInfo::usage, it is just internally converted to
+a set of required and preferred flags.
+
+\section choosing_memory_type_explicit_memory_types Explicit memory types
+
+If you inspected memory types available on the physical device and you have
+a preference for memory types that you want to use, you can fill member
+VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
+means that a memory type with that index is allowed to be used for the
+allocation. Special value 0, just like `UINT32_MAX`, means there are no
+restrictions to memory type index.
+
+Please note that this member is NOT just a memory type index.
+Still you can use it to choose just one, specific memory type.
+For example, if you already determined that your buffer should be created in
+memory type 2, use following code:
+
+\code
+uint32_t memoryTypeIndex = 2;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+\section choosing_memory_type_custom_memory_pools Custom memory pools
+
+If you allocate from custom memory pool, all the ways of specifying memory
+requirements described above are not applicable and the aforementioned members
+of VmaAllocationCreateInfo structure are ignored. Memory type is selected
+explicitly when creating the pool and then used to make all the allocations from
+that pool. For further details, see \ref custom_memory_pools.
+
+
+\page memory_mapping Memory mapping
+
+To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
+to be able to read from it or write to it in CPU code.
+Mapping is possible only of memory allocated from a memory type that has
+`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
+Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
+You can use them directly with memory allocated by this library,
+but it is not recommended because of following issue:
+Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
+This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
+Because of this, Vulkan Memory Allocator provides following facilities:
+
+\section memory_mapping_mapping_functions Mapping functions
+
+The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
+They are safer and more convenient to use than standard Vulkan functions.
+You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
+You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
+They way it's implemented is that the library always maps entire memory block, not just region of the allocation.
+For further details, see description of vmaMapMemory() function.
+Example:
+
+\code
+// Having these objects initialized:
+
+struct ConstantBuffer
+{
+ ...
+};
+ConstantBuffer constantBufferData;
+
+VmaAllocator allocator;
+VmaBuffer constantBuffer;
+VmaAllocation constantBufferAllocation;
+
+// You can map and fill your buffer using following code:
+
+void* mappedData;
+vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
+memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
+vmaUnmapMemory(allocator, constantBufferAllocation);
+\endcode
+
+\section memory_mapping_persistently_mapped_memory Persistently mapped memory
+
+Kepping your memory persistently mapped is generally OK in Vulkan.
+You don't need to unmap it before using its data on the GPU.
+The library provides a special feature designed for that:
+Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
+VmaAllocationCreateInfo::flags stay mapped all the time,
+so you can just access CPU pointer to it any time
+without a need to call any "map" or "unmap" function.
+Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+// Buffer is already mapped. You can access its memory.
+memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+\endcode
+
+There are some exceptions though, when you should consider mapping memory only for a short period of time:
+
+- When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),
+ device is discrete AMD GPU,
+ and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory
+ (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),
+ then whenever a memory block allocated from this memory type stays mapped
+ for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
+ block is migrated by WDDM to system RAM, which degrades performance. It doesn't
+ matter if that particular memory block is actually used by the command buffer
+ being submitted.
+- Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.
+
+\section memory_mapping_cache_control Cache control
+
+Memory in Vulkan doesn't need to be unmapped before using it on GPU,
+but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
+you need to manually invalidate cache before reading of mapped pointer
+using function `vkvkInvalidateMappedMemoryRanges()`
+and flush cache after writing to mapped pointer
+using function `vkFlushMappedMemoryRanges()`.
+Example:
+
+\code
+memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+
+VkMemoryPropertyFlags memFlags;
+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
+if((memFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) == 0)
+{
+ VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
+ memRange.memory = allocInfo.deviceMemory;
+ memRange.offset = allocInfo.offset;
+ memRange.size = allocInfo.size;
+ vkFlushMappedMemoryRanges(device, 1, &memRange);
+}
+\endcode
+
+Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be host coherent.
+
+Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
+currently provide `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag on all memory types that are
+`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, so on this platform you may not need to bother.
+
+\section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable
+
+It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)
+despite it wasn't explicitly requested.
+For example, application may work on integrated graphics with unified memory (like Intel) or
+allocation from video memory might have failed, so the library chose system memory as fallback.
+
+You can detect this case and map such allocation to access its memory on CPU directly,
+instead of launching a transfer operation.
+In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(),
+and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type.
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+VkMemoryPropertyFlags memFlags;
+vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
+if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+{
+ // Allocation ended up in mappable memory. You can map it and access it directly.
+ void* mappedData;
+ vmaMapMemory(allocator, alloc, &mappedData);
+ memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
+ vmaUnmapMemory(allocator, alloc);
+}
+else
+{
+ // Allocation ended up in non-mappable memory.
+ // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
+}
+\endcode
+
+You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations
+that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).
+If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.
+If not, the flag is just ignored.
+Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+if(allocInfo.pUserData != nullptr)
+{
+ // Allocation ended up in mappable memory.
+ // It's persistently mapped. You can access it directly.
+ memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+}
+else
+{
+ // Allocation ended up in non-mappable memory.
+ // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
+}
+\endcode
+
+
+\page custom_memory_pools Custom memory pools
+
+A memory pool contains a number of `VkDeviceMemory` blocks.
+The library automatically creates and manages default pool for each memory type available on the device.
+Default memory pool automatically grows in size.
+Size of allocated blocks is also variable and managed automatically.
+
+You can create custom pool and allocate memory out of it.
+It can be useful if you want to:
+
+- Keep certain kind of allocations separate from others.
+- Enforce particular, fixed size of Vulkan memory blocks.
+- Limit maximum amount of Vulkan memory allocated for that pool.
+- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
+
+To use custom memory pools:
+
+-# Fill VmaPoolCreateInfo structure.
+-# Call vmaCreatePool() to obtain #VmaPool handle.
+-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
+ You don't need to specify any other parameters of this structure, like usage.
+
+Example:
+
+\code
+// Create a pool that can have at most 2 blocks, 128 MiB each.
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = ...
+poolCreateInfo.blockSize = 128ull * 1024 * 1024;
+poolCreateInfo.maxBlockCount = 2;
+
+VmaPool pool;
+vmaCreatePool(allocator, &poolCreateInfo, &pool);
+
+// Allocate a buffer out of it.
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 1024;
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.pool = pool;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+\endcode
+
+You have to free all allocations made from this pool before destroying it.
+
+\code
+vmaDestroyBuffer(allocator, buf, alloc);
+vmaDestroyPool(allocator, pool);
+\endcode
+
+\section custom_memory_pools_MemTypeIndex Choosing memory type index
+
+When creating a pool, you must explicitly specify memory type index.
+To find the one suitable for your buffers or images, you can use helper functions
+vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
+You need to provide structures with example parameters of buffers or images
+that you are going to create in that pool.
+
+\code
+VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+exampleBufCreateInfo.size = 1024; // Whatever.
+exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.
+
+uint32_t memTypeIndex;
+vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
+
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = memTypeIndex;
+// ...
+\endcode
+
+When creating buffers/images allocated in that pool, provide following parameters:
+
+- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
+ Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
+ Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
+ or the other way around.
+- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
+ Other members are ignored anyway.
+
+
+\page defragmentation Defragmentation
+
+Interleaved allocations and deallocations of many objects of varying size can
+cause fragmentation, which can lead to a situation where the library is unable
+to find a continuous range of free memory for a new allocation despite there is
+enough free space, just scattered across many small free ranges between existing
+allocations.
+
+To mitigate this problem, you can use vmaDefragment(). Given set of allocations,
+this function can move them to compact used memory, ensure more continuous free
+space and possibly also free some `VkDeviceMemory`. It can work only on
+allocations made from memory type that is `HOST_VISIBLE`. Allocations are
+modified to point to the new `VkDeviceMemory` and offset. Data in this memory is
+also `memmove`-ed to the new place. However, if you have images or buffers bound
+to these allocations (and you certainly do), you need to destroy, recreate, and
+bind them to the new place in memory.
+
+For further details and example code, see documentation of function
+vmaDefragment().
+
+\page lost_allocations Lost allocations
+
+If your game oversubscribes video memory, if may work OK in previous-generation
+graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
+paged to system RAM. In Vulkan you can't do it because when you run out of
+memory, an allocation just fails. If you have more data (e.g. textures) that can
+fit into VRAM and you don't need it all at once, you may want to upload them to
+GPU on demand and "push out" ones that are not used for a long time to make room
+for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
+cache. Vulkan Memory Allocator can help you with that by supporting a concept of
+"lost allocations".
+
+To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT
+flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
+such allocation in every new frame, you need to query it if it's not lost.
+To check it, call vmaTouchAllocation().
+If the allocation is lost, you should not use it or buffer/image bound to it.
+You mustn't forget to destroy this allocation and this buffer/image.
+vmaGetAllocationInfo() can also be used for checking status of the allocation.
+Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.
+
+To create an allocation that can make some other allocations lost to make room
+for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will
+usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.
+
+Warning! Current implementation uses quite naive, brute force algorithm,
+which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT
+flag quite slow. A new, more optimal algorithm and data structure to speed this
+up is planned for the future.
+
+<b>Q: When interleaving creation of new allocations with usage of existing ones,
+how do you make sure that an allocation won't become lost while it's used in the
+current frame?</b>
+
+It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation
+status/parameters and checks whether it's not lost, but when it's not, it also
+atomically marks it as used in the current frame, which makes it impossible to
+become lost in that frame. It uses lockless algorithm, so it works fast and
+doesn't involve locking any internal mutex.
+
+<b>Q: What if my allocation may still be in use by the GPU when it's rendering a
+previous frame while I already submit new frame on the CPU?</b>
+
+You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not
+become lost for a number of additional frames back from the current one by
+specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
+memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
+
+<b>Q: How do you inform the library when new frame starts?</b>
+
+You need to call function vmaSetCurrentFrameIndex().
+
+Example code:
+
+\code
+struct MyBuffer
+{
+ VkBuffer m_Buf = nullptr;
+ VmaAllocation m_Alloc = nullptr;
+
+ // Called when the buffer is really needed in the current frame.
+ void EnsureBuffer();
+};
+
+void MyBuffer::EnsureBuffer()
+{
+ // Buffer has been created.
+ if(m_Buf != VK_NULL_HANDLE)
+ {
+ // Check if its allocation is not lost + mark it as used in current frame.
+ if(vmaTouchAllocation(allocator, m_Alloc))
+ {
+ // It's all OK - safe to use m_Buf.
+ return;
+ }
+ }
+
+ // Buffer not yet exists or lost - destroy and recreate it.
+
+ vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
+
+ VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+ bufCreateInfo.size = 1024;
+ bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+ VmaAllocationCreateInfo allocCreateInfo = {};
+ allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+ allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
+ VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
+
+ vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
+}
+\endcode
+
+When using lost allocations, you may see some Vulkan validation layer warnings
+about overlapping regions of memory bound to different kinds of buffers and
+images. This is still valid as long as you implement proper handling of lost
+allocations (like in the example above) and don't use them.
+
+You can create an allocation that is already in lost state from the beginning using function
+vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.
+
+You can call function vmaMakePoolAllocationsLost() to set all eligible allocations
+in a specified custom pool to lost state.
+Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back
+cannot become lost.
+
+
+\page statistics Statistics
+
+This library contains functions that return information about its internal state,
+especially the amount of memory allocated from Vulkan.
+Please keep in mind that these functions need to traverse all internal data structures
+to gather these information, so they may be quite time-consuming.
+Don't call them too often.
+
+\section statistics_numeric_statistics Numeric statistics
+
+You can query for overall statistics of the allocator using function vmaCalculateStats().
+Information are returned using structure #VmaStats.
+It contains #VmaStatInfo - number of allocated blocks, number of allocations
+(occupied ranges in these blocks), number of unused (free) ranges in these blocks,
+number of bytes used and unused (but still allocated from Vulkan) and other information.
+They are summed across memory heaps, memory types and total for whole allocator.
+
+You can query for statistics of a custom pool using function vmaGetPoolStats().
+Information are returned using structure #VmaPoolStats.
+
+You can query for information about specific allocation using function vmaGetAllocationInfo().
+It fill structure #VmaAllocationInfo.
+
+\section statistics_json_dump JSON dump
+
+You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
+The result is guaranteed to be correct JSON.
+It uses ANSI encoding.
+Any strings provided by user (see [Allocation names](@ref allocation_names))
+are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
+this JSON string can be treated as using this encoding.
+It must be freed using function vmaFreeStatsString().
+
+The format of this JSON string is not part of official documentation of the library,
+but it will not change in backward-incompatible way without increasing library major version number
+and appropriate mention in changelog.
+
+The JSON string contains all the data that can be obtained using vmaCalculateStats().
+It can also contain detailed map of allocated memory blocks and their regions -
+free and occupied by allocations.
+This allows e.g. to visualize the memory or assess fragmentation.
+
+
+\page allocation_annotation Allocation names and user data
+
+\section allocation_user_data Allocation user data
+
+You can annotate allocations with your own information, e.g. for debugging purposes.
+To do that, fill VmaAllocationCreateInfo::pUserData field when creating
+an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,
+some handle, index, key, ordinal number or any other value that would associate
+the allocation with your custom metadata.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+// Fill bufferInfo...
+
+MyBufferMetadata* pMetadata = CreateBufferMetadata();
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.pUserData = pMetadata;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
+\endcode
+
+The pointer may be later retrieved as VmaAllocationInfo::pUserData:
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
+\endcode
+
+It can also be changed using function vmaSetAllocationUserData().
+
+Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
+vmaBuildStatsString(), in hexadecimal form.
+
+\section allocation_names Allocation names
+
+There is alternative mode available where `pUserData` pointer is used to point to
+a null-terminated string, giving a name to the allocation. To use this mode,
+set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.
+Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
+vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
+The library creates internal copy of the string, so the pointer you pass doesn't need
+to be valid for whole lifetime of the allocation. You can free it after the call.
+
+\code
+VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+// Fill imageInfo...
+
+std::string imageName = "Texture: ";
+imageName += fileName;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
+allocCreateInfo.pUserData = imageName.c_str();
+
+VkImage image;
+VmaAllocation allocation;
+vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
+\endcode
+
+The value of `pUserData` pointer of the allocation will be different than the one
+you passed when setting allocation's name - pointing to a buffer managed
+internally that holds copy of the string.
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+const char* imageName = (const char*)allocInfo.pUserData;
+printf("Image name: %s\n", imageName);
+\endcode
+
+That string is also printed in JSON report created by vmaBuildStatsString().
+
+
+\page usage_patterns Recommended usage patterns
+
+\section usage_patterns_simple Simple patterns
+
+\subsection usage_patterns_simple_render_targets Render targets
+
+<b>When:</b>
+Any resources that you frequently write and read on GPU,
+e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
+images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
+
+<b>What to do:</b>
+Create them in video memory that is fastest to access from GPU using
+#VMA_MEMORY_USAGE_GPU_ONLY.
+
+Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension
+and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
+especially if they are large or if you plan to destroy and recreate them e.g. when
+display resolution changes.
+Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
+
+\subsection usage_patterns_simple_immutable_resources Immutable resources
+
+<b>When:</b>
+Any resources that you fill on CPU only once (aka "immutable") or infrequently
+and then read frequently on GPU,
+e.g. textures, vertex and index buffers, constant buffers that don't change often.
+
+<b>What to do:</b>
+Create them in video memory that is fastest to access from GPU using
+#VMA_MEMORY_USAGE_GPU_ONLY.
+
+To initialize content of such resource, create a CPU-side (aka "staging") copy of it
+in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,
+and submit a transfer from it to the GPU resource.
+You can keep the staging copy if you need it for another upload transfer in the future.
+If you don't, you can destroy it or reuse this buffer for uploading different resource
+after the transfer finishes.
+
+Prefer to create just buffers in system memory rather than images, even for uploading textures.
+Use `vkCmdCopyBufferToImage()`.
+Dont use images with `VK_IMAGE_TILING_LINEAR`.
+
+\subsection usage_patterns_dynamic_resources Dynamic resources
+
+<b>When:</b>
+Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,
+written on CPU, read on GPU.
+
+<b>What to do:</b>
+Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.
+You can map it and write to it directly on CPU, as well as read from it on GPU.
+
+This is a more complex situation. Different solutions are possible,
+and the best one depends on specific GPU type, but you can use this simple approach for the start.
+Prefer to write to such resource sequentially (e.g. using `memcpy`).
+Don't perform random access or any reads from it, as it may be very slow.
+
+\subsection usage_patterns_readback Readback
+
+<b>When:</b>
+Resources that contain data written by GPU that you want to read back on CPU,
+e.g. results of some computations.
+
+<b>What to do:</b>
+Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.
+You can write to them directly on GPU, as well as map and read them on CPU.
+
+\section usage_patterns_advanced Advanced patterns
+
+\subsection usage_patterns_integrated_graphics Detecting integrated graphics
+
+You can support integrated graphics (like Intel HD Graphics, AMD APU) better
+by detecting it in Vulkan.
+To do it, call `vkGetPhysicalDeviceProperties()`, inspect
+`VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.
+When you find it, you can assume that memory is unified and all memory types are equally fast
+to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
+
+You can then sum up sizes of all available memory heaps and treat them as useful for
+your GPU resources, instead of only `DEVICE_LOCAL` ones.
+You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them
+directly instead of submitting explicit transfer (see below).
+
+\subsection usage_patterns_direct_vs_transfer Direct access versus transfer
+
+For resources that you frequently write on CPU and read on GPU, many solutions are possible:
+
+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
+ second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time.
+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,
+ read it directly on GPU.
+-# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,
+ read it directly on GPU.
+
+Which solution is the most efficient depends on your resource and especially on the GPU.
+It is best to measure it and then make the decision.
+Some general recommendations:
+
+- On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead
+ related to using a second copy.
+- For small resources (e.g. constant buffers) use (2).
+ Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.
+ Even if the resource ends up in system memory, its data may be cached on GPU after first
+ fetch over PCIe bus.
+- For larger resources (e.g. textures), decide between (1) and (2).
+ You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is
+ both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).
+
+Similarly, for resources that you frequently write on GPU and read on CPU, multiple
+solutions are possible:
+
+-# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
+ second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.
+-# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,
+ map it and read it on CPU.
+
+You should take some measurements to decide which option is faster in case of your specific
+resource.
+
+If you don't want to specialize your code for specific types of GPUs, yon can still make
+an simple optimization for cases when your resource ends up in mappable memory to use it
+directly in this case instead of creating CPU-side staging copy.
+For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).
+
+
+\page configuration Configuration
+
+Please check "CONFIGURATION SECTION" in the code to find macros that you can define
+before each include of this file or change directly in this file to provide
+your own implementation of basic facilities like assert, `min()` and `max()` functions,
+mutex, atomic etc.
+The library uses its own implementation of containers by default, but you can switch to using
+STL containers instead.
+
+\section config_Vulkan_functions Pointers to Vulkan functions
+
+The library uses Vulkan functions straight from the `vulkan.h` header by default.
+If you want to provide your own pointers to these functions, e.g. fetched using
+`vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`:
+
+-# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`.
+-# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions.
+
+\section custom_memory_allocator Custom host memory allocator
+
+If you use custom allocator for CPU memory rather than default operator `new`
+and `delete` from C++, you can make this library using your allocator as well
+by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
+functions will be passed to Vulkan, as well as used by the library itself to
+make any CPU-side allocations.
+
+\section allocation_callbacks Device memory allocation callbacks
+
+The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
+You can setup callbacks to be informed about these calls, e.g. for the purpose
+of gathering some statistics. To do it, fill optional member
+VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+
+\section heap_memory_limit Device heap memory limit
+
+If you want to test how your program behaves with limited amount of Vulkan device
+memory available without switching your graphics card to one that really has
+smaller VRAM, you can use a feature of this library intended for this purpose.
+To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
+
+
+
+\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
+
+VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
+performance on some GPUs. It augments Vulkan API with possibility to query
+driver whether it prefers particular buffer or image to have its own, dedicated
+allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
+to do some internal optimizations.
+
+The extension is supported by this library. It will be used automatically when
+enabled. To enable it:
+
+1 . When creating Vulkan device, check if following 2 device extensions are
+supported (call `vkEnumerateDeviceExtensionProperties()`).
+If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
+
+- VK_KHR_get_memory_requirements2
+- VK_KHR_dedicated_allocation
+
+If you enabled these extensions:
+
+2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
+your #VmaAllocator`to inform the library that you enabled required extensions
+and you want the library to use them.
+
+\code
+allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
+
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+That's all. The extension will be automatically used whenever you create a
+buffer using vmaCreateBuffer() or image using vmaCreateImage().
+
+When using the extension together with Vulkan Validation Layer, you will receive
+warnings like this:
+
+ vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
+
+It is OK, you should just ignore it. It happens because you use function
+`vkGetBufferMemoryRequirements2KHR()` instead of standard
+`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
+unaware of it.
+
+To learn more about this extension, see:
+
+- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation)
+- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
+
+
+
+\page general_considerations General considerations
+
+\section general_considerations_thread_safety Thread safety
+
+- The library has no global state, so separate #VmaAllocator objects can be used
+ independently.
+ There should be no need to create multiple such objects though - one per `VkDevice` is enough.
+- By default, all calls to functions that take #VmaAllocator as first parameter
+ are safe to call from multiple threads simultaneously because they are
+ synchronized internally when needed.
+- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
+ flag, calls to functions that take such #VmaAllocator object must be
+ synchronized externally.
+- Access to a #VmaAllocation object must be externally synchronized. For example,
+ you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
+ threads at the same time if you pass the same #VmaAllocation object to these
+ functions.
+
+\section general_considerations_allocation_algorithm Allocation algorithm
+
+The library uses following algorithm for allocation, in order:
+
+-# Try to find free range of memory in existing blocks.
+-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
+-# If failed, try to create such block with size/2, size/4, size/8.
+-# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was
+ specified, try to find space in existing blocks, possilby making some other
+ allocations lost.
+-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
+ just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+-# If failed, choose other memory type that meets the requirements specified in
+ VmaAllocationCreateInfo and go to point 1.
+-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+
+\section general_considerations_features_not_supported Features not supported
+
+Features deliberately excluded from the scope of this library:
+
+- Data transfer - issuing commands that transfer data between buffers or images, any usage of
+ `VkCommandList` or `VkCommandQueue` and related synchronization is responsibility of the user.
+- Support for any programming languages other than C/C++.
+ Bindings to other languages are welcomed as external projects.
+
+*/
+
+#include <vulkan/vulkan.h>
+
+/** \struct VmaAllocator
+\brief Represents main object of this library initialized.
+
+Fill structure VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
+Call function vmaDestroyAllocator() to destroy it.
+
+It is recommended to create just one object of this type per `VkDevice` object,
+right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
+*/
+VK_DEFINE_HANDLE(VmaAllocator)
+
+/// Callback function called after successful vkAllocateMemory.
+typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
+ VmaAllocator allocator,
+ uint32_t memoryType,
+ VkDeviceMemory memory,
+ VkDeviceSize size);
+/// Callback function called before vkFreeMemory.
+typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
+ VmaAllocator allocator,
+ uint32_t memoryType,
+ VkDeviceMemory memory,
+ VkDeviceSize size);
+
+/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
+
+Provided for informative purpose, e.g. to gather statistics about number of
+allocations or total amount of memory allocated in Vulkan.
+
+Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+*/
+typedef struct VmaDeviceMemoryCallbacks {
+ /// Optional, can be null.
+ PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;
+ /// Optional, can be null.
+ PFN_vmaFreeDeviceMemoryFunction pfnFree;
+} VmaDeviceMemoryCallbacks;
+
+/// Flags for created #VmaAllocator.
+typedef enum VmaAllocatorCreateFlagBits {
+ /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
+
+ Using this flag may increase performance because internal mutexes are not used.
+ */
+ VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
+ /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
+
+ Using this extenion will automatically allocate dedicated blocks of memory for
+ some buffers and images instead of suballocating place for them out of bigger
+ memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
+ flag) when it is recommended by the driver. It may improve performance on some
+ GPUs.
+
+ You may set this flag only if you found out that following device extensions are
+ supported, you enabled them while creating Vulkan device passed as
+ VmaAllocatorCreateInfo::device, and you want them to be used internally by this
+ library:
+
+ - VK_KHR_get_memory_requirements2
+ - VK_KHR_dedicated_allocation
+
+When this flag is set, you can experience following warnings reported by Vulkan
+validation layer. You can ignore them.
+
+> vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
+ */
+ VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
+
+ VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocatorCreateFlagBits;
+typedef VkFlags VmaAllocatorCreateFlags;
+
+/** \brief Pointers to some Vulkan functions - a subset used by the library.
+
+Used in VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+typedef struct VmaVulkanFunctions {
+ PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
+ PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
+ PFN_vkAllocateMemory vkAllocateMemory;
+ PFN_vkFreeMemory vkFreeMemory;
+ PFN_vkMapMemory vkMapMemory;
+ PFN_vkUnmapMemory vkUnmapMemory;
+ PFN_vkBindBufferMemory vkBindBufferMemory;
+ PFN_vkBindImageMemory vkBindImageMemory;
+ PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
+ PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
+ PFN_vkCreateBuffer vkCreateBuffer;
+ PFN_vkDestroyBuffer vkDestroyBuffer;
+ PFN_vkCreateImage vkCreateImage;
+ PFN_vkDestroyImage vkDestroyImage;
+ PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR;
+ PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR;
+} VmaVulkanFunctions;
+
+/// Description of a Allocator to be created.
+typedef struct VmaAllocatorCreateInfo
+{
+ /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
+ VmaAllocatorCreateFlags flags;
+ /// Vulkan physical device.
+ /** It must be valid throughout whole lifetime of created allocator. */
+ VkPhysicalDevice physicalDevice;
+ /// Vulkan device.
+ /** It must be valid throughout whole lifetime of created allocator. */
+ VkDevice device;
+ /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
+ /** Set to 0 to use default, which is currently 256 MiB. */
+ VkDeviceSize preferredLargeHeapBlockSize;
+ /// Custom CPU memory allocation callbacks. Optional.
+ /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
+ const VkAllocationCallbacks* pAllocationCallbacks;
+ /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
+ /** Optional, can be null. */
+ const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks;
+ /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+ This value is used only when you make allocations with
+ VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
+ lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+ For example, if you double-buffer your command buffers, so resources used for
+ rendering in previous frame may still be in use by the GPU at the moment you
+ allocate resources needed for the current frame, set this value to 1.
+
+ If you want to allow any allocations other than used in the current frame to
+ become lost, set this value to 0.
+ */
+ uint32_t frameInUseCount;
+ /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
+
+ If not NULL, it must be a pointer to an array of
+ `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
+ maximum number of bytes that can be allocated out of particular Vulkan memory
+ heap.
+
+ Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
+ heap. This is also the default in case of `pHeapSizeLimit` = NULL.
+
+ If there is a limit defined for a heap:
+
+ - If user tries to allocate more memory from that heap using this allocator,
+ the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+ - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
+ value of this limit will be reported instead when using vmaGetMemoryProperties().
+
+ Warning! Using this feature may not be equivalent to installing a GPU with
+ smaller amount of memory, because graphics driver doesn't necessary fail new
+ allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
+ exceeded. It may return success and just silently migrate some device memory
+ blocks to system RAM.
+ */
+ const VkDeviceSize* pHeapSizeLimit;
+ /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`.
+
+ If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section,
+ you can pass null as this member, because the library will fetch pointers to
+ Vulkan functions internally in a static way, like:
+
+ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+
+ Fill this member if you want to provide your own pointers to Vulkan functions,
+ e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`.
+ */
+ const VmaVulkanFunctions* pVulkanFunctions;
+} VmaAllocatorCreateInfo;
+
+/// Creates Allocator object.
+VkResult vmaCreateAllocator(
+ const VmaAllocatorCreateInfo* pCreateInfo,
+ VmaAllocator* pAllocator);
+
+/// Destroys allocator object.
+void vmaDestroyAllocator(
+ VmaAllocator allocator);
+
+/**
+PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+void vmaGetPhysicalDeviceProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);
+
+/**
+PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+void vmaGetMemoryProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);
+
+/**
+\brief Given Memory Type Index, returns Property Flags of this memory type.
+
+This is just a convenience function. Same information can be obtained using
+vmaGetMemoryProperties().
+*/
+void vmaGetMemoryTypeProperties(
+ VmaAllocator allocator,
+ uint32_t memoryTypeIndex,
+ VkMemoryPropertyFlags* pFlags);
+
+/** \brief Sets index of the current frame.
+
+This function must be used if you make allocations with
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and
+#VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator
+when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
+become lost in the current frame.
+*/
+void vmaSetCurrentFrameIndex(
+ VmaAllocator allocator,
+ uint32_t frameIndex);
+
+/** \brief Calculated statistics of memory usage in entire allocator.
+*/
+typedef struct VmaStatInfo
+{
+ /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
+ uint32_t blockCount;
+ /// Number of #VmaAllocation allocation objects allocated.
+ uint32_t allocationCount;
+ /// Number of free ranges of memory between allocations.
+ uint32_t unusedRangeCount;
+ /// Total number of bytes occupied by all allocations.
+ VkDeviceSize usedBytes;
+ /// Total number of bytes occupied by unused ranges.
+ VkDeviceSize unusedBytes;
+ VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
+ VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
+} VmaStatInfo;
+
+/// General statistics from current state of Allocator.
+typedef struct VmaStats
+{
+ VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
+ VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
+ VmaStatInfo total;
+} VmaStats;
+
+/// Retrieves statistics from current state of the Allocator.
+void vmaCalculateStats(
+ VmaAllocator allocator,
+ VmaStats* pStats);
+
+#define VMA_STATS_STRING_ENABLED 1
+
+#if VMA_STATS_STRING_ENABLED
+
+/// Builds and returns statistics as string in JSON format.
+/** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
+*/
+void vmaBuildStatsString(
+ VmaAllocator allocator,
+ char** ppStatsString,
+ VkBool32 detailedMap);
+
+void vmaFreeStatsString(
+ VmaAllocator allocator,
+ char* pStatsString);
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/** \struct VmaPool
+\brief Represents custom memory pool
+
+Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
+Call function vmaDestroyPool() to destroy it.
+
+For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
+*/
+VK_DEFINE_HANDLE(VmaPool)
+
+typedef enum VmaMemoryUsage
+{
+ /** No intended memory usage specified.
+ Use other members of VmaAllocationCreateInfo to specify your requirements.
+ */
+ VMA_MEMORY_USAGE_UNKNOWN = 0,
+ /** Memory will be used on device only, so fast access from the device is preferred.
+ It usually means device-local GPU (video) memory.
+ No need to be mappable on host.
+ It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.
+
+ Usage:
+
+ - Resources written and read by device, e.g. images used as attachments.
+ - Resources transferred from host once (immutable) or infrequently and read by
+ device multiple times, e.g. textures to be sampled, vertex buffers, uniform
+ (constant) buffers, and majority of other types of resources used by device.
+
+ Allocation may still end up in `HOST_VISIBLE` memory on some implementations.
+ In such case, you are free to map it.
+ You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.
+ */
+ VMA_MEMORY_USAGE_GPU_ONLY = 1,
+ /** Memory will be mappable on host.
+ It usually means CPU (system) memory.
+ Resources created in this pool may still be accessible to the device, but access to them can be slower.
+ Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
+ CPU read may be uncached.
+ It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.
+
+ Usage: Staging copy of resources used as transfer source.
+ */
+ VMA_MEMORY_USAGE_CPU_ONLY = 2,
+ /**
+ Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.
+ CPU reads may be uncached and very slow.
+
+ Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call.
+ */
+ VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
+ /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.
+ It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.
+
+ Usage:
+
+ - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.
+ - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.
+ */
+ VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
+ VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
+} VmaMemoryUsage;
+
+/// Flags to be passed as VmaAllocationCreateInfo::flags.
+typedef enum VmaAllocationCreateFlagBits {
+ /** \brief Set this flag if the allocation should have its own memory block.
+
+ Use it for special, big resources, like fullscreen images used as attachments.
+
+ This flag must also be used for host visible resources that you want to map
+ simultaneously because otherwise they might end up as regions of the same
+ `VkDeviceMemory`, while mapping same `VkDeviceMemory` multiple times
+ simultaneously is illegal.
+
+ You should not use this flag if VmaAllocationCreateInfo::pool is not null.
+ */
+ VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
+
+ /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
+
+ If new allocation cannot be placed in any of the existing blocks, allocation
+ fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+
+ You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
+ #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
+
+ If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
+ VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
+ /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
+
+ Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
+
+ Is it valid to use this flag for allocation made from memory type that is not
+ `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
+ useful if you need an allocation that is efficient to use on GPU
+ (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
+ support it (e.g. Intel GPU).
+
+ You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.
+ */
+ VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
+ /** Allocation created with this flag can become lost as a result of another
+ allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you
+ must check it before use.
+
+ To check if allocation is not lost, call vmaGetAllocationInfo() and check if
+ VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
+
+ For details about supporting lost allocations, see Lost Allocations
+ chapter of User Guide on Main Page.
+
+ You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.
+ */
+ VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
+ /** While creating allocation using this flag, other allocations that were
+ created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.
+
+ For details about supporting lost allocations, see Lost Allocations
+ chapter of User Guide on Main Page.
+ */
+ VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
+ /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
+ null-terminated string. Instead of copying pointer value, a local copy of the
+ string is made and stored in allocation's `pUserData`. The string is automatically
+ freed together with the allocation. It is also used in vmaBuildStatsString().
+ */
+ VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
+
+ VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocationCreateFlagBits;
+typedef VkFlags VmaAllocationCreateFlags;
+
+typedef struct VmaAllocationCreateInfo
+{
+ /// Use #VmaAllocationCreateFlagBits enum.
+ VmaAllocationCreateFlags flags;
+ /** \brief Intended usage of memory.
+
+ You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
+ If `pool` is not null, this member is ignored.
+ */
+ VmaMemoryUsage usage;
+ /** \brief Flags that must be set in a Memory Type chosen for an allocation.
+
+ Leave 0 if you specify memory requirements in other way. \n
+ If `pool` is not null, this member is ignored.*/
+ VkMemoryPropertyFlags requiredFlags;
+ /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
+
+ Set to 0 if no additional flags are prefered. \n
+ If `pool` is not null, this member is ignored. */
+ VkMemoryPropertyFlags preferredFlags;
+ /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
+
+ Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
+ it meets other requirements specified by this structure, with no further
+ restrictions on memory type index. \n
+ If `pool` is not null, this member is ignored.
+ */
+ uint32_t memoryTypeBits;
+ /** \brief Pool that this allocation should be created in.
+
+ Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
+ `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
+ */
+ VmaPool pool;
+ /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
+
+ If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
+ null or pointer to a null-terminated string. The string will be then copied to
+ internal buffer, so it doesn't need to be valid after allocation call.
+ */
+ void* pUserData;
+} VmaAllocationCreateInfo;
+
+/**
+\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
+
+This algorithm tries to find a memory type that:
+
+- Is allowed by memoryTypeBits.
+- Contains all the flags from pAllocationCreateInfo->requiredFlags.
+- Matches intended usage.
+- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
+
+\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
+from this function or any other allocating function probably means that your
+device doesn't support any memory type with requested features for the specific
+type of resource you want to use it for. Please check parameters of your
+resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
+*/
+VkResult vmaFindMemoryTypeIndex(
+ VmaAllocator allocator,
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy buffer that never has memory bound.
+It is just a convenience function, equivalent to calling:
+
+- `vkCreateBuffer`
+- `vkGetBufferMemoryRequirements`
+- `vmaFindMemoryTypeIndex`
+- `vkDestroyBuffer`
+*/
+VkResult vmaFindMemoryTypeIndexForBufferInfo(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy image that never has memory bound.
+It is just a convenience function, equivalent to calling:
+
+- `vkCreateImage`
+- `vkGetImageMemoryRequirements`
+- `vmaFindMemoryTypeIndex`
+- `vkDestroyImage`
+*/
+VkResult vmaFindMemoryTypeIndexForImageInfo(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex);
+
+/// Flags to be passed as VmaPoolCreateInfo::flags.
+typedef enum VmaPoolCreateFlagBits {
+ /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
+
+ This is na optional optimization flag.
+
+ If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
+ vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
+ knows exact type of your allocations so it can handle Buffer-Image Granularity
+ in the optimal way.
+
+ If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
+ exact type of such allocations is not known, so allocator must be conservative
+ in handling Buffer-Image Granularity, which can lead to suboptimal allocation
+ (wasted memory). In that case, if you can make sure you always allocate only
+ buffers and linear images or only optimal images out of this pool, use this flag
+ to make allocator disregard Buffer-Image Granularity and so make allocations
+ more optimal.
+ */
+ VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
+
+ VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaPoolCreateFlagBits;
+typedef VkFlags VmaPoolCreateFlags;
+
+/** \brief Describes parameter of created #VmaPool.
+*/
+typedef struct VmaPoolCreateInfo {
+ /** \brief Vulkan memory type index to allocate this pool from.
+ */
+ uint32_t memoryTypeIndex;
+ /** \brief Use combination of #VmaPoolCreateFlagBits.
+ */
+ VmaPoolCreateFlags flags;
+ /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes.
+
+ Optional. Leave 0 to use default.
+ */
+ VkDeviceSize blockSize;
+ /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
+
+ Set to 0 to have no preallocated blocks and let the pool be completely empty.
+ */
+ size_t minBlockCount;
+ /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
+
+ Optional. Set to 0 to use `SIZE_MAX`, which means no limit.
+
+ Set to same value as minBlockCount to have fixed amount of memory allocated
+ throuout whole lifetime of this pool.
+ */
+ size_t maxBlockCount;
+ /** \brief Maximum number of additional frames that are in use at the same time as current frame.
+
+ This value is used only when you make allocations with
+ #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
+ lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
+
+ For example, if you double-buffer your command buffers, so resources used for
+ rendering in previous frame may still be in use by the GPU at the moment you
+ allocate resources needed for the current frame, set this value to 1.
+
+ If you want to allow any allocations other than used in the current frame to
+ become lost, set this value to 0.
+ */
+ uint32_t frameInUseCount;
+} VmaPoolCreateInfo;
+
+/** \brief Describes parameter of existing #VmaPool.
+*/
+typedef struct VmaPoolStats {
+ /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
+ */
+ VkDeviceSize size;
+ /** \brief Total number of bytes in the pool not used by any #VmaAllocation.
+ */
+ VkDeviceSize unusedSize;
+ /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.
+ */
+ size_t allocationCount;
+ /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.
+ */
+ size_t unusedRangeCount;
+ /** \brief Size of the largest continuous free memory region.
+
+ Making a new allocation of that size is not guaranteed to succeed because of
+ possible additional margin required to respect alignment and buffer/image
+ granularity.
+ */
+ VkDeviceSize unusedRangeSizeMax;
+} VmaPoolStats;
+
+/** \brief Allocates Vulkan device memory and creates #VmaPool object.
+
+@param allocator Allocator object.
+@param pCreateInfo Parameters of pool to create.
+@param[out] pPool Handle to created pool.
+*/
+VkResult vmaCreatePool(
+ VmaAllocator allocator,
+ const VmaPoolCreateInfo* pCreateInfo,
+ VmaPool* pPool);
+
+/** \brief Destroys #VmaPool object and frees Vulkan device memory.
+*/
+void vmaDestroyPool(
+ VmaAllocator allocator,
+ VmaPool pool);
+
+/** \brief Retrieves statistics of existing #VmaPool object.
+
+@param allocator Allocator object.
+@param pool Pool object.
+@param[out] pPoolStats Statistics of specified pool.
+*/
+void vmaGetPoolStats(
+ VmaAllocator allocator,
+ VmaPool pool,
+ VmaPoolStats* pPoolStats);
+
+/** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
+
+@param allocator Allocator object.
+@param pool Pool.
+@param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
+*/
+void vmaMakePoolAllocationsLost(
+ VmaAllocator allocator,
+ VmaPool pool,
+ size_t* pLostAllocationCount);
+
+/** \struct VmaAllocation
+\brief Represents single memory allocation.
+
+It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
+plus unique offset.
+
+There are multiple ways to create such object.
+You need to fill structure VmaAllocationCreateInfo.
+For more information see [Choosing memory type](@ref choosing_memory_type).
+
+Although the library provides convenience functions that create Vulkan buffer or image,
+allocate memory for it and bind them together,
+binding of the allocation to a buffer or an image is out of scope of the allocation itself.
+Allocation object can exist without buffer/image bound,
+binding can be done manually by the user, and destruction of it can be done
+independently of destruction of the allocation.
+
+The object also remembers its size and some other information.
+To retrieve this information, use function vmaGetAllocationInfo() and inspect
+returned structure VmaAllocationInfo.
+
+Some kinds allocations can be in lost state.
+For more information, see [Lost allocations](@ref lost_allocations).
+*/
+VK_DEFINE_HANDLE(VmaAllocation)
+
+/** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
+*/
+typedef struct VmaAllocationInfo {
+ /** \brief Memory type index that this allocation was allocated from.
+
+ It never changes.
+ */
+ uint32_t memoryType;
+ /** \brief Handle to Vulkan memory object.
+
+ Same memory object can be shared by multiple allocations.
+
+ It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+
+ If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
+ */
+ VkDeviceMemory deviceMemory;
+ /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
+
+ It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
+ */
+ VkDeviceSize offset;
+ /** \brief Size of this allocation, in bytes.
+
+ It never changes, unless allocation is lost.
+ */
+ VkDeviceSize size;
+ /** \brief Pointer to the beginning of this allocation as mapped data.
+
+ If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
+ created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null.
+
+ It can change after call to vmaMapMemory(), vmaUnmapMemory().
+ It can also change after call to vmaDefragment() if this allocation is passed to the function.
+ */
+ void* pMappedData;
+ /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
+
+ It can change after call to vmaSetAllocationUserData() for this allocation.
+ */
+ void* pUserData;
+} VmaAllocationInfo;
+
+/** \brief General purpose memory allocation.
+
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory().
+
+It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
+vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
+*/
+VkResult vmaAllocateMemory(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/**
+@param[out] pAllocation Handle to allocated memory.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory().
+*/
+VkResult vmaAllocateMemoryForBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/// Function similar to vmaAllocateMemoryForBuffer().
+VkResult vmaAllocateMemoryForImage(
+ VmaAllocator allocator,
+ VkImage image,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/// Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
+void vmaFreeMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation);
+
+/** \brief Returns current information about specified allocation and atomically marks it as used in current frame.
+
+Current paramters of given allocation are returned in `pAllocationInfo`.
+
+This function also atomically "touches" allocation - marks it as used in current frame,
+just like vmaTouchAllocation().
+If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.
+
+Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,
+you can avoid calling it too often.
+
+- You can retrieve same VmaAllocationInfo structure while creating your resource, from function
+ vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
+ (e.g. due to defragmentation or allocation becoming lost).
+- If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.
+*/
+void vmaGetAllocationInfo(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.
+
+If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+this function returns `VK_TRUE` if it's not in lost state, so it can still be used.
+It then also atomically "touches" the allocation - marks it as used in current frame,
+so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.
+
+If the allocation is in lost state, the function returns `VK_FALSE`.
+Memory of such allocation, as well as buffer or image bound to it, should not be used.
+Lost allocation and the buffer/image still need to be destroyed.
+
+If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
+this function always returns `VK_TRUE`.
+*/
+VkBool32 vmaTouchAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation);
+
+/** \brief Sets pUserData in given allocation to new value.
+
+If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
+pUserData must be either null, or pointer to a null-terminated string. The function
+makes local copy of the string and sets it as allocation's `pUserData`. String
+passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
+you can free it after this call. String previously pointed by allocation's
+pUserData is freed from memory.
+
+If the flag was not used, the value of pointer `pUserData` is just copied to
+allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.
+as a pointer, ordinal number or some handle to you own data.
+*/
+void vmaSetAllocationUserData(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void* pUserData);
+
+/** \brief Creates new allocation that is in lost state from the beginning.
+
+It can be useful if you need a dummy, non-null allocation.
+
+You still need to destroy created object using vmaFreeMemory().
+
+Returned allocation is not tied to any specific memory pool or memory type and
+not bound to any image or buffer. It has size = 0. It cannot be turned into
+a real, non-empty allocation.
+*/
+void vmaCreateLostAllocation(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocation);
+
+/** \brief Maps memory represented by given allocation and returns pointer to it.
+
+Maps memory represented by given allocation to make it accessible to CPU code.
+When succeeded, `*ppData` contains pointer to first byte of this memory.
+If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
+correctly offseted to the beginning of region assigned to this particular
+allocation.
+
+Mapping is internally reference-counted and synchronized, so despite raw Vulkan
+function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
+multiple times simultaneously, it is safe to call this function on allocations
+assigned to the same memory block. Actual Vulkan memory will be mapped on first
+mapping and unmapped on last unmapping.
+
+If the function succeeded, you must call vmaUnmapMemory() to unmap the
+allocation when mapping is no longer needed or before freeing the allocation, at
+the latest.
+
+It also safe to call this function multiple times on the same allocation. You
+must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
+
+It is also safe to call this function on allocation created with
+#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
+You must still call vmaUnmapMemory() same number of times as you called
+vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
+"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
+
+This function fails when used on allocation made in memory type that is not
+`HOST_VISIBLE`.
+
+This function always fails when called for allocation that was created with
+#VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be
+mapped.
+*/
+VkResult vmaMapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void** ppData);
+
+/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
+
+For details, see description of vmaMapMemory().
+*/
+void vmaUnmapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation);
+
+/** \brief Optional configuration parameters to be passed to function vmaDefragment(). */
+typedef struct VmaDefragmentationInfo {
+ /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
+
+ Default is `VK_WHOLE_SIZE`, which means no limit.
+ */
+ VkDeviceSize maxBytesToMove;
+ /** \brief Maximum number of allocations that can be moved to different place.
+
+ Default is `UINT32_MAX`, which means no limit.
+ */
+ uint32_t maxAllocationsToMove;
+} VmaDefragmentationInfo;
+
+/** \brief Statistics returned by function vmaDefragment(). */
+typedef struct VmaDefragmentationStats {
+ /// Total number of bytes that have been copied while moving allocations to different places.
+ VkDeviceSize bytesMoved;
+ /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
+ VkDeviceSize bytesFreed;
+ /// Number of allocations that have been moved to different places.
+ uint32_t allocationsMoved;
+ /// Number of empty `VkDeviceMemory` objects that have been released to the system.
+ uint32_t deviceMemoryBlocksFreed;
+} VmaDefragmentationStats;
+
+/** \brief Compacts memory by moving allocations.
+
+@param pAllocations Array of allocations that can be moved during this compation.
+@param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
+@param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
+@param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
+@param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
+@return VK_SUCCESS if completed, VK_INCOMPLETE if succeeded but didn't make all possible optimizations because limits specified in pDefragmentationInfo have been reached, negative error code in case of error.
+
+This function works by moving allocations to different places (different
+`VkDeviceMemory` objects and/or different offsets) in order to optimize memory
+usage. Only allocations that are in pAllocations array can be moved. All other
+allocations are considered nonmovable in this call. Basic rules:
+
+- Only allocations made in memory types that have
+ `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag can be compacted. You may pass other
+ allocations but it makes no sense - these will never be moved.
+- You may pass allocations made with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT but
+ it makes no sense - they will never be moved.
+- Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT
+ flag can be compacted. If not persistently mapped, memory will be mapped
+ temporarily inside this function if needed.
+- You must not pass same #VmaAllocation object multiple times in pAllocations array.
+
+The function also frees empty `VkDeviceMemory` blocks.
+
+After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
+VmaAllocationInfo::offset changes. You must query them again using
+vmaGetAllocationInfo() if you need them.
+
+If an allocation has been moved, data in memory is copied to new place
+automatically, but if it was bound to a buffer or an image, you must destroy
+that object yourself, create new one and bind it to the new memory pointed by
+the allocation. You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
+`vkCreateBuffer()`, `vkCreateImage()` for that purpose and NOT vmaDestroyBuffer(),
+vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage()! Example:
+
+\code
+VkDevice device = ...;
+VmaAllocator allocator = ...;
+std::vector<VkBuffer> buffers = ...;
+std::vector<VmaAllocation> allocations = ...;
+
+std::vector<VkBool32> allocationsChanged(allocations.size());
+vmaDefragment(allocator, allocations.data(), allocations.size(), allocationsChanged.data(), nullptr, nullptr);
+
+for(size_t i = 0; i < allocations.size(); ++i)
+{
+ if(allocationsChanged[i])
+ {
+ VmaAllocationInfo allocInfo;
+ vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
+
+ vkDestroyBuffer(device, buffers[i], nullptr);
+
+ VkBufferCreateInfo bufferInfo = ...;
+ vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
+
+ // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
+
+ vkBindBufferMemory(device, buffers[i], allocInfo.deviceMemory, allocInfo.offset);
+ }
+}
+\endcode
+
+Note: Please don't expect memory to be fully compacted after this call.
+Algorithms inside are based on some heuristics that try to maximize number of Vulkan
+memory blocks to make totally empty to release them, as well as to maximimze continuous
+empty space inside remaining blocks, while minimizing the number and size of data that
+needs to be moved. Some fragmentation still remains after this call. This is normal.
+
+Warning: This function is not 100% correct according to Vulkan specification. Use it
+at your own risk. That's because Vulkan doesn't guarantee that memory
+requirements (size and alignment) for a new buffer or image are consistent. They
+may be different even for subsequent calls with the same parameters. It really
+does happen on some platforms, especially with images.
+
+Warning: This function may be time-consuming, so you shouldn't call it too often
+(like every frame or after every resource creation/destruction).
+You can call it on special occasions (like when reloading a game level or
+when you just destroyed a lot of objects).
+*/
+VkResult vmaDefragment(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocations,
+ size_t allocationCount,
+ VkBool32* pAllocationsChanged,
+ const VmaDefragmentationInfo *pDefragmentationInfo,
+ VmaDefragmentationStats* pDefragmentationStats);
+
+/** \brief Binds buffer to allocation.
+
+Binds specified buffer to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create a buffer, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindBufferMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateBuffer() instead of this one.
+*/
+VkResult vmaBindBufferMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkBuffer buffer);
+
+/** \brief Binds image to allocation.
+
+Binds specified image to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create an image, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindImageMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateImage() instead of this one.
+*/
+VkResult vmaBindImageMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkImage image);
+
+/**
+@param[out] pBuffer Buffer that was created.
+@param[out] pAllocation Allocation that was created.
+@param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+This function automatically:
+
+-# Creates buffer.
+-# Allocates appropriate memory for it.
+-# Binds the buffer with the memory.
+
+If any of these operations fail, buffer and allocation are not created,
+returned value is negative error code, *pBuffer and *pAllocation are null.
+
+If the function succeeded, you must destroy both buffer and allocation when you
+no longer need them using either convenience function vmaDestroyBuffer() or
+separately, using `vkDestroyBuffer()` and vmaFreeMemory().
+
+If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
+VK_KHR_dedicated_allocation extension is used internally to query driver whether
+it requires or prefers the new buffer to have dedicated allocation. If yes,
+and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
+and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
+allocation for this buffer, just like when using
+VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+*/
+VkResult vmaCreateBuffer(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkBuffer* pBuffer,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Destroys Vulkan buffer and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyBuffer(device, buffer, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as buffer and/or allocation.
+*/
+void vmaDestroyBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ VmaAllocation allocation);
+
+/// Function similar to vmaCreateBuffer().
+VkResult vmaCreateImage(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkImage* pImage,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo);
+
+/** \brief Destroys Vulkan image and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyImage(device, image, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It it safe to pass null as image and/or allocation.
+*/
+void vmaDestroyImage(
+ VmaAllocator allocator,
+ VkImage image,
+ VmaAllocation allocation);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+// For Visual Studio IntelliSense.
+#ifdef __INTELLISENSE__
+#define VMA_IMPLEMENTATION
+#endif
+
+#ifdef VMA_IMPLEMENTATION
+#undef VMA_IMPLEMENTATION
+
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+
+/*******************************************************************************
+CONFIGURATION SECTION
+
+Define some of these macros before each #include of this header or change them
+here if you need other then default behavior depending on your environment.
+*/
+
+/*
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
+internally, like:
+
+ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+
+Define to 0 if you are going to provide you own pointers to Vulkan functions via
+VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
+#define VMA_STATIC_VULKAN_FUNCTIONS 1
+#endif
+
+// Define this macro to 1 to make the library use STL containers instead of its own implementation.
+//#define VMA_USE_STL_CONTAINERS 1
+
+/* Set this macro to 1 to make the library including and using STL containers:
+std::pair, std::vector, std::list, std::unordered_map.
+
+Set it to 0 or undefined to make the library using its own implementation of
+the containers.
+*/
+#if VMA_USE_STL_CONTAINERS
+ #define VMA_USE_STL_VECTOR 1
+ #define VMA_USE_STL_UNORDERED_MAP 1
+ #define VMA_USE_STL_LIST 1
+#endif
+
+#if VMA_USE_STL_VECTOR
+ #include <vector>
+#endif
+
+#if VMA_USE_STL_UNORDERED_MAP
+ #include <unordered_map>
+#endif
+
+#if VMA_USE_STL_LIST
+ #include <list>
+#endif
+
+/*
+Following headers are used in this CONFIGURATION section only, so feel free to
+remove them if not needed.
+*/
+#include <cassert> // for assert
+#include <algorithm> // for min, max
+#include <mutex> // for std::mutex
+#include <atomic> // for std::atomic
+
+#if !defined(_WIN32) && !defined(__APPLE__)
+ #include <malloc.h> // for aligned_alloc()
+#endif
+
+#ifndef VMA_NULL
+ // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
+ #define VMA_NULL nullptr
+#endif
+
+#if defined(__APPLE__) || defined(__ANDROID__)
+#include <cstdlib>
+void *aligned_alloc(size_t alignment, size_t size)
+{
+ // alignment must be >= sizeof(void*)
+ if(alignment < sizeof(void*))
+ {
+ alignment = sizeof(void*);
+ }
+
+ void *pointer;
+ if(posix_memalign(&pointer, alignment, size) == 0)
+ return pointer;
+ return VMA_NULL;
+}
+#endif
+
+// Normal assert to check for programmer's errors, especially in Debug configuration.
+#ifndef VMA_ASSERT
+ #ifdef _DEBUG
+ #define VMA_ASSERT(expr) assert(expr)
+ #else
+ #define VMA_ASSERT(expr)
+ #endif
+#endif
+
+// Assert that will be called very often, like inside data structures e.g. operator[].
+// Making it non-empty can make program slow.
+#ifndef VMA_HEAVY_ASSERT
+ #ifdef _DEBUG
+ #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
+ #else
+ #define VMA_HEAVY_ASSERT(expr)
+ #endif
+#endif
+
+#ifndef VMA_ALIGN_OF
+ #define VMA_ALIGN_OF(type) (__alignof(type))
+#endif
+
+#ifndef VMA_SYSTEM_ALIGNED_MALLOC
+ #if defined(_WIN32)
+ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (_aligned_malloc((size), (alignment)))
+ #else
+ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) (aligned_alloc((alignment), (size) ))
+ #endif
+#endif
+
+#ifndef VMA_SYSTEM_FREE
+ #if defined(_WIN32)
+ #define VMA_SYSTEM_FREE(ptr) _aligned_free(ptr)
+ #else
+ #define VMA_SYSTEM_FREE(ptr) free(ptr)
+ #endif
+#endif
+
+#ifndef VMA_MIN
+ #define VMA_MIN(v1, v2) (std::min((v1), (v2)))
+#endif
+
+#ifndef VMA_MAX
+ #define VMA_MAX(v1, v2) (std::max((v1), (v2)))
+#endif
+
+#ifndef VMA_SWAP
+ #define VMA_SWAP(v1, v2) std::swap((v1), (v2))
+#endif
+
+#ifndef VMA_SORT
+ #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
+#endif
+
+#ifndef VMA_DEBUG_LOG
+ #define VMA_DEBUG_LOG(format, ...)
+ /*
+ #define VMA_DEBUG_LOG(format, ...) do { \
+ printf(format, __VA_ARGS__); \
+ printf("\n"); \
+ } while(false)
+ */
+#endif
+
+// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
+#if VMA_STATS_STRING_ENABLED
+ static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
+ {
+ snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
+ }
+ static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
+ {
+ snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
+ }
+ static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)
+ {
+ snprintf(outStr, strLen, "%p", ptr);
+ }
+#endif
+
+#ifndef VMA_MUTEX
+ class VmaMutex
+ {
+ public:
+ VmaMutex() { }
+ ~VmaMutex() { }
+ void Lock() { m_Mutex.lock(); }
+ void Unlock() { m_Mutex.unlock(); }
+ private:
+ std::mutex m_Mutex;
+ };
+ #define VMA_MUTEX VmaMutex
+#endif
+
+/*
+If providing your own implementation, you need to implement a subset of std::atomic:
+
+- Constructor(uint32_t desired)
+- uint32_t load() const
+- void store(uint32_t desired)
+- bool compare_exchange_weak(uint32_t& expected, uint32_t desired)
+*/
+#ifndef VMA_ATOMIC_UINT32
+ #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
+#endif
+
+#ifndef VMA_BEST_FIT
+ /**
+ Main parameter for function assessing how good is a free suballocation for a new
+ allocation request.
+
+ - Set to 1 to use Best-Fit algorithm - prefer smaller blocks, as close to the
+ size of requested allocations as possible.
+ - Set to 0 to use Worst-Fit algorithm - prefer larger blocks, as large as
+ possible.
+
+ Experiments in special testing environment showed that Best-Fit algorithm is
+ better.
+ */
+ #define VMA_BEST_FIT (1)
+#endif
+
+#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
+ /**
+ Every allocation will have its own memory block.
+ Define to 1 for debugging purposes only.
+ */
+ #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
+#endif
+
+#ifndef VMA_DEBUG_ALIGNMENT
+ /**
+ Minimum alignment of all suballocations, in bytes.
+ Set to more than 1 for debugging purposes only. Must be power of two.
+ */
+ #define VMA_DEBUG_ALIGNMENT (1)
+#endif
+
+#ifndef VMA_DEBUG_MARGIN
+ /**
+ Minimum margin between suballocations, in bytes.
+ Set nonzero for debugging purposes only.
+ */
+ #define VMA_DEBUG_MARGIN (0)
+#endif
+
+#ifndef VMA_DEBUG_GLOBAL_MUTEX
+ /**
+ Set this to 1 for debugging purposes only, to enable single mutex protecting all
+ entry calls to the library. Can be useful for debugging multithreading issues.
+ */
+ #define VMA_DEBUG_GLOBAL_MUTEX (0)
+#endif
+
+#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
+ /**
+ Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
+ Set to more than 1 for debugging purposes only. Must be power of two.
+ */
+ #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
+#endif
+
+#ifndef VMA_SMALL_HEAP_MAX_SIZE
+ /// Maximum size of a memory heap in Vulkan to consider it "small".
+ #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
+#endif
+
+#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
+ /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
+ #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
+#endif
+
+static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
+
+/*******************************************************************************
+END OF CONFIGURATION
+*/
+
+static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
+ VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
+
+// Returns number of bits set to 1 in (v).
+static inline uint32_t VmaCountBitsSet(uint32_t v)
+{
+ uint32_t c = v - ((v >> 1) & 0x55555555);
+ c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
+ c = ((c >> 4) + c) & 0x0F0F0F0F;
+ c = ((c >> 8) + c) & 0x00FF00FF;
+ c = ((c >> 16) + c) & 0x0000FFFF;
+ return c;
+}
+
+// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignUp(T val, T align)
+{
+ return (val + align - 1) / align * align;
+}
+
+// Division with mathematical rounding to nearest number.
+template <typename T>
+inline T VmaRoundDiv(T x, T y)
+{
+ return (x + (y / (T)2)) / y;
+}
+
+#ifndef VMA_SORT
+
+template<typename Iterator, typename Compare>
+Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
+{
+ Iterator centerValue = end; --centerValue;
+ Iterator insertIndex = beg;
+ for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
+ {
+ if(cmp(*memTypeIndex, *centerValue))
+ {
+ if(insertIndex != memTypeIndex)
+ {
+ VMA_SWAP(*memTypeIndex, *insertIndex);
+ }
+ ++insertIndex;
+ }
+ }
+ if(insertIndex != centerValue)
+ {
+ VMA_SWAP(*insertIndex, *centerValue);
+ }
+ return insertIndex;
+}
+
+template<typename Iterator, typename Compare>
+void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
+{
+ if(beg < end)
+ {
+ Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
+ VmaQuickSort<Iterator, Compare>(beg, it, cmp);
+ VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
+ }
+}
+
+#define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
+
+#endif // #ifndef VMA_SORT
+
+/*
+Returns true if two memory blocks occupy overlapping pages.
+ResourceA must be in less memory offset than ResourceB.
+
+Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
+chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
+*/
+static inline bool VmaBlocksOnSamePage(
+ VkDeviceSize resourceAOffset,
+ VkDeviceSize resourceASize,
+ VkDeviceSize resourceBOffset,
+ VkDeviceSize pageSize)
+{
+ VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
+ VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
+ VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
+ VkDeviceSize resourceBStart = resourceBOffset;
+ VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
+ return resourceAEndPage == resourceBStartPage;
+}
+
+enum VmaSuballocationType
+{
+ VMA_SUBALLOCATION_TYPE_FREE = 0,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
+ VMA_SUBALLOCATION_TYPE_BUFFER = 2,
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
+ VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
+};
+
+/*
+Returns true if given suballocation types could conflict and must respect
+VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
+or linear image and another one is optimal image. If type is unknown, behave
+conservatively.
+*/
+static inline bool VmaIsBufferImageGranularityConflict(
+ VmaSuballocationType suballocType1,
+ VmaSuballocationType suballocType2)
+{
+ if(suballocType1 > suballocType2)
+ {
+ VMA_SWAP(suballocType1, suballocType2);
+ }
+
+ switch(suballocType1)
+ {
+ case VMA_SUBALLOCATION_TYPE_FREE:
+ return false;
+ case VMA_SUBALLOCATION_TYPE_UNKNOWN:
+ return true;
+ case VMA_SUBALLOCATION_TYPE_BUFFER:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
+ return false;
+ default:
+ VMA_ASSERT(0);
+ return true;
+ }
+}
+
+// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
+struct VmaMutexLock
+{
+public:
+ VmaMutexLock(VMA_MUTEX& mutex, bool useMutex) :
+ m_pMutex(useMutex ? &mutex : VMA_NULL)
+ {
+ if(m_pMutex)
+ {
+ m_pMutex->Lock();
+ }
+ }
+
+ ~VmaMutexLock()
+ {
+ if(m_pMutex)
+ {
+ m_pMutex->Unlock();
+ }
+ }
+
+private:
+ VMA_MUTEX* m_pMutex;
+};
+
+#if VMA_DEBUG_GLOBAL_MUTEX
+ static VMA_MUTEX gDebugGlobalMutex;
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
+#else
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
+#endif
+
+// Minimum size of a free suballocation to register it in the free suballocation collection.
+static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
+
+/*
+Performs binary search and returns iterator to first element that is greater or
+equal to (key), according to comparison (cmp).
+
+Cmp should return true if first argument is less than second argument.
+
+Returned value is the found element, if present in the collection or place where
+new element with value (key) should be inserted.
+*/
+template <typename IterT, typename KeyT, typename CmpT>
+static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, CmpT cmp)
+{
+ size_t down = 0, up = (end - beg);
+ while(down < up)
+ {
+ const size_t mid = (down + up) / 2;
+ if(cmp(*(beg+mid), key))
+ {
+ down = mid + 1;
+ }
+ else
+ {
+ up = mid;
+ }
+ }
+ return beg + down;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation
+
+static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
+{
+ if((pAllocationCallbacks != VMA_NULL) &&
+ (pAllocationCallbacks->pfnAllocation != VMA_NULL))
+ {
+ return (*pAllocationCallbacks->pfnAllocation)(
+ pAllocationCallbacks->pUserData,
+ size,
+ alignment,
+ VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+ }
+ else
+ {
+ return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
+ }
+}
+
+static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
+{
+ if((pAllocationCallbacks != VMA_NULL) &&
+ (pAllocationCallbacks->pfnFree != VMA_NULL))
+ {
+ (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
+ }
+ else
+ {
+ VMA_SYSTEM_FREE(ptr);
+ }
+}
+
+template<typename T>
+static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
+{
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
+{
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
+
+#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
+
+template<typename T>
+static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
+{
+ ptr->~T();
+ VmaFree(pAllocationCallbacks, ptr);
+}
+
+template<typename T>
+static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
+{
+ if(ptr != VMA_NULL)
+ {
+ for(size_t i = count; i--; )
+ {
+ ptr[i].~T();
+ }
+ VmaFree(pAllocationCallbacks, ptr);
+ }
+}
+
+// STL-compatible allocator.
+template<typename T>
+class VmaStlAllocator
+{
+public:
+ const VkAllocationCallbacks* const m_pCallbacks;
+ typedef T value_type;
+
+ VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
+ template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
+
+ T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
+ void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
+
+ template<typename U>
+ bool operator==(const VmaStlAllocator<U>& rhs) const
+ {
+ return m_pCallbacks == rhs.m_pCallbacks;
+ }
+ template<typename U>
+ bool operator!=(const VmaStlAllocator<U>& rhs) const
+ {
+ return m_pCallbacks != rhs.m_pCallbacks;
+ }
+
+ VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
+};
+
+#if VMA_USE_STL_VECTOR
+
+#define VmaVector std::vector
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
+{
+ vec.insert(vec.begin() + index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
+{
+ vec.erase(vec.begin() + index);
+}
+
+#else // #if VMA_USE_STL_VECTOR
+
+/* Class with interface compatible with subset of std::vector.
+T must be POD because constructors and destructors are not called and memcpy is
+used for these objects. */
+template<typename T, typename AllocatorT>
+class VmaVector
+{
+public:
+ typedef T value_type;
+
+ VmaVector(const AllocatorT& allocator) :
+ m_Allocator(allocator),
+ m_pArray(VMA_NULL),
+ m_Count(0),
+ m_Capacity(0)
+ {
+ }
+
+ VmaVector(size_t count, const AllocatorT& allocator) :
+ m_Allocator(allocator),
+ m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
+ m_Count(count),
+ m_Capacity(count)
+ {
+ }
+
+ VmaVector(const VmaVector<T, AllocatorT>& src) :
+ m_Allocator(src.m_Allocator),
+ m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
+ m_Count(src.m_Count),
+ m_Capacity(src.m_Count)
+ {
+ if(m_Count != 0)
+ {
+ memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
+ }
+ }
+
+ ~VmaVector()
+ {
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ }
+
+ VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
+ {
+ if(&rhs != this)
+ {
+ resize(rhs.m_Count);
+ if(m_Count != 0)
+ {
+ memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
+ }
+ }
+ return *this;
+ }
+
+ bool empty() const { return m_Count == 0; }
+ size_t size() const { return m_Count; }
+ T* data() { return m_pArray; }
+ const T* data() const { return m_pArray; }
+
+ T& operator[](size_t index)
+ {
+ VMA_HEAVY_ASSERT(index < m_Count);
+ return m_pArray[index];
+ }
+ const T& operator[](size_t index) const
+ {
+ VMA_HEAVY_ASSERT(index < m_Count);
+ return m_pArray[index];
+ }
+
+ T& front()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[0];
+ }
+ const T& front() const
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[0];
+ }
+ T& back()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[m_Count - 1];
+ }
+ const T& back() const
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ return m_pArray[m_Count - 1];
+ }
+
+ void reserve(size_t newCapacity, bool freeMemory = false)
+ {
+ newCapacity = VMA_MAX(newCapacity, m_Count);
+
+ if((newCapacity < m_Capacity) && !freeMemory)
+ {
+ newCapacity = m_Capacity;
+ }
+
+ if(newCapacity != m_Capacity)
+ {
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
+ if(m_Count != 0)
+ {
+ memcpy(newArray, m_pArray, m_Count * sizeof(T));
+ }
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ m_Capacity = newCapacity;
+ m_pArray = newArray;
+ }
+ }
+
+ void resize(size_t newCount, bool freeMemory = false)
+ {
+ size_t newCapacity = m_Capacity;
+ if(newCount > m_Capacity)
+ {
+ newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
+ }
+ else if(freeMemory)
+ {
+ newCapacity = newCount;
+ }
+
+ if(newCapacity != m_Capacity)
+ {
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
+ const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
+ if(elementsToCopy != 0)
+ {
+ memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
+ }
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ m_Capacity = newCapacity;
+ m_pArray = newArray;
+ }
+
+ m_Count = newCount;
+ }
+
+ void clear(bool freeMemory = false)
+ {
+ resize(0, freeMemory);
+ }
+
+ void insert(size_t index, const T& src)
+ {
+ VMA_HEAVY_ASSERT(index <= m_Count);
+ const size_t oldCount = size();
+ resize(oldCount + 1);
+ if(index < oldCount)
+ {
+ memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
+ }
+ m_pArray[index] = src;
+ }
+
+ void remove(size_t index)
+ {
+ VMA_HEAVY_ASSERT(index < m_Count);
+ const size_t oldCount = size();
+ if(index < oldCount - 1)
+ {
+ memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
+ }
+ resize(oldCount - 1);
+ }
+
+ void push_back(const T& src)
+ {
+ const size_t newIndex = size();
+ resize(newIndex + 1);
+ m_pArray[newIndex] = src;
+ }
+
+ void pop_back()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ resize(size() - 1);
+ }
+
+ void push_front(const T& src)
+ {
+ insert(0, src);
+ }
+
+ void pop_front()
+ {
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ remove(0);
+ }
+
+ typedef T* iterator;
+
+ iterator begin() { return m_pArray; }
+ iterator end() { return m_pArray + m_Count; }
+
+private:
+ AllocatorT m_Allocator;
+ T* m_pArray;
+ size_t m_Count;
+ size_t m_Capacity;
+};
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
+{
+ vec.insert(index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
+{
+ vec.remove(index);
+}
+
+#endif // #if VMA_USE_STL_VECTOR
+
+template<typename CmpLess, typename VectorT>
+size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+ vector.data(),
+ vector.data() + vector.size(),
+ value,
+ CmpLess()) - vector.data();
+ VmaVectorInsert(vector, indexToInsert, value);
+ return indexToInsert;
+}
+
+template<typename CmpLess, typename VectorT>
+bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+ CmpLess comparator;
+ typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
+ vector.begin(),
+ vector.end(),
+ value,
+ comparator);
+ if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
+ {
+ size_t indexToRemove = it - vector.begin();
+ VmaVectorRemove(vector, indexToRemove);
+ return true;
+ }
+ return false;
+}
+
+template<typename CmpLess, typename VectorT>
+size_t VmaVectorFindSorted(const VectorT& vector, const typename VectorT::value_type& value)
+{
+ CmpLess comparator;
+ typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
+ vector.data(),
+ vector.data() + vector.size(),
+ value,
+ comparator);
+ if(it != vector.size() && !comparator(*it, value) && !comparator(value, *it))
+ {
+ return it - vector.begin();
+ }
+ else
+ {
+ return vector.size();
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaPoolAllocator
+
+/*
+Allocator for objects of type T using a list of arrays (pools) to speed up
+allocation. Number of elements that can be allocated is not bounded because
+allocator can create multiple blocks.
+*/
+template<typename T>
+class VmaPoolAllocator
+{
+public:
+ VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock);
+ ~VmaPoolAllocator();
+ void Clear();
+ T* Alloc();
+ void Free(T* ptr);
+
+private:
+ union Item
+ {
+ uint32_t NextFreeIndex;
+ T Value;
+ };
+
+ struct ItemBlock
+ {
+ Item* pItems;
+ uint32_t FirstFreeIndex;
+ };
+
+ const VkAllocationCallbacks* m_pAllocationCallbacks;
+ size_t m_ItemsPerBlock;
+ VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
+
+ ItemBlock& CreateNewBlock();
+};
+
+template<typename T>
+VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, size_t itemsPerBlock) :
+ m_pAllocationCallbacks(pAllocationCallbacks),
+ m_ItemsPerBlock(itemsPerBlock),
+ m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
+{
+ VMA_ASSERT(itemsPerBlock > 0);
+}
+
+template<typename T>
+VmaPoolAllocator<T>::~VmaPoolAllocator()
+{
+ Clear();
+}
+
+template<typename T>
+void VmaPoolAllocator<T>::Clear()
+{
+ for(size_t i = m_ItemBlocks.size(); i--; )
+ vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemsPerBlock);
+ m_ItemBlocks.clear();
+}
+
+template<typename T>
+T* VmaPoolAllocator<T>::Alloc()
+{
+ for(size_t i = m_ItemBlocks.size(); i--; )
+ {
+ ItemBlock& block = m_ItemBlocks[i];
+ // This block has some free items: Use first one.
+ if(block.FirstFreeIndex != UINT32_MAX)
+ {
+ Item* const pItem = &block.pItems[block.FirstFreeIndex];
+ block.FirstFreeIndex = pItem->NextFreeIndex;
+ return &pItem->Value;
+ }
+ }
+
+ // No block has free item: Create new one and use it.
+ ItemBlock& newBlock = CreateNewBlock();
+ Item* const pItem = &newBlock.pItems[0];
+ newBlock.FirstFreeIndex = pItem->NextFreeIndex;
+ return &pItem->Value;
+}
+
+template<typename T>
+void VmaPoolAllocator<T>::Free(T* ptr)
+{
+ // Search all memory blocks to find ptr.
+ for(size_t i = 0; i < m_ItemBlocks.size(); ++i)
+ {
+ ItemBlock& block = m_ItemBlocks[i];
+
+ // Casting to union.
+ Item* pItemPtr;
+ memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
+
+ // Check if pItemPtr is in address range of this block.
+ if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + m_ItemsPerBlock))
+ {
+ const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
+ pItemPtr->NextFreeIndex = block.FirstFreeIndex;
+ block.FirstFreeIndex = index;
+ return;
+ }
+ }
+ VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
+}
+
+template<typename T>
+typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
+{
+ ItemBlock newBlock = {
+ vma_new_array(m_pAllocationCallbacks, Item, m_ItemsPerBlock), 0 };
+
+ m_ItemBlocks.push_back(newBlock);
+
+ // Setup singly-linked list of all free items in this block.
+ for(uint32_t i = 0; i < m_ItemsPerBlock - 1; ++i)
+ newBlock.pItems[i].NextFreeIndex = i + 1;
+ newBlock.pItems[m_ItemsPerBlock - 1].NextFreeIndex = UINT32_MAX;
+ return m_ItemBlocks.back();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaRawList, VmaList
+
+#if VMA_USE_STL_LIST
+
+#define VmaList std::list
+
+#else // #if VMA_USE_STL_LIST
+
+template<typename T>
+struct VmaListItem
+{
+ VmaListItem* pPrev;
+ VmaListItem* pNext;
+ T Value;
+};
+
+// Doubly linked list.
+template<typename T>
+class VmaRawList
+{
+public:
+ typedef VmaListItem<T> ItemType;
+
+ VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
+ ~VmaRawList();
+ void Clear();
+
+ size_t GetCount() const { return m_Count; }
+ bool IsEmpty() const { return m_Count == 0; }
+
+ ItemType* Front() { return m_pFront; }
+ const ItemType* Front() const { return m_pFront; }
+ ItemType* Back() { return m_pBack; }
+ const ItemType* Back() const { return m_pBack; }
+
+ ItemType* PushBack();
+ ItemType* PushFront();
+ ItemType* PushBack(const T& value);
+ ItemType* PushFront(const T& value);
+ void PopBack();
+ void PopFront();
+
+ // Item can be null - it means PushBack.
+ ItemType* InsertBefore(ItemType* pItem);
+ // Item can be null - it means PushFront.
+ ItemType* InsertAfter(ItemType* pItem);
+
+ ItemType* InsertBefore(ItemType* pItem, const T& value);
+ ItemType* InsertAfter(ItemType* pItem, const T& value);
+
+ void Remove(ItemType* pItem);
+
+private:
+ const VkAllocationCallbacks* const m_pAllocationCallbacks;
+ VmaPoolAllocator<ItemType> m_ItemAllocator;
+ ItemType* m_pFront;
+ ItemType* m_pBack;
+ size_t m_Count;
+
+ // Declared not defined, to block copy constructor and assignment operator.
+ VmaRawList(const VmaRawList<T>& src);
+ VmaRawList<T>& operator=(const VmaRawList<T>& rhs);
+};
+
+template<typename T>
+VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
+ m_pAllocationCallbacks(pAllocationCallbacks),
+ m_ItemAllocator(pAllocationCallbacks, 128),
+ m_pFront(VMA_NULL),
+ m_pBack(VMA_NULL),
+ m_Count(0)
+{
+}
+
+template<typename T>
+VmaRawList<T>::~VmaRawList()
+{
+ // Intentionally not calling Clear, because that would be unnecessary
+ // computations to return all items to m_ItemAllocator as free.
+}
+
+template<typename T>
+void VmaRawList<T>::Clear()
+{
+ if(IsEmpty() == false)
+ {
+ ItemType* pItem = m_pBack;
+ while(pItem != VMA_NULL)
+ {
+ ItemType* const pPrevItem = pItem->pPrev;
+ m_ItemAllocator.Free(pItem);
+ pItem = pPrevItem;
+ }
+ m_pFront = VMA_NULL;
+ m_pBack = VMA_NULL;
+ m_Count = 0;
+ }
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack()
+{
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
+ pNewItem->pNext = VMA_NULL;
+ if(IsEmpty())
+ {
+ pNewItem->pPrev = VMA_NULL;
+ m_pFront = pNewItem;
+ m_pBack = pNewItem;
+ m_Count = 1;
+ }
+ else
+ {
+ pNewItem->pPrev = m_pBack;
+ m_pBack->pNext = pNewItem;
+ m_pBack = pNewItem;
+ ++m_Count;
+ }
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront()
+{
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
+ pNewItem->pPrev = VMA_NULL;
+ if(IsEmpty())
+ {
+ pNewItem->pNext = VMA_NULL;
+ m_pFront = pNewItem;
+ m_pBack = pNewItem;
+ m_Count = 1;
+ }
+ else
+ {
+ pNewItem->pNext = m_pFront;
+ m_pFront->pPrev = pNewItem;
+ m_pFront = pNewItem;
+ ++m_Count;
+ }
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
+{
+ ItemType* const pNewItem = PushBack();
+ pNewItem->Value = value;
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
+{
+ ItemType* const pNewItem = PushFront();
+ pNewItem->Value = value;
+ return pNewItem;
+}
+
+template<typename T>
+void VmaRawList<T>::PopBack()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const pBackItem = m_pBack;
+ ItemType* const pPrevItem = pBackItem->pPrev;
+ if(pPrevItem != VMA_NULL)
+ {
+ pPrevItem->pNext = VMA_NULL;
+ }
+ m_pBack = pPrevItem;
+ m_ItemAllocator.Free(pBackItem);
+ --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::PopFront()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const pFrontItem = m_pFront;
+ ItemType* const pNextItem = pFrontItem->pNext;
+ if(pNextItem != VMA_NULL)
+ {
+ pNextItem->pPrev = VMA_NULL;
+ }
+ m_pFront = pNextItem;
+ m_ItemAllocator.Free(pFrontItem);
+ --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::Remove(ItemType* pItem)
+{
+ VMA_HEAVY_ASSERT(pItem != VMA_NULL);
+ VMA_HEAVY_ASSERT(m_Count > 0);
+
+ if(pItem->pPrev != VMA_NULL)
+ {
+ pItem->pPrev->pNext = pItem->pNext;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
+ m_pFront = pItem->pNext;
+ }
+
+ if(pItem->pNext != VMA_NULL)
+ {
+ pItem->pNext->pPrev = pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
+ m_pBack = pItem->pPrev;
+ }
+
+ m_ItemAllocator.Free(pItem);
+ --m_Count;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
+{
+ if(pItem != VMA_NULL)
+ {
+ ItemType* const prevItem = pItem->pPrev;
+ ItemType* const newItem = m_ItemAllocator.Alloc();
+ newItem->pPrev = prevItem;
+ newItem->pNext = pItem;
+ pItem->pPrev = newItem;
+ if(prevItem != VMA_NULL)
+ {
+ prevItem->pNext = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
+ m_pFront = newItem;
+ }
+ ++m_Count;
+ return newItem;
+ }
+ else
+ return PushBack();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
+{
+ if(pItem != VMA_NULL)
+ {
+ ItemType* const nextItem = pItem->pNext;
+ ItemType* const newItem = m_ItemAllocator.Alloc();
+ newItem->pNext = nextItem;
+ newItem->pPrev = pItem;
+ pItem->pNext = newItem;
+ if(nextItem != VMA_NULL)
+ {
+ nextItem->pPrev = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
+ m_pBack = newItem;
+ }
+ ++m_Count;
+ return newItem;
+ }
+ else
+ return PushFront();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
+{
+ ItemType* const newItem = InsertBefore(pItem);
+ newItem->Value = value;
+ return newItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
+{
+ ItemType* const newItem = InsertAfter(pItem);
+ newItem->Value = value;
+ return newItem;
+}
+
+template<typename T, typename AllocatorT>
+class VmaList
+{
+public:
+ class iterator
+ {
+ public:
+ iterator() :
+ m_pList(VMA_NULL),
+ m_pItem(VMA_NULL)
+ {
+ }
+
+ T& operator*() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return m_pItem->Value;
+ }
+ T* operator->() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return &m_pItem->Value;
+ }
+
+ iterator& operator++()
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ m_pItem = m_pItem->pNext;
+ return *this;
+ }
+ iterator& operator--()
+ {
+ if(m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Back();
+ }
+ return *this;
+ }
+
+ iterator operator++(int)
+ {
+ iterator result = *this;
+ ++*this;
+ return result;
+ }
+ iterator operator--(int)
+ {
+ iterator result = *this;
+ --*this;
+ return result;
+ }
+
+ bool operator==(const iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem == rhs.m_pItem;
+ }
+ bool operator!=(const iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem != rhs.m_pItem;
+ }
+
+ private:
+ VmaRawList<T>* m_pList;
+ VmaListItem<T>* m_pItem;
+
+ iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
+ m_pList(pList),
+ m_pItem(pItem)
+ {
+ }
+
+ friend class VmaList<T, AllocatorT>;
+ };
+
+ class const_iterator
+ {
+ public:
+ const_iterator() :
+ m_pList(VMA_NULL),
+ m_pItem(VMA_NULL)
+ {
+ }
+
+ const_iterator(const iterator& src) :
+ m_pList(src.m_pList),
+ m_pItem(src.m_pItem)
+ {
+ }
+
+ const T& operator*() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return m_pItem->Value;
+ }
+ const T* operator->() const
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ return &m_pItem->Value;
+ }
+
+ const_iterator& operator++()
+ {
+ VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
+ m_pItem = m_pItem->pNext;
+ return *this;
+ }
+ const_iterator& operator--()
+ {
+ if(m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Back();
+ }
+ return *this;
+ }
+
+ const_iterator operator++(int)
+ {
+ const_iterator result = *this;
+ ++*this;
+ return result;
+ }
+ const_iterator operator--(int)
+ {
+ const_iterator result = *this;
+ --*this;
+ return result;
+ }
+
+ bool operator==(const const_iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem == rhs.m_pItem;
+ }
+ bool operator!=(const const_iterator& rhs) const
+ {
+ VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
+ return m_pItem != rhs.m_pItem;
+ }
+
+ private:
+ const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
+ m_pList(pList),
+ m_pItem(pItem)
+ {
+ }
+
+ const VmaRawList<T>* m_pList;
+ const VmaListItem<T>* m_pItem;
+
+ friend class VmaList<T, AllocatorT>;
+ };
+
+ VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
+
+ bool empty() const { return m_RawList.IsEmpty(); }
+ size_t size() const { return m_RawList.GetCount(); }
+
+ iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
+ iterator end() { return iterator(&m_RawList, VMA_NULL); }
+
+ const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
+ const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
+
+ void clear() { m_RawList.Clear(); }
+ void push_back(const T& value) { m_RawList.PushBack(value); }
+ void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
+ iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
+
+private:
+ VmaRawList<T> m_RawList;
+};
+
+#endif // #if VMA_USE_STL_LIST
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaMap
+
+// Unused in this version.
+#if 0
+
+#if VMA_USE_STL_UNORDERED_MAP
+
+#define VmaPair std::pair
+
+#define VMA_MAP_TYPE(KeyT, ValueT) \
+ std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
+
+#else // #if VMA_USE_STL_UNORDERED_MAP
+
+template<typename T1, typename T2>
+struct VmaPair
+{
+ T1 first;
+ T2 second;
+
+ VmaPair() : first(), second() { }
+ VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
+};
+
+/* Class compatible with subset of interface of std::unordered_map.
+KeyT, ValueT must be POD because they will be stored in VmaVector.
+*/
+template<typename KeyT, typename ValueT>
+class VmaMap
+{
+public:
+ typedef VmaPair<KeyT, ValueT> PairType;
+ typedef PairType* iterator;
+
+ VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
+
+ iterator begin() { return m_Vector.begin(); }
+ iterator end() { return m_Vector.end(); }
+
+ void insert(const PairType& pair);
+ iterator find(const KeyT& key);
+ void erase(iterator it);
+
+private:
+ VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
+};
+
+#define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
+
+template<typename FirstT, typename SecondT>
+struct VmaPairFirstLess
+{
+ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
+ {
+ return lhs.first < rhs.first;
+ }
+ bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
+ {
+ return lhs.first < rhsFirst;
+ }
+};
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
+{
+ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+ m_Vector.data(),
+ m_Vector.data() + m_Vector.size(),
+ pair,
+ VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
+ VmaVectorInsert(m_Vector, indexToInsert, pair);
+}
+
+template<typename KeyT, typename ValueT>
+VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
+{
+ PairType* it = VmaBinaryFindFirstNotLess(
+ m_Vector.data(),
+ m_Vector.data() + m_Vector.size(),
+ key,
+ VmaPairFirstLess<KeyT, ValueT>());
+ if((it != m_Vector.end()) && (it->first == key))
+ {
+ return it;
+ }
+ else
+ {
+ return m_Vector.end();
+ }
+}
+
+template<typename KeyT, typename ValueT>
+void VmaMap<KeyT, ValueT>::erase(iterator it)
+{
+ VmaVectorRemove(m_Vector, it - m_Vector.begin());
+}
+
+#endif // #if VMA_USE_STL_UNORDERED_MAP
+
+#endif // #if 0
+
+////////////////////////////////////////////////////////////////////////////////
+
+class VmaDeviceMemoryBlock;
+
+struct VmaAllocation_T
+{
+private:
+ static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
+
+ enum FLAGS
+ {
+ FLAG_USER_DATA_STRING = 0x01,
+ };
+
+public:
+ enum ALLOCATION_TYPE
+ {
+ ALLOCATION_TYPE_NONE,
+ ALLOCATION_TYPE_BLOCK,
+ ALLOCATION_TYPE_DEDICATED,
+ };
+
+ VmaAllocation_T(uint32_t currentFrameIndex, bool userDataString) :
+ m_Alignment(1),
+ m_Size(0),
+ m_pUserData(VMA_NULL),
+ m_LastUseFrameIndex(currentFrameIndex),
+ m_Type((uint8_t)ALLOCATION_TYPE_NONE),
+ m_SuballocationType((uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN),
+ m_MapCount(0),
+ m_Flags(userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0)
+ {
+ }
+
+ ~VmaAllocation_T()
+ {
+ VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
+
+ // Check if owned string was freed.
+ VMA_ASSERT(m_pUserData == VMA_NULL);
+ }
+
+ void InitBlockAllocation(
+ VmaPool hPool,
+ VmaDeviceMemoryBlock* block,
+ VkDeviceSize offset,
+ VkDeviceSize alignment,
+ VkDeviceSize size,
+ VmaSuballocationType suballocationType,
+ bool mapped,
+ bool canBecomeLost)
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(block != VMA_NULL);
+ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+ m_Alignment = alignment;
+ m_Size = size;
+ m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+ m_SuballocationType = (uint8_t)suballocationType;
+ m_BlockAllocation.m_hPool = hPool;
+ m_BlockAllocation.m_Block = block;
+ m_BlockAllocation.m_Offset = offset;
+ m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
+ }
+
+ void InitLost()
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
+ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+ m_BlockAllocation.m_hPool = VK_NULL_HANDLE;
+ m_BlockAllocation.m_Block = VMA_NULL;
+ m_BlockAllocation.m_Offset = 0;
+ m_BlockAllocation.m_CanBecomeLost = true;
+ }
+
+ void ChangeBlockAllocation(
+ VmaAllocator hAllocator,
+ VmaDeviceMemoryBlock* block,
+ VkDeviceSize offset);
+
+ // pMappedData not null means allocation is created with MAPPED flag.
+ void InitDedicatedAllocation(
+ uint32_t memoryTypeIndex,
+ VkDeviceMemory hMemory,
+ VmaSuballocationType suballocationType,
+ void* pMappedData,
+ VkDeviceSize size)
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(hMemory != VK_NULL_HANDLE);
+ m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
+ m_Alignment = 0;
+ m_Size = size;
+ m_SuballocationType = (uint8_t)suballocationType;
+ m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
+ m_DedicatedAllocation.m_MemoryTypeIndex = memoryTypeIndex;
+ m_DedicatedAllocation.m_hMemory = hMemory;
+ m_DedicatedAllocation.m_pMappedData = pMappedData;
+ }
+
+ ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
+ VkDeviceSize GetAlignment() const { return m_Alignment; }
+ VkDeviceSize GetSize() const { return m_Size; }
+ bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
+ void* GetUserData() const { return m_pUserData; }
+ void SetUserData(VmaAllocator hAllocator, void* pUserData);
+ VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
+
+ VmaDeviceMemoryBlock* GetBlock() const
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+ return m_BlockAllocation.m_Block;
+ }
+ VkDeviceSize GetOffset() const;
+ VkDeviceMemory GetMemory() const;
+ uint32_t GetMemoryTypeIndex() const;
+ bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
+ void* GetMappedData() const;
+ bool CanBecomeLost() const;
+ VmaPool GetPool() const;
+
+ uint32_t GetLastUseFrameIndex() const
+ {
+ return m_LastUseFrameIndex.load();
+ }
+ bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
+ {
+ return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
+ }
+ /*
+ - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
+ makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
+ - Else, returns false.
+
+ If hAllocation is already lost, assert - you should not call it then.
+ If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
+ */
+ bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+ void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)
+ {
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
+ outInfo.blockCount = 1;
+ outInfo.allocationCount = 1;
+ outInfo.unusedRangeCount = 0;
+ outInfo.usedBytes = m_Size;
+ outInfo.unusedBytes = 0;
+ outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
+ outInfo.unusedRangeSizeMax = 0;
+ }
+
+ void BlockAllocMap();
+ void BlockAllocUnmap();
+ VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
+ void DedicatedAllocUnmap(VmaAllocator hAllocator);
+
+private:
+ VkDeviceSize m_Alignment;
+ VkDeviceSize m_Size;
+ void* m_pUserData;
+ VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
+ uint8_t m_Type; // ALLOCATION_TYPE
+ uint8_t m_SuballocationType; // VmaSuballocationType
+ // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
+ // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().
+ uint8_t m_MapCount;
+ uint8_t m_Flags; // enum FLAGS
+
+ // Allocation out of VmaDeviceMemoryBlock.
+ struct BlockAllocation
+ {
+ VmaPool m_hPool; // Null if belongs to general memory.
+ VmaDeviceMemoryBlock* m_Block;
+ VkDeviceSize m_Offset;
+ bool m_CanBecomeLost;
+ };
+
+ // Allocation for an object that has its own private VkDeviceMemory.
+ struct DedicatedAllocation
+ {
+ uint32_t m_MemoryTypeIndex;
+ VkDeviceMemory m_hMemory;
+ void* m_pMappedData; // Not null means memory is mapped.
+ };
+
+ union
+ {
+ // Allocation out of VmaDeviceMemoryBlock.
+ BlockAllocation m_BlockAllocation;
+ // Allocation for an object that has its own private VkDeviceMemory.
+ DedicatedAllocation m_DedicatedAllocation;
+ };
+
+ void FreeUserDataString(VmaAllocator hAllocator);
+};
+
+/*
+Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
+allocated memory block or free.
+*/
+struct VmaSuballocation
+{
+ VkDeviceSize offset;
+ VkDeviceSize size;
+ VmaAllocation hAllocation;
+ VmaSuballocationType type;
+};
+
+typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
+
+// Cost of one additional allocation lost, as equivalent in bytes.
+static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
+
+/*
+Parameters of planned allocation inside a VmaDeviceMemoryBlock.
+
+If canMakeOtherLost was false:
+- item points to a FREE suballocation.
+- itemsToMakeLostCount is 0.
+
+If canMakeOtherLost was true:
+- item points to first of sequence of suballocations, which are either FREE,
+ or point to VmaAllocations that can become lost.
+- itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
+ the requested allocation to succeed.
+*/
+struct VmaAllocationRequest
+{
+ VkDeviceSize offset;
+ VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
+ VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
+ VmaSuballocationList::iterator item;
+ size_t itemsToMakeLostCount;
+
+ VkDeviceSize CalcCost() const
+ {
+ return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
+ }
+};
+
+/*
+Data structure used for bookkeeping of allocations and unused ranges of memory
+in a single VkDeviceMemory block.
+*/
+class VmaBlockMetadata
+{
+public:
+ VmaBlockMetadata(VmaAllocator hAllocator);
+ ~VmaBlockMetadata();
+ void Init(VkDeviceSize size);
+
+ // Validates all data structures inside this object. If not valid, returns false.
+ bool Validate() const;
+ VkDeviceSize GetSize() const { return m_Size; }
+ size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
+ VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
+ VkDeviceSize GetUnusedRangeSizeMax() const;
+ // Returns true if this block is empty - contains only single free suballocation.
+ bool IsEmpty() const;
+
+ void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
+ void AddPoolStats(VmaPoolStats& inoutStats) const;
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json) const;
+#endif
+
+ // Creates trivial request for case when block is empty.
+ void CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest);
+
+ // Tries to find a place for suballocation with given parameters inside this block.
+ // If succeeded, fills pAllocationRequest and returns true.
+ // If failed, returns false.
+ bool CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ VmaAllocationRequest* pAllocationRequest);
+
+ bool MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest);
+
+ uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
+
+ // Makes actual allocation based on request. Request must already be checked and valid.
+ void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation);
+
+ // Frees suballocation assigned to given memory region.
+ void Free(const VmaAllocation allocation);
+ void FreeAtOffset(VkDeviceSize offset);
+
+private:
+ VkDeviceSize m_Size;
+ uint32_t m_FreeCount;
+ VkDeviceSize m_SumFreeSize;
+ VmaSuballocationList m_Suballocations;
+ // Suballocations that are free and have size greater than certain threshold.
+ // Sorted by size, ascending.
+ VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
+
+ bool ValidateFreeSuballocationList() const;
+
+ // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
+ // If yes, fills pOffset and returns true. If no, returns false.
+ bool CheckAllocation(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ VmaSuballocationList::const_iterator suballocItem,
+ bool canMakeOtherLost,
+ VkDeviceSize* pOffset,
+ size_t* itemsToMakeLostCount,
+ VkDeviceSize* pSumFreeSize,
+ VkDeviceSize* pSumItemSize) const;
+ // Given free suballocation, it merges it with following one, which must also be free.
+ void MergeFreeWithNext(VmaSuballocationList::iterator item);
+ // Releases given suballocation, making it free.
+ // Merges it with adjacent free suballocations if applicable.
+ // Returns iterator to new free suballocation at this place.
+ VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
+ // Given free suballocation, it inserts it into sorted list of
+ // m_FreeSuballocationsBySize if it's suitable.
+ void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
+ // Given free suballocation, it removes it from sorted list of
+ // m_FreeSuballocationsBySize if it's suitable.
+ void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
+};
+
+/*
+Represents a single block of device memory (`VkDeviceMemory`) with all the
+data about its regions (aka suballocations, #VmaAllocation), assigned and free.
+
+Thread-safety: This class must be externally synchronized.
+*/
+class VmaDeviceMemoryBlock
+{
+public:
+ VmaBlockMetadata m_Metadata;
+
+ VmaDeviceMemoryBlock(VmaAllocator hAllocator);
+
+ ~VmaDeviceMemoryBlock()
+ {
+ VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
+ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+ }
+
+ // Always call after construction.
+ void Init(
+ uint32_t newMemoryTypeIndex,
+ VkDeviceMemory newMemory,
+ VkDeviceSize newSize);
+ // Always call before destruction.
+ void Destroy(VmaAllocator allocator);
+
+ VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+ void* GetMappedData() const { return m_pMappedData; }
+
+ // Validates all data structures inside this object. If not valid, returns false.
+ bool Validate() const;
+
+ // ppData can be null.
+ VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
+ void Unmap(VmaAllocator hAllocator, uint32_t count);
+
+ VkResult BindBufferMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkBuffer hBuffer);
+ VkResult BindImageMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkImage hImage);
+
+private:
+ uint32_t m_MemoryTypeIndex;
+ VkDeviceMemory m_hMemory;
+
+ // Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
+ // Also protects m_MapCount, m_pMappedData.
+ VMA_MUTEX m_Mutex;
+ uint32_t m_MapCount;
+ void* m_pMappedData;
+};
+
+struct VmaPointerLess
+{
+ bool operator()(const void* lhs, const void* rhs) const
+ {
+ return lhs < rhs;
+ }
+};
+
+class VmaDefragmentator;
+
+/*
+Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
+Vulkan memory type.
+
+Synchronized internally with a mutex.
+*/
+struct VmaBlockVector
+{
+ VmaBlockVector(
+ VmaAllocator hAllocator,
+ uint32_t memoryTypeIndex,
+ VkDeviceSize preferredBlockSize,
+ size_t minBlockCount,
+ size_t maxBlockCount,
+ VkDeviceSize bufferImageGranularity,
+ uint32_t frameInUseCount,
+ bool isCustomPool);
+ ~VmaBlockVector();
+
+ VkResult CreateMinBlocks();
+
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+ VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
+ VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
+ uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
+
+ void GetPoolStats(VmaPoolStats* pStats);
+
+ bool IsEmpty() const { return m_Blocks.empty(); }
+
+ VkResult Allocate(
+ VmaPool hCurrentPool,
+ uint32_t currentFrameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation);
+
+ void Free(
+ VmaAllocation hAllocation);
+
+ // Adds statistics of this BlockVector to pStats.
+ void AddStats(VmaStats* pStats);
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+ void MakePoolAllocationsLost(
+ uint32_t currentFrameIndex,
+ size_t* pLostAllocationCount);
+
+ VmaDefragmentator* EnsureDefragmentator(
+ VmaAllocator hAllocator,
+ uint32_t currentFrameIndex);
+
+ VkResult Defragment(
+ VmaDefragmentationStats* pDefragmentationStats,
+ VkDeviceSize& maxBytesToMove,
+ uint32_t& maxAllocationsToMove);
+
+ void DestroyDefragmentator();
+
+private:
+ friend class VmaDefragmentator;
+
+ const VmaAllocator m_hAllocator;
+ const uint32_t m_MemoryTypeIndex;
+ const VkDeviceSize m_PreferredBlockSize;
+ const size_t m_MinBlockCount;
+ const size_t m_MaxBlockCount;
+ const VkDeviceSize m_BufferImageGranularity;
+ const uint32_t m_FrameInUseCount;
+ const bool m_IsCustomPool;
+ VMA_MUTEX m_Mutex;
+ // Incrementally sorted by sumFreeSize, ascending.
+ VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
+ /* There can be at most one allocation that is completely empty - a
+ hysteresis to avoid pessimistic case of alternating creation and destruction
+ of a VkDeviceMemory. */
+ bool m_HasEmptyBlock;
+ VmaDefragmentator* m_pDefragmentator;
+
+ size_t CalcMaxBlockSize() const;
+
+ // Finds and removes given block from vector.
+ void Remove(VmaDeviceMemoryBlock* pBlock);
+
+ // Performs single step in sorting m_Blocks. They may not be fully sorted
+ // after this call.
+ void IncrementallySortBlocks();
+
+ VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
+};
+
+struct VmaPool_T
+{
+public:
+ VmaBlockVector m_BlockVector;
+
+ // Takes ownership.
+ VmaPool_T(
+ VmaAllocator hAllocator,
+ const VmaPoolCreateInfo& createInfo);
+ ~VmaPool_T();
+
+ VmaBlockVector& GetBlockVector() { return m_BlockVector; }
+
+#if VMA_STATS_STRING_ENABLED
+ //void PrintDetailedMap(class VmaStringBuilder& sb);
+#endif
+};
+
+class VmaDefragmentator
+{
+ const VmaAllocator m_hAllocator;
+ VmaBlockVector* const m_pBlockVector;
+ uint32_t m_CurrentFrameIndex;
+ VkDeviceSize m_BytesMoved;
+ uint32_t m_AllocationsMoved;
+
+ struct AllocationInfo
+ {
+ VmaAllocation m_hAllocation;
+ VkBool32* m_pChanged;
+
+ AllocationInfo() :
+ m_hAllocation(VK_NULL_HANDLE),
+ m_pChanged(VMA_NULL)
+ {
+ }
+ };
+
+ struct AllocationInfoSizeGreater
+ {
+ bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
+ {
+ return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
+ }
+ };
+
+ // Used between AddAllocation and Defragment.
+ VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
+
+ struct BlockInfo
+ {
+ VmaDeviceMemoryBlock* m_pBlock;
+ bool m_HasNonMovableAllocations;
+ VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
+
+ BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
+ m_pBlock(VMA_NULL),
+ m_HasNonMovableAllocations(true),
+ m_Allocations(pAllocationCallbacks),
+ m_pMappedDataForDefragmentation(VMA_NULL)
+ {
+ }
+
+ void CalcHasNonMovableAllocations()
+ {
+ const size_t blockAllocCount = m_pBlock->m_Metadata.GetAllocationCount();
+ const size_t defragmentAllocCount = m_Allocations.size();
+ m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
+ }
+
+ void SortAllocationsBySizeDescecnding()
+ {
+ VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
+ }
+
+ VkResult EnsureMapping(VmaAllocator hAllocator, void** ppMappedData);
+ void Unmap(VmaAllocator hAllocator);
+
+ private:
+ // Not null if mapped for defragmentation only, not originally mapped.
+ void* m_pMappedDataForDefragmentation;
+ };
+
+ struct BlockPointerLess
+ {
+ bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
+ {
+ return pLhsBlockInfo->m_pBlock < pRhsBlock;
+ }
+ bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+ {
+ return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
+ }
+ };
+
+ // 1. Blocks with some non-movable allocations go first.
+ // 2. Blocks with smaller sumFreeSize go first.
+ struct BlockInfoCompareMoveDestination
+ {
+ bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
+ {
+ if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
+ {
+ return true;
+ }
+ if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
+ {
+ return false;
+ }
+ if(pLhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_Metadata.GetSumFreeSize())
+ {
+ return true;
+ }
+ return false;
+ }
+ };
+
+ typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
+ BlockInfoVector m_Blocks;
+
+ VkResult DefragmentRound(
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove);
+
+ static bool MoveMakesSense(
+ size_t dstBlockIndex, VkDeviceSize dstOffset,
+ size_t srcBlockIndex, VkDeviceSize srcOffset);
+
+public:
+ VmaDefragmentator(
+ VmaAllocator hAllocator,
+ VmaBlockVector* pBlockVector,
+ uint32_t currentFrameIndex);
+
+ ~VmaDefragmentator();
+
+ VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
+ uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
+
+ void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
+
+ VkResult Defragment(
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove);
+};
+
+// Main allocator object.
+struct VmaAllocator_T
+{
+ bool m_UseMutex;
+ bool m_UseKhrDedicatedAllocation;
+ VkDevice m_hDevice;
+ bool m_AllocationCallbacksSpecified;
+ VkAllocationCallbacks m_AllocationCallbacks;
+ VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
+
+ // Number of bytes free out of limit, or VK_WHOLE_SIZE if not limit for that heap.
+ VkDeviceSize m_HeapSizeLimit[VK_MAX_MEMORY_HEAPS];
+ VMA_MUTEX m_HeapSizeLimitMutex;
+
+ VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
+ VkPhysicalDeviceMemoryProperties m_MemProps;
+
+ // Default pools.
+ VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
+
+ // Each vector is sorted by memory (handle value).
+ typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
+ AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];
+ VMA_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
+
+ VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
+ ~VmaAllocator_T();
+
+ const VkAllocationCallbacks* GetAllocationCallbacks() const
+ {
+ return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
+ }
+ const VmaVulkanFunctions& GetVulkanFunctions() const
+ {
+ return m_VulkanFunctions;
+ }
+
+ VkDeviceSize GetBufferImageGranularity() const
+ {
+ return VMA_MAX(
+ static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
+ m_PhysicalDeviceProperties.limits.bufferImageGranularity);
+ }
+
+ uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
+ uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
+
+ uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
+ {
+ VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
+ return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
+ }
+
+ void GetBufferMemoryRequirements(
+ VkBuffer hBuffer,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const;
+ void GetImageMemoryRequirements(
+ VkImage hImage,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const;
+
+ // Main allocation function.
+ VkResult AllocateMemory(
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation);
+
+ // Main deallocation function.
+ void FreeMemory(const VmaAllocation allocation);
+
+ void CalculateStats(VmaStats* pStats);
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+ VkResult Defragment(
+ VmaAllocation* pAllocations,
+ size_t allocationCount,
+ VkBool32* pAllocationsChanged,
+ const VmaDefragmentationInfo* pDefragmentationInfo,
+ VmaDefragmentationStats* pDefragmentationStats);
+
+ void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
+ bool TouchAllocation(VmaAllocation hAllocation);
+
+ VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
+ void DestroyPool(VmaPool pool);
+ void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
+
+ void SetCurrentFrameIndex(uint32_t frameIndex);
+
+ void MakePoolAllocationsLost(
+ VmaPool hPool,
+ size_t* pLostAllocationCount);
+
+ void CreateLostAllocation(VmaAllocation* pAllocation);
+
+ VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
+ void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
+
+ VkResult Map(VmaAllocation hAllocation, void** ppData);
+ void Unmap(VmaAllocation hAllocation);
+
+ VkResult BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer);
+ VkResult BindImageMemory(VmaAllocation hAllocation, VkImage hImage);
+
+private:
+ VkDeviceSize m_PreferredLargeHeapBlockSize;
+
+ VkPhysicalDevice m_PhysicalDevice;
+ VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
+
+ VMA_MUTEX m_PoolsMutex;
+ // Protected by m_PoolsMutex. Sorted by pointer value.
+ VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
+
+ VmaVulkanFunctions m_VulkanFunctions;
+
+ void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
+
+ VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
+
+ VkResult AllocateMemoryOfType(
+ const VkMemoryRequirements& vkMemReq,
+ bool dedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ uint32_t memTypeIndex,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation);
+
+ // Allocates and registers new VkDeviceMemory specifically for single allocation.
+ VkResult AllocateDedicatedMemory(
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ bool map,
+ bool isUserDataString,
+ void* pUserData,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaAllocation* pAllocation);
+
+ // Tries to free pMemory as Dedicated Memory. Returns true if found and freed.
+ void FreeDedicatedMemory(VmaAllocation allocation);
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation #2 after VmaAllocator_T definition
+
+static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
+{
+ return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
+}
+
+static void VmaFree(VmaAllocator hAllocator, void* ptr)
+{
+ VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
+}
+
+template<typename T>
+static T* VmaAllocate(VmaAllocator hAllocator)
+{
+ return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
+{
+ return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static void vma_delete(VmaAllocator hAllocator, T* ptr)
+{
+ if(ptr != VMA_NULL)
+ {
+ ptr->~T();
+ VmaFree(hAllocator, ptr);
+ }
+}
+
+template<typename T>
+static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
+{
+ if(ptr != VMA_NULL)
+ {
+ for(size_t i = count; i--; )
+ ptr[i].~T();
+ VmaFree(hAllocator, ptr);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaStringBuilder
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaStringBuilder
+{
+public:
+ VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
+ size_t GetLength() const { return m_Data.size(); }
+ const char* GetData() const { return m_Data.data(); }
+
+ void Add(char ch) { m_Data.push_back(ch); }
+ void Add(const char* pStr);
+ void AddNewLine() { Add('\n'); }
+ void AddNumber(uint32_t num);
+ void AddNumber(uint64_t num);
+ void AddPointer(const void* ptr);
+
+private:
+ VmaVector< char, VmaStlAllocator<char> > m_Data;
+};
+
+void VmaStringBuilder::Add(const char* pStr)
+{
+ const size_t strLen = strlen(pStr);
+ if(strLen > 0)
+ {
+ const size_t oldCount = m_Data.size();
+ m_Data.resize(oldCount + strLen);
+ memcpy(m_Data.data() + oldCount, pStr, strLen);
+ }
+}
+
+void VmaStringBuilder::AddNumber(uint32_t num)
+{
+ char buf[11];
+ VmaUint32ToStr(buf, sizeof(buf), num);
+ Add(buf);
+}
+
+void VmaStringBuilder::AddNumber(uint64_t num)
+{
+ char buf[21];
+ VmaUint64ToStr(buf, sizeof(buf), num);
+ Add(buf);
+}
+
+void VmaStringBuilder::AddPointer(const void* ptr)
+{
+ char buf[21];
+ VmaPtrToStr(buf, sizeof(buf), ptr);
+ Add(buf);
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaJsonWriter
+
+#if VMA_STATS_STRING_ENABLED
+
+class VmaJsonWriter
+{
+public:
+ VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
+ ~VmaJsonWriter();
+
+ void BeginObject(bool singleLine = false);
+ void EndObject();
+
+ void BeginArray(bool singleLine = false);
+ void EndArray();
+
+ void WriteString(const char* pStr);
+ void BeginString(const char* pStr = VMA_NULL);
+ void ContinueString(const char* pStr);
+ void ContinueString(uint32_t n);
+ void ContinueString(uint64_t n);
+ void ContinueString_Pointer(const void* ptr);
+ void EndString(const char* pStr = VMA_NULL);
+
+ void WriteNumber(uint32_t n);
+ void WriteNumber(uint64_t n);
+ void WriteBool(bool b);
+ void WriteNull();
+
+private:
+ static const char* const INDENT;
+
+ enum COLLECTION_TYPE
+ {
+ COLLECTION_TYPE_OBJECT,
+ COLLECTION_TYPE_ARRAY,
+ };
+ struct StackItem
+ {
+ COLLECTION_TYPE type;
+ uint32_t valueCount;
+ bool singleLineMode;
+ };
+
+ VmaStringBuilder& m_SB;
+ VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
+ bool m_InsideString;
+
+ void BeginValue(bool isString);
+ void WriteIndent(bool oneLess = false);
+};
+
+const char* const VmaJsonWriter::INDENT = " ";
+
+VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
+ m_SB(sb),
+ m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
+ m_InsideString(false)
+{
+}
+
+VmaJsonWriter::~VmaJsonWriter()
+{
+ VMA_ASSERT(!m_InsideString);
+ VMA_ASSERT(m_Stack.empty());
+}
+
+void VmaJsonWriter::BeginObject(bool singleLine)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(false);
+ m_SB.Add('{');
+
+ StackItem item;
+ item.type = COLLECTION_TYPE_OBJECT;
+ item.valueCount = 0;
+ item.singleLineMode = singleLine;
+ m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndObject()
+{
+ VMA_ASSERT(!m_InsideString);
+
+ WriteIndent(true);
+ m_SB.Add('}');
+
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
+ m_Stack.pop_back();
+}
+
+void VmaJsonWriter::BeginArray(bool singleLine)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(false);
+ m_SB.Add('[');
+
+ StackItem item;
+ item.type = COLLECTION_TYPE_ARRAY;
+ item.valueCount = 0;
+ item.singleLineMode = singleLine;
+ m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndArray()
+{
+ VMA_ASSERT(!m_InsideString);
+
+ WriteIndent(true);
+ m_SB.Add(']');
+
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
+ m_Stack.pop_back();
+}
+
+void VmaJsonWriter::WriteString(const char* pStr)
+{
+ BeginString(pStr);
+ EndString();
+}
+
+void VmaJsonWriter::BeginString(const char* pStr)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(true);
+ m_SB.Add('"');
+ m_InsideString = true;
+ if(pStr != VMA_NULL && pStr[0] != '\0')
+ {
+ ContinueString(pStr);
+ }
+}
+
+void VmaJsonWriter::ContinueString(const char* pStr)
+{
+ VMA_ASSERT(m_InsideString);
+
+ const size_t strLen = strlen(pStr);
+ for(size_t i = 0; i < strLen; ++i)
+ {
+ char ch = pStr[i];
+ if(ch == '\'')
+ {
+ m_SB.Add("\\\\");
+ }
+ else if(ch == '"')
+ {
+ m_SB.Add("\\\"");
+ }
+ else if(ch >= 32)
+ {
+ m_SB.Add(ch);
+ }
+ else switch(ch)
+ {
+ case '\b':
+ m_SB.Add("\\b");
+ break;
+ case '\f':
+ m_SB.Add("\\f");
+ break;
+ case '\n':
+ m_SB.Add("\\n");
+ break;
+ case '\r':
+ m_SB.Add("\\r");
+ break;
+ case '\t':
+ m_SB.Add("\\t");
+ break;
+ default:
+ VMA_ASSERT(0 && "Character not currently supported.");
+ break;
+ }
+ }
+}
+
+void VmaJsonWriter::ContinueString(uint32_t n)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString(uint64_t n)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddPointer(ptr);
+}
+
+void VmaJsonWriter::EndString(const char* pStr)
+{
+ VMA_ASSERT(m_InsideString);
+ if(pStr != VMA_NULL && pStr[0] != '\0')
+ {
+ ContinueString(pStr);
+ }
+ m_SB.Add('"');
+ m_InsideString = false;
+}
+
+void VmaJsonWriter::WriteNumber(uint32_t n)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteNumber(uint64_t n)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteBool(bool b)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.Add(b ? "true" : "false");
+}
+
+void VmaJsonWriter::WriteNull()
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.Add("null");
+}
+
+void VmaJsonWriter::BeginValue(bool isString)
+{
+ if(!m_Stack.empty())
+ {
+ StackItem& currItem = m_Stack.back();
+ if(currItem.type == COLLECTION_TYPE_OBJECT &&
+ currItem.valueCount % 2 == 0)
+ {
+ VMA_ASSERT(isString);
+ }
+
+ if(currItem.type == COLLECTION_TYPE_OBJECT &&
+ currItem.valueCount % 2 != 0)
+ {
+ m_SB.Add(": ");
+ }
+ else if(currItem.valueCount > 0)
+ {
+ m_SB.Add(", ");
+ WriteIndent();
+ }
+ else
+ {
+ WriteIndent();
+ }
+ ++currItem.valueCount;
+ }
+}
+
+void VmaJsonWriter::WriteIndent(bool oneLess)
+{
+ if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
+ {
+ m_SB.AddNewLine();
+
+ size_t count = m_Stack.size();
+ if(count > 0 && oneLess)
+ {
+ --count;
+ }
+ for(size_t i = 0; i < count; ++i)
+ {
+ m_SB.Add(INDENT);
+ }
+ }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+////////////////////////////////////////////////////////////////////////////////
+
+void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)
+{
+ if(IsUserDataString())
+ {
+ VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
+
+ FreeUserDataString(hAllocator);
+
+ if(pUserData != VMA_NULL)
+ {
+ const char* const newStrSrc = (char*)pUserData;
+ const size_t newStrLen = strlen(newStrSrc);
+ char* const newStrDst = vma_new_array(hAllocator, char, newStrLen + 1);
+ memcpy(newStrDst, newStrSrc, newStrLen + 1);
+ m_pUserData = newStrDst;
+ }
+ }
+ else
+ {
+ m_pUserData = pUserData;
+ }
+}
+
+void VmaAllocation_T::ChangeBlockAllocation(
+ VmaAllocator hAllocator,
+ VmaDeviceMemoryBlock* block,
+ VkDeviceSize offset)
+{
+ VMA_ASSERT(block != VMA_NULL);
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+
+ // Move mapping reference counter from old block to new block.
+ if(block != m_BlockAllocation.m_Block)
+ {
+ uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;
+ if(IsPersistentMap())
+ ++mapRefCount;
+ m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);
+ block->Map(hAllocator, mapRefCount, VMA_NULL);
+ }
+
+ m_BlockAllocation.m_Block = block;
+ m_BlockAllocation.m_Offset = offset;
+}
+
+VkDeviceSize VmaAllocation_T::GetOffset() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Offset;
+ case ALLOCATION_TYPE_DEDICATED:
+ return 0;
+ default:
+ VMA_ASSERT(0);
+ return 0;
+ }
+}
+
+VkDeviceMemory VmaAllocation_T::GetMemory() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Block->GetDeviceMemory();
+ case ALLOCATION_TYPE_DEDICATED:
+ return m_DedicatedAllocation.m_hMemory;
+ default:
+ VMA_ASSERT(0);
+ return VK_NULL_HANDLE;
+ }
+}
+
+uint32_t VmaAllocation_T::GetMemoryTypeIndex() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Block->GetMemoryTypeIndex();
+ case ALLOCATION_TYPE_DEDICATED:
+ return m_DedicatedAllocation.m_MemoryTypeIndex;
+ default:
+ VMA_ASSERT(0);
+ return UINT32_MAX;
+ }
+}
+
+void* VmaAllocation_T::GetMappedData() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ if(m_MapCount != 0)
+ {
+ void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
+ VMA_ASSERT(pBlockData != VMA_NULL);
+ return (char*)pBlockData + m_BlockAllocation.m_Offset;
+ }
+ else
+ {
+ return VMA_NULL;
+ }
+ break;
+ case ALLOCATION_TYPE_DEDICATED:
+ VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
+ return m_DedicatedAllocation.m_pMappedData;
+ default:
+ VMA_ASSERT(0);
+ return VMA_NULL;
+ }
+}
+
+bool VmaAllocation_T::CanBecomeLost() const
+{
+ switch(m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_CanBecomeLost;
+ case ALLOCATION_TYPE_DEDICATED:
+ return false;
+ default:
+ VMA_ASSERT(0);
+ return false;
+ }
+}
+
+VmaPool VmaAllocation_T::GetPool() const
+{
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+ return m_BlockAllocation.m_hPool;
+}
+
+bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+ VMA_ASSERT(CanBecomeLost());
+
+ /*
+ Warning: This is a carefully designed algorithm.
+ Do not modify unless you really know what you're doing :)
+ */
+ uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
+ for(;;)
+ {
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+ {
+ VMA_ASSERT(0);
+ return false;
+ }
+ else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
+ {
+ return false;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
+ {
+ // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
+ // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
+ return true;
+ }
+ }
+ }
+}
+
+void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)
+{
+ VMA_ASSERT(IsUserDataString());
+ if(m_pUserData != VMA_NULL)
+ {
+ char* const oldStr = (char*)m_pUserData;
+ const size_t oldStrLen = strlen(oldStr);
+ vma_delete_array(hAllocator, oldStr, oldStrLen + 1);
+ m_pUserData = VMA_NULL;
+ }
+}
+
+void VmaAllocation_T::BlockAllocMap()
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+ {
+ ++m_MapCount;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
+ }
+}
+
+void VmaAllocation_T::BlockAllocUnmap()
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+ {
+ --m_MapCount;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
+ }
+}
+
+VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+ if(m_MapCount != 0)
+ {
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
+ {
+ VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
+ *ppData = m_DedicatedAllocation.m_pMappedData;
+ ++m_MapCount;
+ return VK_SUCCESS;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+ }
+ else
+ {
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+ hAllocator->m_hDevice,
+ m_DedicatedAllocation.m_hMemory,
+ 0, // offset
+ VK_WHOLE_SIZE,
+ 0, // flags
+ ppData);
+ if(result == VK_SUCCESS)
+ {
+ m_DedicatedAllocation.m_pMappedData = *ppData;
+ m_MapCount = 1;
+ }
+ return result;
+ }
+}
+
+void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+ if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
+ {
+ --m_MapCount;
+ if(m_MapCount == 0)
+ {
+ m_DedicatedAllocation.m_pMappedData = VMA_NULL;
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
+ hAllocator->m_hDevice,
+ m_DedicatedAllocation.m_hMemory);
+ }
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+// Correspond to values of enum VmaSuballocationType.
+static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
+ "FREE",
+ "UNKNOWN",
+ "BUFFER",
+ "IMAGE_UNKNOWN",
+ "IMAGE_LINEAR",
+ "IMAGE_OPTIMAL",
+};
+
+static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
+{
+ json.BeginObject();
+
+ json.WriteString("Blocks");
+ json.WriteNumber(stat.blockCount);
+
+ json.WriteString("Allocations");
+ json.WriteNumber(stat.allocationCount);
+
+ json.WriteString("UnusedRanges");
+ json.WriteNumber(stat.unusedRangeCount);
+
+ json.WriteString("UsedBytes");
+ json.WriteNumber(stat.usedBytes);
+
+ json.WriteString("UnusedBytes");
+ json.WriteNumber(stat.unusedBytes);
+
+ if(stat.allocationCount > 1)
+ {
+ json.WriteString("AllocationSize");
+ json.BeginObject(true);
+ json.WriteString("Min");
+ json.WriteNumber(stat.allocationSizeMin);
+ json.WriteString("Avg");
+ json.WriteNumber(stat.allocationSizeAvg);
+ json.WriteString("Max");
+ json.WriteNumber(stat.allocationSizeMax);
+ json.EndObject();
+ }
+
+ if(stat.unusedRangeCount > 1)
+ {
+ json.WriteString("UnusedRangeSize");
+ json.BeginObject(true);
+ json.WriteString("Min");
+ json.WriteNumber(stat.unusedRangeSizeMin);
+ json.WriteString("Avg");
+ json.WriteNumber(stat.unusedRangeSizeAvg);
+ json.WriteString("Max");
+ json.WriteNumber(stat.unusedRangeSizeMax);
+ json.EndObject();
+ }
+
+ json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+struct VmaSuballocationItemSizeLess
+{
+ bool operator()(
+ const VmaSuballocationList::iterator lhs,
+ const VmaSuballocationList::iterator rhs) const
+ {
+ return lhs->size < rhs->size;
+ }
+ bool operator()(
+ const VmaSuballocationList::iterator lhs,
+ VkDeviceSize rhsSize) const
+ {
+ return lhs->size < rhsSize;
+ }
+};
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaBlockMetadata
+
+VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :
+ m_Size(0),
+ m_FreeCount(0),
+ m_SumFreeSize(0),
+ m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
+ m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
+{
+}
+
+VmaBlockMetadata::~VmaBlockMetadata()
+{
+}
+
+void VmaBlockMetadata::Init(VkDeviceSize size)
+{
+ m_Size = size;
+ m_FreeCount = 1;
+ m_SumFreeSize = size;
+
+ VmaSuballocation suballoc = {};
+ suballoc.offset = 0;
+ suballoc.size = size;
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ suballoc.hAllocation = VK_NULL_HANDLE;
+
+ m_Suballocations.push_back(suballoc);
+ VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
+ --suballocItem;
+ m_FreeSuballocationsBySize.push_back(suballocItem);
+}
+
+bool VmaBlockMetadata::Validate() const
+{
+ if(m_Suballocations.empty())
+ {
+ return false;
+ }
+
+ // Expected offset of new suballocation as calculates from previous ones.
+ VkDeviceSize calculatedOffset = 0;
+ // Expected number of free suballocations as calculated from traversing their list.
+ uint32_t calculatedFreeCount = 0;
+ // Expected sum size of free suballocations as calculated from traversing their list.
+ VkDeviceSize calculatedSumFreeSize = 0;
+ // Expected number of free suballocations that should be registered in
+ // m_FreeSuballocationsBySize calculated from traversing their list.
+ size_t freeSuballocationsToRegister = 0;
+ // True if previous visisted suballocation was free.
+ bool prevFree = false;
+
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+ suballocItem != m_Suballocations.cend();
+ ++suballocItem)
+ {
+ const VmaSuballocation& subAlloc = *suballocItem;
+
+ // Actual offset of this suballocation doesn't match expected one.
+ if(subAlloc.offset != calculatedOffset)
+ {
+ return false;
+ }
+
+ const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
+ // Two adjacent free suballocations are invalid. They should be merged.
+ if(prevFree && currFree)
+ {
+ return false;
+ }
+
+ if(currFree != (subAlloc.hAllocation == VK_NULL_HANDLE))
+ {
+ return false;
+ }
+
+ if(currFree)
+ {
+ calculatedSumFreeSize += subAlloc.size;
+ ++calculatedFreeCount;
+ if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ ++freeSuballocationsToRegister;
+ }
+ }
+ else
+ {
+ if(subAlloc.hAllocation->GetOffset() != subAlloc.offset)
+ {
+ return false;
+ }
+ if(subAlloc.hAllocation->GetSize() != subAlloc.size)
+ {
+ return false;
+ }
+ }
+
+ calculatedOffset += subAlloc.size;
+ prevFree = currFree;
+ }
+
+ // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
+ // match expected one.
+ if(m_FreeSuballocationsBySize.size() != freeSuballocationsToRegister)
+ {
+ return false;
+ }
+
+ VkDeviceSize lastSize = 0;
+ for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
+ {
+ VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
+
+ // Only free suballocations can be registered in m_FreeSuballocationsBySize.
+ if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ return false;
+ }
+ // They must be sorted by size ascending.
+ if(suballocItem->size < lastSize)
+ {
+ return false;
+ }
+
+ lastSize = suballocItem->size;
+ }
+
+ // Check if totals match calculacted values.
+ if(!ValidateFreeSuballocationList() ||
+ (calculatedOffset != m_Size) ||
+ (calculatedSumFreeSize != m_SumFreeSize) ||
+ (calculatedFreeCount != m_FreeCount))
+ {
+ return false;
+ }
+
+ return true;
+}
+
+VkDeviceSize VmaBlockMetadata::GetUnusedRangeSizeMax() const
+{
+ if(!m_FreeSuballocationsBySize.empty())
+ {
+ return m_FreeSuballocationsBySize.back()->size;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
+bool VmaBlockMetadata::IsEmpty() const
+{
+ return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
+}
+
+void VmaBlockMetadata::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
+{
+ outInfo.blockCount = 1;
+
+ const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+ outInfo.allocationCount = rangeCount - m_FreeCount;
+ outInfo.unusedRangeCount = m_FreeCount;
+
+ outInfo.unusedBytes = m_SumFreeSize;
+ outInfo.usedBytes = m_Size - outInfo.unusedBytes;
+
+ outInfo.allocationSizeMin = UINT64_MAX;
+ outInfo.allocationSizeMax = 0;
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
+ outInfo.unusedRangeSizeMax = 0;
+
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+ suballocItem != m_Suballocations.cend();
+ ++suballocItem)
+ {
+ const VmaSuballocation& suballoc = *suballocItem;
+ if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
+ outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
+ }
+ else
+ {
+ outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
+ outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
+ }
+ }
+}
+
+void VmaBlockMetadata::AddPoolStats(VmaPoolStats& inoutStats) const
+{
+ const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
+
+ inoutStats.size += m_Size;
+ inoutStats.unusedSize += m_SumFreeSize;
+ inoutStats.allocationCount += rangeCount - m_FreeCount;
+ inoutStats.unusedRangeCount += m_FreeCount;
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockMetadata::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+ json.BeginObject();
+
+ json.WriteString("TotalBytes");
+ json.WriteNumber(m_Size);
+
+ json.WriteString("UnusedBytes");
+ json.WriteNumber(m_SumFreeSize);
+
+ json.WriteString("Allocations");
+ json.WriteNumber((uint64_t)m_Suballocations.size() - m_FreeCount);
+
+ json.WriteString("UnusedRanges");
+ json.WriteNumber(m_FreeCount);
+
+ json.WriteString("Suballocations");
+ json.BeginArray();
+ size_t i = 0;
+ for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
+ suballocItem != m_Suballocations.cend();
+ ++suballocItem, ++i)
+ {
+ json.BeginObject(true);
+
+ json.WriteString("Type");
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[suballocItem->type]);
+
+ json.WriteString("Size");
+ json.WriteNumber(suballocItem->size);
+
+ json.WriteString("Offset");
+ json.WriteNumber(suballocItem->offset);
+
+ if(suballocItem->type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ const void* pUserData = suballocItem->hAllocation->GetUserData();
+ if(pUserData != VMA_NULL)
+ {
+ json.WriteString("UserData");
+ if(suballocItem->hAllocation->IsUserDataString())
+ {
+ json.WriteString((const char*)pUserData);
+ }
+ else
+ {
+ json.BeginString();
+ json.ContinueString_Pointer(pUserData);
+ json.EndString();
+ }
+ }
+ }
+
+ json.EndObject();
+ }
+ json.EndArray();
+
+ json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/*
+How many suitable free suballocations to analyze before choosing best one.
+- Set to 1 to use First-Fit algorithm - first suitable free suballocation will
+ be chosen.
+- Set to UINT32_MAX to use Best-Fit/Worst-Fit algorithm - all suitable free
+ suballocations will be analized and best one will be chosen.
+- Any other value is also acceptable.
+*/
+//static const uint32_t MAX_SUITABLE_SUBALLOCATIONS_TO_CHECK = 8;
+
+void VmaBlockMetadata::CreateFirstAllocationRequest(VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(IsEmpty());
+ pAllocationRequest->offset = 0;
+ pAllocationRequest->sumFreeSize = m_SumFreeSize;
+ pAllocationRequest->sumItemSize = 0;
+ pAllocationRequest->item = m_Suballocations.begin();
+ pAllocationRequest->itemsToMakeLostCount = 0;
+}
+
+bool VmaBlockMetadata::CreateAllocationRequest(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ bool canMakeOtherLost,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(allocSize > 0);
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(pAllocationRequest != VMA_NULL);
+ VMA_HEAVY_ASSERT(Validate());
+
+ // There is not enough total free space in this block to fullfill the request: Early return.
+ if(canMakeOtherLost == false && m_SumFreeSize < allocSize)
+ {
+ return false;
+ }
+
+ // New algorithm, efficiently searching freeSuballocationsBySize.
+ const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
+ if(freeSuballocCount > 0)
+ {
+ if(VMA_BEST_FIT)
+ {
+ // Find first free suballocation with size not less than allocSize.
+ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+ m_FreeSuballocationsBySize.data(),
+ m_FreeSuballocationsBySize.data() + freeSuballocCount,
+ allocSize,
+ VmaSuballocationItemSizeLess());
+ size_t index = it - m_FreeSuballocationsBySize.data();
+ for(; index < freeSuballocCount; ++index)
+ {
+ if(CheckAllocation(
+ currentFrameIndex,
+ frameInUseCount,
+ bufferImageGranularity,
+ allocSize,
+ allocAlignment,
+ allocType,
+ m_FreeSuballocationsBySize[index],
+ false, // canMakeOtherLost
+ &pAllocationRequest->offset,
+ &pAllocationRequest->itemsToMakeLostCount,
+ &pAllocationRequest->sumFreeSize,
+ &pAllocationRequest->sumItemSize))
+ {
+ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+ return true;
+ }
+ }
+ }
+ else
+ {
+ // Search staring from biggest suballocations.
+ for(size_t index = freeSuballocCount; index--; )
+ {
+ if(CheckAllocation(
+ currentFrameIndex,
+ frameInUseCount,
+ bufferImageGranularity,
+ allocSize,
+ allocAlignment,
+ allocType,
+ m_FreeSuballocationsBySize[index],
+ false, // canMakeOtherLost
+ &pAllocationRequest->offset,
+ &pAllocationRequest->itemsToMakeLostCount,
+ &pAllocationRequest->sumFreeSize,
+ &pAllocationRequest->sumItemSize))
+ {
+ pAllocationRequest->item = m_FreeSuballocationsBySize[index];
+ return true;
+ }
+ }
+ }
+ }
+
+ if(canMakeOtherLost)
+ {
+ // Brute-force algorithm. TODO: Come up with something better.
+
+ pAllocationRequest->sumFreeSize = VK_WHOLE_SIZE;
+ pAllocationRequest->sumItemSize = VK_WHOLE_SIZE;
+
+ VmaAllocationRequest tmpAllocRequest = {};
+ for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
+ suballocIt != m_Suballocations.end();
+ ++suballocIt)
+ {
+ if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
+ suballocIt->hAllocation->CanBecomeLost())
+ {
+ if(CheckAllocation(
+ currentFrameIndex,
+ frameInUseCount,
+ bufferImageGranularity,
+ allocSize,
+ allocAlignment,
+ allocType,
+ suballocIt,
+ canMakeOtherLost,
+ &tmpAllocRequest.offset,
+ &tmpAllocRequest.itemsToMakeLostCount,
+ &tmpAllocRequest.sumFreeSize,
+ &tmpAllocRequest.sumItemSize))
+ {
+ tmpAllocRequest.item = suballocIt;
+
+ if(tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
+ {
+ *pAllocationRequest = tmpAllocRequest;
+ }
+ }
+ }
+ }
+
+ if(pAllocationRequest->sumItemSize != VK_WHOLE_SIZE)
+ {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool VmaBlockMetadata::MakeRequestedAllocationsLost(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ while(pAllocationRequest->itemsToMakeLostCount > 0)
+ {
+ if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ ++pAllocationRequest->item;
+ }
+ VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+ VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
+ VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
+ if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+ {
+ pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
+ --pAllocationRequest->itemsToMakeLostCount;
+ }
+ else
+ {
+ return false;
+ }
+ }
+
+ VMA_HEAVY_ASSERT(Validate());
+ VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
+ VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ return true;
+}
+
+uint32_t VmaBlockMetadata::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
+{
+ uint32_t lostAllocationCount = 0;
+ for(VmaSuballocationList::iterator it = m_Suballocations.begin();
+ it != m_Suballocations.end();
+ ++it)
+ {
+ if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
+ it->hAllocation->CanBecomeLost() &&
+ it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
+ {
+ it = FreeSuballocation(it);
+ ++lostAllocationCount;
+ }
+ }
+ return lostAllocationCount;
+}
+
+void VmaBlockMetadata::Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ VkDeviceSize allocSize,
+ VmaAllocation hAllocation)
+{
+ VMA_ASSERT(request.item != m_Suballocations.end());
+ VmaSuballocation& suballoc = *request.item;
+ // Given suballocation is a free block.
+ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+ // Given offset is inside this suballocation.
+ VMA_ASSERT(request.offset >= suballoc.offset);
+ const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
+ VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
+ const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
+
+ // Unregister this free suballocation from m_FreeSuballocationsBySize and update
+ // it to become used.
+ UnregisterFreeSuballocation(request.item);
+
+ suballoc.offset = request.offset;
+ suballoc.size = allocSize;
+ suballoc.type = type;
+ suballoc.hAllocation = hAllocation;
+
+ // If there are any free bytes remaining at the end, insert new free suballocation after current one.
+ if(paddingEnd)
+ {
+ VmaSuballocation paddingSuballoc = {};
+ paddingSuballoc.offset = request.offset + allocSize;
+ paddingSuballoc.size = paddingEnd;
+ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ VmaSuballocationList::iterator next = request.item;
+ ++next;
+ const VmaSuballocationList::iterator paddingEndItem =
+ m_Suballocations.insert(next, paddingSuballoc);
+ RegisterFreeSuballocation(paddingEndItem);
+ }
+
+ // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
+ if(paddingBegin)
+ {
+ VmaSuballocation paddingSuballoc = {};
+ paddingSuballoc.offset = request.offset - paddingBegin;
+ paddingSuballoc.size = paddingBegin;
+ paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ const VmaSuballocationList::iterator paddingBeginItem =
+ m_Suballocations.insert(request.item, paddingSuballoc);
+ RegisterFreeSuballocation(paddingBeginItem);
+ }
+
+ // Update totals.
+ m_FreeCount = m_FreeCount - 1;
+ if(paddingBegin > 0)
+ {
+ ++m_FreeCount;
+ }
+ if(paddingEnd > 0)
+ {
+ ++m_FreeCount;
+ }
+ m_SumFreeSize -= allocSize;
+}
+
+void VmaBlockMetadata::Free(const VmaAllocation allocation)
+{
+ for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
+ suballocItem != m_Suballocations.end();
+ ++suballocItem)
+ {
+ VmaSuballocation& suballoc = *suballocItem;
+ if(suballoc.hAllocation == allocation)
+ {
+ FreeSuballocation(suballocItem);
+ VMA_HEAVY_ASSERT(Validate());
+ return;
+ }
+ }
+ VMA_ASSERT(0 && "Not found!");
+}
+
+void VmaBlockMetadata::FreeAtOffset(VkDeviceSize offset)
+{
+ for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
+ suballocItem != m_Suballocations.end();
+ ++suballocItem)
+ {
+ VmaSuballocation& suballoc = *suballocItem;
+ if(suballoc.offset == offset)
+ {
+ FreeSuballocation(suballocItem);
+ return;
+ }
+ }
+ VMA_ASSERT(0 && "Not found!");
+}
+
+bool VmaBlockMetadata::ValidateFreeSuballocationList() const
+{
+ VkDeviceSize lastSize = 0;
+ for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
+ {
+ const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
+
+ if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ VMA_ASSERT(0);
+ return false;
+ }
+ if(it->size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ VMA_ASSERT(0);
+ return false;
+ }
+ if(it->size < lastSize)
+ {
+ VMA_ASSERT(0);
+ return false;
+ }
+
+ lastSize = it->size;
+ }
+ return true;
+}
+
+bool VmaBlockMetadata::CheckAllocation(
+ uint32_t currentFrameIndex,
+ uint32_t frameInUseCount,
+ VkDeviceSize bufferImageGranularity,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ VmaSuballocationList::const_iterator suballocItem,
+ bool canMakeOtherLost,
+ VkDeviceSize* pOffset,
+ size_t* itemsToMakeLostCount,
+ VkDeviceSize* pSumFreeSize,
+ VkDeviceSize* pSumItemSize) const
+{
+ VMA_ASSERT(allocSize > 0);
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(suballocItem != m_Suballocations.cend());
+ VMA_ASSERT(pOffset != VMA_NULL);
+
+ *itemsToMakeLostCount = 0;
+ *pSumFreeSize = 0;
+ *pSumItemSize = 0;
+
+ if(canMakeOtherLost)
+ {
+ if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ *pSumFreeSize = suballocItem->size;
+ }
+ else
+ {
+ if(suballocItem->hAllocation->CanBecomeLost() &&
+ suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++*itemsToMakeLostCount;
+ *pSumItemSize = suballocItem->size;
+ }
+ else
+ {
+ return false;
+ }
+ }
+
+ // Remaining size is too small for this request: Early return.
+ if(m_Size - suballocItem->offset < allocSize)
+ {
+ return false;
+ }
+
+ // Start from offset equal to beginning of this suballocation.
+ *pOffset = suballocItem->offset;
+
+ // Apply VMA_DEBUG_MARGIN at the beginning.
+ if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
+ {
+ *pOffset += VMA_DEBUG_MARGIN;
+ }
+
+ // Apply alignment.
+ const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
+ *pOffset = VmaAlignUp(*pOffset, alignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if(bufferImageGranularity > 1)
+ {
+ bool bufferImageGranularityConflict = false;
+ VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+ while(prevSuballocItem != m_Suballocations.cbegin())
+ {
+ --prevSuballocItem;
+ const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if(bufferImageGranularityConflict)
+ {
+ *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+ }
+ }
+
+ // Now that we have final *pOffset, check if we are past suballocItem.
+ // If yes, return false - this function should be called for another suballocItem as starting point.
+ if(*pOffset >= suballocItem->offset + suballocItem->size)
+ {
+ return false;
+ }
+
+ // Calculate padding at the beginning based on current offset.
+ const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
+
+ // Calculate required margin at the end if this is not last suballocation.
+ VmaSuballocationList::const_iterator next = suballocItem;
+ ++next;
+ const VkDeviceSize requiredEndMargin =
+ (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
+
+ const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
+ // Another early return check.
+ if(suballocItem->offset + totalSize > m_Size)
+ {
+ return false;
+ }
+
+ // Advance lastSuballocItem until desired size is reached.
+ // Update itemsToMakeLostCount.
+ VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
+ if(totalSize > suballocItem->size)
+ {
+ VkDeviceSize remainingSize = totalSize - suballocItem->size;
+ while(remainingSize > 0)
+ {
+ ++lastSuballocItem;
+ if(lastSuballocItem == m_Suballocations.cend())
+ {
+ return false;
+ }
+ if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ *pSumFreeSize += lastSuballocItem->size;
+ }
+ else
+ {
+ VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
+ if(lastSuballocItem->hAllocation->CanBecomeLost() &&
+ lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++*itemsToMakeLostCount;
+ *pSumItemSize += lastSuballocItem->size;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ remainingSize = (lastSuballocItem->size < remainingSize) ?
+ remainingSize - lastSuballocItem->size : 0;
+ }
+ }
+
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, we must mark more allocations lost or fail.
+ if(bufferImageGranularity > 1)
+ {
+ VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
+ ++nextSuballocItem;
+ while(nextSuballocItem != m_Suballocations.cend())
+ {
+ const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+ if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
+ if(nextSuballoc.hAllocation->CanBecomeLost() &&
+ nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
+ {
+ ++*itemsToMakeLostCount;
+ }
+ else
+ {
+ return false;
+ }
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ ++nextSuballocItem;
+ }
+ }
+ }
+ else
+ {
+ const VmaSuballocation& suballoc = *suballocItem;
+ VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ *pSumFreeSize = suballoc.size;
+
+ // Size of this suballocation is too small for this request: Early return.
+ if(suballoc.size < allocSize)
+ {
+ return false;
+ }
+
+ // Start from offset equal to beginning of this suballocation.
+ *pOffset = suballoc.offset;
+
+ // Apply VMA_DEBUG_MARGIN at the beginning.
+ if((VMA_DEBUG_MARGIN > 0) && suballocItem != m_Suballocations.cbegin())
+ {
+ *pOffset += VMA_DEBUG_MARGIN;
+ }
+
+ // Apply alignment.
+ const VkDeviceSize alignment = VMA_MAX(allocAlignment, static_cast<VkDeviceSize>(VMA_DEBUG_ALIGNMENT));
+ *pOffset = VmaAlignUp(*pOffset, alignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if(bufferImageGranularity > 1)
+ {
+ bool bufferImageGranularityConflict = false;
+ VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
+ while(prevSuballocItem != m_Suballocations.cbegin())
+ {
+ --prevSuballocItem;
+ const VmaSuballocation& prevSuballoc = *prevSuballocItem;
+ if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if(bufferImageGranularityConflict)
+ {
+ *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
+ }
+ }
+
+ // Calculate padding at the beginning based on current offset.
+ const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
+
+ // Calculate required margin at the end if this is not last suballocation.
+ VmaSuballocationList::const_iterator next = suballocItem;
+ ++next;
+ const VkDeviceSize requiredEndMargin =
+ (next != m_Suballocations.cend()) ? VMA_DEBUG_MARGIN : 0;
+
+ // Fail if requested size plus margin before and after is bigger than size of this suballocation.
+ if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
+ {
+ return false;
+ }
+
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if(bufferImageGranularity > 1)
+ {
+ VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
+ ++nextSuballocItem;
+ while(nextSuballocItem != m_Suballocations.cend())
+ {
+ const VmaSuballocation& nextSuballoc = *nextSuballocItem;
+ if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ ++nextSuballocItem;
+ }
+ }
+ }
+
+ // All tests passed: Success. pOffset is already filled.
+ return true;
+}
+
+void VmaBlockMetadata::MergeFreeWithNext(VmaSuballocationList::iterator item)
+{
+ VMA_ASSERT(item != m_Suballocations.end());
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VmaSuballocationList::iterator nextItem = item;
+ ++nextItem;
+ VMA_ASSERT(nextItem != m_Suballocations.end());
+ VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ item->size += nextItem->size;
+ --m_FreeCount;
+ m_Suballocations.erase(nextItem);
+}
+
+VmaSuballocationList::iterator VmaBlockMetadata::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
+{
+ // Change this suballocation to be marked as free.
+ VmaSuballocation& suballoc = *suballocItem;
+ suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ suballoc.hAllocation = VK_NULL_HANDLE;
+
+ // Update totals.
+ ++m_FreeCount;
+ m_SumFreeSize += suballoc.size;
+
+ // Merge with previous and/or next suballocation if it's also free.
+ bool mergeWithNext = false;
+ bool mergeWithPrev = false;
+
+ VmaSuballocationList::iterator nextItem = suballocItem;
+ ++nextItem;
+ if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
+ {
+ mergeWithNext = true;
+ }
+
+ VmaSuballocationList::iterator prevItem = suballocItem;
+ if(suballocItem != m_Suballocations.begin())
+ {
+ --prevItem;
+ if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ mergeWithPrev = true;
+ }
+ }
+
+ if(mergeWithNext)
+ {
+ UnregisterFreeSuballocation(nextItem);
+ MergeFreeWithNext(suballocItem);
+ }
+
+ if(mergeWithPrev)
+ {
+ UnregisterFreeSuballocation(prevItem);
+ MergeFreeWithNext(prevItem);
+ RegisterFreeSuballocation(prevItem);
+ return prevItem;
+ }
+ else
+ {
+ RegisterFreeSuballocation(suballocItem);
+ return suballocItem;
+ }
+}
+
+void VmaBlockMetadata::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(item->size > 0);
+
+ // You may want to enable this validation at the beginning or at the end of
+ // this function, depending on what do you want to check.
+ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+ if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ if(m_FreeSuballocationsBySize.empty())
+ {
+ m_FreeSuballocationsBySize.push_back(item);
+ }
+ else
+ {
+ VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
+ }
+ }
+
+ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+
+void VmaBlockMetadata::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
+{
+ VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(item->size > 0);
+
+ // You may want to enable this validation at the beginning or at the end of
+ // this function, depending on what do you want to check.
+ VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+
+ if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
+ {
+ VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
+ m_FreeSuballocationsBySize.data(),
+ m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
+ item,
+ VmaSuballocationItemSizeLess());
+ for(size_t index = it - m_FreeSuballocationsBySize.data();
+ index < m_FreeSuballocationsBySize.size();
+ ++index)
+ {
+ if(m_FreeSuballocationsBySize[index] == item)
+ {
+ VmaVectorRemove(m_FreeSuballocationsBySize, index);
+ return;
+ }
+ VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
+ }
+ VMA_ASSERT(0 && "Not found.");
+ }
+
+ //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// class VmaDeviceMemoryBlock
+
+VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
+ m_Metadata(hAllocator),
+ m_MemoryTypeIndex(UINT32_MAX),
+ m_hMemory(VK_NULL_HANDLE),
+ m_MapCount(0),
+ m_pMappedData(VMA_NULL)
+{
+}
+
+void VmaDeviceMemoryBlock::Init(
+ uint32_t newMemoryTypeIndex,
+ VkDeviceMemory newMemory,
+ VkDeviceSize newSize)
+{
+ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+
+ m_MemoryTypeIndex = newMemoryTypeIndex;
+ m_hMemory = newMemory;
+
+ m_Metadata.Init(newSize);
+}
+
+void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
+{
+ // This is the most important assert in the entire library.
+ // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
+ VMA_ASSERT(m_Metadata.IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
+
+ VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
+ allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_Metadata.GetSize(), m_hMemory);
+ m_hMemory = VK_NULL_HANDLE;
+}
+
+bool VmaDeviceMemoryBlock::Validate() const
+{
+ if((m_hMemory == VK_NULL_HANDLE) ||
+ (m_Metadata.GetSize() == 0))
+ {
+ return false;
+ }
+
+ return m_Metadata.Validate();
+}
+
+VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
+{
+ if(count == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ if(m_MapCount != 0)
+ {
+ m_MapCount += count;
+ VMA_ASSERT(m_pMappedData != VMA_NULL);
+ if(ppData != VMA_NULL)
+ {
+ *ppData = m_pMappedData;
+ }
+ return VK_SUCCESS;
+ }
+ else
+ {
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+ hAllocator->m_hDevice,
+ m_hMemory,
+ 0, // offset
+ VK_WHOLE_SIZE,
+ 0, // flags
+ &m_pMappedData);
+ if(result == VK_SUCCESS)
+ {
+ if(ppData != VMA_NULL)
+ {
+ *ppData = m_pMappedData;
+ }
+ m_MapCount = count;
+ }
+ return result;
+ }
+}
+
+void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
+{
+ if(count == 0)
+ {
+ return;
+ }
+
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ if(m_MapCount >= count)
+ {
+ m_MapCount -= count;
+ if(m_MapCount == 0)
+ {
+ m_pMappedData = VMA_NULL;
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
+ }
+ }
+ else
+ {
+ VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
+ }
+}
+
+VkResult VmaDeviceMemoryBlock::BindBufferMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkBuffer hBuffer)
+{
+ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+ hAllocation->GetBlock() == this);
+ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ return hAllocator->GetVulkanFunctions().vkBindBufferMemory(
+ hAllocator->m_hDevice,
+ hBuffer,
+ m_hMemory,
+ hAllocation->GetOffset());
+}
+
+VkResult VmaDeviceMemoryBlock::BindImageMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkImage hImage)
+{
+ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+ hAllocation->GetBlock() == this);
+ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+ VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
+ return hAllocator->GetVulkanFunctions().vkBindImageMemory(
+ hAllocator->m_hDevice,
+ hImage,
+ m_hMemory,
+ hAllocation->GetOffset());
+}
+
+static void InitStatInfo(VmaStatInfo& outInfo)
+{
+ memset(&outInfo, 0, sizeof(outInfo));
+ outInfo.allocationSizeMin = UINT64_MAX;
+ outInfo.unusedRangeSizeMin = UINT64_MAX;
+}
+
+// Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
+static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
+{
+ inoutInfo.blockCount += srcInfo.blockCount;
+ inoutInfo.allocationCount += srcInfo.allocationCount;
+ inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
+ inoutInfo.usedBytes += srcInfo.usedBytes;
+ inoutInfo.unusedBytes += srcInfo.unusedBytes;
+ inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
+ inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
+ inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
+ inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
+}
+
+static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
+{
+ inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
+ VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
+ inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
+ VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
+}
+
+VmaPool_T::VmaPool_T(
+ VmaAllocator hAllocator,
+ const VmaPoolCreateInfo& createInfo) :
+ m_BlockVector(
+ hAllocator,
+ createInfo.memoryTypeIndex,
+ createInfo.blockSize,
+ createInfo.minBlockCount,
+ createInfo.maxBlockCount,
+ (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
+ createInfo.frameInUseCount,
+ true) // isCustomPool
+{
+}
+
+VmaPool_T::~VmaPool_T()
+{
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+VmaBlockVector::VmaBlockVector(
+ VmaAllocator hAllocator,
+ uint32_t memoryTypeIndex,
+ VkDeviceSize preferredBlockSize,
+ size_t minBlockCount,
+ size_t maxBlockCount,
+ VkDeviceSize bufferImageGranularity,
+ uint32_t frameInUseCount,
+ bool isCustomPool) :
+ m_hAllocator(hAllocator),
+ m_MemoryTypeIndex(memoryTypeIndex),
+ m_PreferredBlockSize(preferredBlockSize),
+ m_MinBlockCount(minBlockCount),
+ m_MaxBlockCount(maxBlockCount),
+ m_BufferImageGranularity(bufferImageGranularity),
+ m_FrameInUseCount(frameInUseCount),
+ m_IsCustomPool(isCustomPool),
+ m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
+ m_HasEmptyBlock(false),
+ m_pDefragmentator(VMA_NULL)
+{
+}
+
+VmaBlockVector::~VmaBlockVector()
+{
+ VMA_ASSERT(m_pDefragmentator == VMA_NULL);
+
+ for(size_t i = m_Blocks.size(); i--; )
+ {
+ m_Blocks[i]->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, m_Blocks[i]);
+ }
+}
+
+VkResult VmaBlockVector::CreateMinBlocks()
+{
+ for(size_t i = 0; i < m_MinBlockCount; ++i)
+ {
+ VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+ return VK_SUCCESS;
+}
+
+void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
+{
+ pStats->size = 0;
+ pStats->unusedSize = 0;
+ pStats->allocationCount = 0;
+ pStats->unusedRangeCount = 0;
+ pStats->unusedRangeSizeMax = 0;
+
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ pBlock->m_Metadata.AddPoolStats(*pStats);
+ }
+}
+
+static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
+
+VkResult VmaBlockVector::Allocate(
+ VmaPool hCurrentPool,
+ uint32_t currentFrameIndex,
+ const VkMemoryRequirements& vkMemReq,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation)
+{
+ const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
+ const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
+
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ // 1. Search existing allocations. Try to allocate without making other allocations lost.
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+ for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VmaAllocationRequest currRequest = {};
+ if(pCurrBlock->m_Metadata.CreateAllocationRequest(
+ currentFrameIndex,
+ m_FrameInUseCount,
+ m_BufferImageGranularity,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ suballocType,
+ false, // canMakeOtherLost
+ &currRequest))
+ {
+ // Allocate from pCurrBlock.
+ VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
+
+ if(mapped)
+ {
+ VkResult res = pCurrBlock->Map(m_hAllocator, 1, VMA_NULL);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+
+ // We no longer have an empty Allocation.
+ if(pCurrBlock->m_Metadata.IsEmpty())
+ {
+ m_HasEmptyBlock = false;
+ }
+
+ *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
+ pCurrBlock->m_Metadata.Alloc(currRequest, suballocType, vkMemReq.size, *pAllocation);
+ (*pAllocation)->InitBlockAllocation(
+ hCurrentPool,
+ pCurrBlock,
+ currRequest.offset,
+ vkMemReq.alignment,
+ vkMemReq.size,
+ suballocType,
+ mapped,
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+ VMA_HEAVY_ASSERT(pCurrBlock->Validate());
+ VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)blockIndex);
+ (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+ return VK_SUCCESS;
+ }
+ }
+
+ const bool canCreateNewBlock =
+ ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
+ (m_Blocks.size() < m_MaxBlockCount);
+
+ // 2. Try to create new block.
+ if(canCreateNewBlock)
+ {
+ // Calculate optimal size for new block.
+ VkDeviceSize newBlockSize = m_PreferredBlockSize;
+ uint32_t newBlockSizeShift = 0;
+ const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
+
+ // Allocating blocks of other sizes is allowed only in default pools.
+ // In custom pools block size is fixed.
+ if(m_IsCustomPool == false)
+ {
+ // Allocate 1/8, 1/4, 1/2 as first blocks.
+ const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
+ for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
+ {
+ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+ if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= vkMemReq.size * 2)
+ {
+ newBlockSize = smallerNewBlockSize;
+ ++newBlockSizeShift;
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+
+ size_t newBlockIndex = 0;
+ VkResult res = CreateBlock(newBlockSize, &newBlockIndex);
+ // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
+ if(m_IsCustomPool == false)
+ {
+ while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
+ {
+ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+ if(smallerNewBlockSize >= vkMemReq.size)
+ {
+ newBlockSize = smallerNewBlockSize;
+ ++newBlockSizeShift;
+ res = CreateBlock(newBlockSize, &newBlockIndex);
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+
+ if(res == VK_SUCCESS)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
+ VMA_ASSERT(pBlock->m_Metadata.GetSize() >= vkMemReq.size);
+
+ if(mapped)
+ {
+ res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+
+ // Allocate from pBlock. Because it is empty, dstAllocRequest can be trivially filled.
+ VmaAllocationRequest allocRequest;
+ pBlock->m_Metadata.CreateFirstAllocationRequest(&allocRequest);
+ *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
+ pBlock->m_Metadata.Alloc(allocRequest, suballocType, vkMemReq.size, *pAllocation);
+ (*pAllocation)->InitBlockAllocation(
+ hCurrentPool,
+ pBlock,
+ allocRequest.offset,
+ vkMemReq.alignment,
+ vkMemReq.size,
+ suballocType,
+ mapped,
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ VMA_DEBUG_LOG(" Created new allocation Size=%llu", allocInfo.allocationSize);
+ (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+ return VK_SUCCESS;
+ }
+ }
+
+ const bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
+
+ // 3. Try to allocate from existing blocks with making other allocations lost.
+ if(canMakeOtherLost)
+ {
+ uint32_t tryIndex = 0;
+ for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
+ {
+ VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
+ VmaAllocationRequest bestRequest = {};
+ VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
+
+ // 1. Search existing allocations.
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+ for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VmaAllocationRequest currRequest = {};
+ if(pCurrBlock->m_Metadata.CreateAllocationRequest(
+ currentFrameIndex,
+ m_FrameInUseCount,
+ m_BufferImageGranularity,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ suballocType,
+ canMakeOtherLost,
+ &currRequest))
+ {
+ const VkDeviceSize currRequestCost = currRequest.CalcCost();
+ if(pBestRequestBlock == VMA_NULL ||
+ currRequestCost < bestRequestCost)
+ {
+ pBestRequestBlock = pCurrBlock;
+ bestRequest = currRequest;
+ bestRequestCost = currRequestCost;
+
+ if(bestRequestCost == 0)
+ {
+ break;
+ }
+ }
+ }
+ }
+
+ if(pBestRequestBlock != VMA_NULL)
+ {
+ if(mapped)
+ {
+ VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+
+ if(pBestRequestBlock->m_Metadata.MakeRequestedAllocationsLost(
+ currentFrameIndex,
+ m_FrameInUseCount,
+ &bestRequest))
+ {
+ // We no longer have an empty Allocation.
+ if(pBestRequestBlock->m_Metadata.IsEmpty())
+ {
+ m_HasEmptyBlock = false;
+ }
+ // Allocate from this pBlock.
+ *pAllocation = vma_new(m_hAllocator, VmaAllocation_T)(currentFrameIndex, isUserDataString);
+ pBestRequestBlock->m_Metadata.Alloc(bestRequest, suballocType, vkMemReq.size, *pAllocation);
+ (*pAllocation)->InitBlockAllocation(
+ hCurrentPool,
+ pBestRequestBlock,
+ bestRequest.offset,
+ vkMemReq.alignment,
+ vkMemReq.size,
+ suballocType,
+ mapped,
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
+ VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());
+ VMA_DEBUG_LOG(" Returned from existing allocation #%u", (uint32_t)blockIndex);
+ (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
+ return VK_SUCCESS;
+ }
+ // else: Some allocations must have been touched while we are here. Next try.
+ }
+ else
+ {
+ // Could not find place in any of the blocks - break outer loop.
+ break;
+ }
+ }
+ /* Maximum number of tries exceeded - a very unlike event when many other
+ threads are simultaneously touching allocations making it impossible to make
+ lost at the same time as we try to allocate. */
+ if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
+ {
+ return VK_ERROR_TOO_MANY_OBJECTS;
+ }
+ }
+
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+void VmaBlockVector::Free(
+ VmaAllocation hAllocation)
+{
+ VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
+
+ // Scope for lock.
+ {
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+
+ if(hAllocation->IsPersistentMap())
+ {
+ pBlock->Unmap(m_hAllocator, 1);
+ }
+
+ pBlock->m_Metadata.Free(hAllocation);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+
+ VMA_DEBUG_LOG(" Freed from MemoryTypeIndex=%u", memTypeIndex);
+
+ // pBlock became empty after this deallocation.
+ if(pBlock->m_Metadata.IsEmpty())
+ {
+ // Already has empty Allocation. We don't want to have two, so delete this one.
+ if(m_HasEmptyBlock && m_Blocks.size() > m_MinBlockCount)
+ {
+ pBlockToDelete = pBlock;
+ Remove(pBlock);
+ }
+ // We now have first empty Allocation.
+ else
+ {
+ m_HasEmptyBlock = true;
+ }
+ }
+ // pBlock didn't become empty, but we have another empty block - find and free that one.
+ // (This is optional, heuristics.)
+ else if(m_HasEmptyBlock)
+ {
+ VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
+ if(pLastBlock->m_Metadata.IsEmpty() && m_Blocks.size() > m_MinBlockCount)
+ {
+ pBlockToDelete = pLastBlock;
+ m_Blocks.pop_back();
+ m_HasEmptyBlock = false;
+ }
+ }
+
+ IncrementallySortBlocks();
+ }
+
+ // Destruction of a free Allocation. Deferred until this point, outside of mutex
+ // lock, for performance reason.
+ if(pBlockToDelete != VMA_NULL)
+ {
+ VMA_DEBUG_LOG(" Deleted empty allocation");
+ pBlockToDelete->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, pBlockToDelete);
+ }
+}
+
+size_t VmaBlockVector::CalcMaxBlockSize() const
+{
+ size_t result = 0;
+ for(size_t i = m_Blocks.size(); i--; )
+ {
+ result = VMA_MAX((uint64_t)result, (uint64_t)m_Blocks[i]->m_Metadata.GetSize());
+ if(result >= m_PreferredBlockSize)
+ {
+ break;
+ }
+ }
+ return result;
+}
+
+void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
+{
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ if(m_Blocks[blockIndex] == pBlock)
+ {
+ VmaVectorRemove(m_Blocks, blockIndex);
+ return;
+ }
+ }
+ VMA_ASSERT(0);
+}
+
+void VmaBlockVector::IncrementallySortBlocks()
+{
+ // Bubble sort only until first swap.
+ for(size_t i = 1; i < m_Blocks.size(); ++i)
+ {
+ if(m_Blocks[i - 1]->m_Metadata.GetSumFreeSize() > m_Blocks[i]->m_Metadata.GetSumFreeSize())
+ {
+ VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
+ return;
+ }
+ }
+}
+
+VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
+{
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+ allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
+ allocInfo.allocationSize = blockSize;
+ VkDeviceMemory mem = VK_NULL_HANDLE;
+ VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
+ if(res < 0)
+ {
+ return res;
+ }
+
+ // New VkDeviceMemory successfully created.
+
+ // Create new Allocation for it.
+ VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
+ pBlock->Init(
+ m_MemoryTypeIndex,
+ mem,
+ allocInfo.allocationSize);
+
+ m_Blocks.push_back(pBlock);
+ if(pNewBlockIndex != VMA_NULL)
+ {
+ *pNewBlockIndex = m_Blocks.size() - 1;
+ }
+
+ return VK_SUCCESS;
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
+{
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ json.BeginObject();
+
+ if(m_IsCustomPool)
+ {
+ json.WriteString("MemoryTypeIndex");
+ json.WriteNumber(m_MemoryTypeIndex);
+
+ json.WriteString("BlockSize");
+ json.WriteNumber(m_PreferredBlockSize);
+
+ json.WriteString("BlockCount");
+ json.BeginObject(true);
+ if(m_MinBlockCount > 0)
+ {
+ json.WriteString("Min");
+ json.WriteNumber((uint64_t)m_MinBlockCount);
+ }
+ if(m_MaxBlockCount < SIZE_MAX)
+ {
+ json.WriteString("Max");
+ json.WriteNumber((uint64_t)m_MaxBlockCount);
+ }
+ json.WriteString("Cur");
+ json.WriteNumber((uint64_t)m_Blocks.size());
+ json.EndObject();
+
+ if(m_FrameInUseCount > 0)
+ {
+ json.WriteString("FrameInUseCount");
+ json.WriteNumber(m_FrameInUseCount);
+ }
+ }
+ else
+ {
+ json.WriteString("PreferredBlockSize");
+ json.WriteNumber(m_PreferredBlockSize);
+ }
+
+ json.WriteString("Blocks");
+ json.BeginArray();
+ for(size_t i = 0; i < m_Blocks.size(); ++i)
+ {
+ m_Blocks[i]->m_Metadata.PrintDetailedMap(json);
+ }
+ json.EndArray();
+
+ json.EndObject();
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+VmaDefragmentator* VmaBlockVector::EnsureDefragmentator(
+ VmaAllocator hAllocator,
+ uint32_t currentFrameIndex)
+{
+ if(m_pDefragmentator == VMA_NULL)
+ {
+ m_pDefragmentator = vma_new(m_hAllocator, VmaDefragmentator)(
+ hAllocator,
+ this,
+ currentFrameIndex);
+ }
+
+ return m_pDefragmentator;
+}
+
+VkResult VmaBlockVector::Defragment(
+ VmaDefragmentationStats* pDefragmentationStats,
+ VkDeviceSize& maxBytesToMove,
+ uint32_t& maxAllocationsToMove)
+{
+ if(m_pDefragmentator == VMA_NULL)
+ {
+ return VK_SUCCESS;
+ }
+
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ // Defragment.
+ VkResult result = m_pDefragmentator->Defragment(maxBytesToMove, maxAllocationsToMove);
+
+ // Accumulate statistics.
+ if(pDefragmentationStats != VMA_NULL)
+ {
+ const VkDeviceSize bytesMoved = m_pDefragmentator->GetBytesMoved();
+ const uint32_t allocationsMoved = m_pDefragmentator->GetAllocationsMoved();
+ pDefragmentationStats->bytesMoved += bytesMoved;
+ pDefragmentationStats->allocationsMoved += allocationsMoved;
+ VMA_ASSERT(bytesMoved <= maxBytesToMove);
+ VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
+ maxBytesToMove -= bytesMoved;
+ maxAllocationsToMove -= allocationsMoved;
+ }
+
+ // Free empty blocks.
+ m_HasEmptyBlock = false;
+ for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
+ {
+ VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
+ if(pBlock->m_Metadata.IsEmpty())
+ {
+ if(m_Blocks.size() > m_MinBlockCount)
+ {
+ if(pDefragmentationStats != VMA_NULL)
+ {
+ ++pDefragmentationStats->deviceMemoryBlocksFreed;
+ pDefragmentationStats->bytesFreed += pBlock->m_Metadata.GetSize();
+ }
+
+ VmaVectorRemove(m_Blocks, blockIndex);
+ pBlock->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, pBlock);
+ }
+ else
+ {
+ m_HasEmptyBlock = true;
+ }
+ }
+ }
+
+ return result;
+}
+
+void VmaBlockVector::DestroyDefragmentator()
+{
+ if(m_pDefragmentator != VMA_NULL)
+ {
+ vma_delete(m_hAllocator, m_pDefragmentator);
+ m_pDefragmentator = VMA_NULL;
+ }
+}
+
+void VmaBlockVector::MakePoolAllocationsLost(
+ uint32_t currentFrameIndex,
+ size_t* pLostAllocationCount)
+{
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+ size_t lostAllocationCount = 0;
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ lostAllocationCount += pBlock->m_Metadata.MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
+ }
+ if(pLostAllocationCount != VMA_NULL)
+ {
+ *pLostAllocationCount = lostAllocationCount;
+ }
+}
+
+void VmaBlockVector::AddStats(VmaStats* pStats)
+{
+ const uint32_t memTypeIndex = m_MemoryTypeIndex;
+ const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
+
+ VmaMutexLock lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ VmaStatInfo allocationStatInfo;
+ pBlock->m_Metadata.CalcAllocationStatInfo(allocationStatInfo);
+ VmaAddStatInfo(pStats->total, allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaDefragmentator members definition
+
+VmaDefragmentator::VmaDefragmentator(
+ VmaAllocator hAllocator,
+ VmaBlockVector* pBlockVector,
+ uint32_t currentFrameIndex) :
+ m_hAllocator(hAllocator),
+ m_pBlockVector(pBlockVector),
+ m_CurrentFrameIndex(currentFrameIndex),
+ m_BytesMoved(0),
+ m_AllocationsMoved(0),
+ m_Allocations(VmaStlAllocator<AllocationInfo>(hAllocator->GetAllocationCallbacks())),
+ m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
+{
+}
+
+VmaDefragmentator::~VmaDefragmentator()
+{
+ for(size_t i = m_Blocks.size(); i--; )
+ {
+ vma_delete(m_hAllocator, m_Blocks[i]);
+ }
+}
+
+void VmaDefragmentator::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
+{
+ AllocationInfo allocInfo;
+ allocInfo.m_hAllocation = hAlloc;
+ allocInfo.m_pChanged = pChanged;
+ m_Allocations.push_back(allocInfo);
+}
+
+VkResult VmaDefragmentator::BlockInfo::EnsureMapping(VmaAllocator hAllocator, void** ppMappedData)
+{
+ // It has already been mapped for defragmentation.
+ if(m_pMappedDataForDefragmentation)
+ {
+ *ppMappedData = m_pMappedDataForDefragmentation;
+ return VK_SUCCESS;
+ }
+
+ // It is originally mapped.
+ if(m_pBlock->GetMappedData())
+ {
+ *ppMappedData = m_pBlock->GetMappedData();
+ return VK_SUCCESS;
+ }
+
+ // Map on first usage.
+ VkResult res = m_pBlock->Map(hAllocator, 1, &m_pMappedDataForDefragmentation);
+ *ppMappedData = m_pMappedDataForDefragmentation;
+ return res;
+}
+
+void VmaDefragmentator::BlockInfo::Unmap(VmaAllocator hAllocator)
+{
+ if(m_pMappedDataForDefragmentation != VMA_NULL)
+ {
+ m_pBlock->Unmap(hAllocator, 1);
+ }
+}
+
+VkResult VmaDefragmentator::DefragmentRound(
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove)
+{
+ if(m_Blocks.empty())
+ {
+ return VK_SUCCESS;
+ }
+
+ size_t srcBlockIndex = m_Blocks.size() - 1;
+ size_t srcAllocIndex = SIZE_MAX;
+ for(;;)
+ {
+ // 1. Find next allocation to move.
+ // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
+ // 1.2. Then start from last to first m_Allocations - they are sorted from largest to smallest.
+ while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
+ {
+ if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
+ {
+ // Finished: no more allocations to process.
+ if(srcBlockIndex == 0)
+ {
+ return VK_SUCCESS;
+ }
+ else
+ {
+ --srcBlockIndex;
+ srcAllocIndex = SIZE_MAX;
+ }
+ }
+ else
+ {
+ srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
+ }
+ }
+
+ BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
+ AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
+
+ const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
+ const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
+ const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
+ const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
+
+ // 2. Try to find new place for this allocation in preceding or current block.
+ for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
+ {
+ BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
+ VmaAllocationRequest dstAllocRequest;
+ if(pDstBlockInfo->m_pBlock->m_Metadata.CreateAllocationRequest(
+ m_CurrentFrameIndex,
+ m_pBlockVector->GetFrameInUseCount(),
+ m_pBlockVector->GetBufferImageGranularity(),
+ size,
+ alignment,
+ suballocType,
+ false, // canMakeOtherLost
+ &dstAllocRequest) &&
+ MoveMakesSense(
+ dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
+ {
+ VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
+
+ // Reached limit on number of allocations or bytes to move.
+ if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
+ (m_BytesMoved + size > maxBytesToMove))
+ {
+ return VK_INCOMPLETE;
+ }
+
+ void* pDstMappedData = VMA_NULL;
+ VkResult res = pDstBlockInfo->EnsureMapping(m_hAllocator, &pDstMappedData);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ void* pSrcMappedData = VMA_NULL;
+ res = pSrcBlockInfo->EnsureMapping(m_hAllocator, &pSrcMappedData);
+ if(res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
+ memcpy(
+ reinterpret_cast<char*>(pDstMappedData) + dstAllocRequest.offset,
+ reinterpret_cast<char*>(pSrcMappedData) + srcOffset,
+ static_cast<size_t>(size));
+
+ pDstBlockInfo->m_pBlock->m_Metadata.Alloc(dstAllocRequest, suballocType, size, allocInfo.m_hAllocation);
+ pSrcBlockInfo->m_pBlock->m_Metadata.FreeAtOffset(srcOffset);
+
+ allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
+
+ if(allocInfo.m_pChanged != VMA_NULL)
+ {
+ *allocInfo.m_pChanged = VK_TRUE;
+ }
+
+ ++m_AllocationsMoved;
+ m_BytesMoved += size;
+
+ VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
+
+ break;
+ }
+ }
+
+ // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
+
+ if(srcAllocIndex > 0)
+ {
+ --srcAllocIndex;
+ }
+ else
+ {
+ if(srcBlockIndex > 0)
+ {
+ --srcBlockIndex;
+ srcAllocIndex = SIZE_MAX;
+ }
+ else
+ {
+ return VK_SUCCESS;
+ }
+ }
+ }
+}
+
+VkResult VmaDefragmentator::Defragment(
+ VkDeviceSize maxBytesToMove,
+ uint32_t maxAllocationsToMove)
+{
+ if(m_Allocations.empty())
+ {
+ return VK_SUCCESS;
+ }
+
+ // Create block info for each block.
+ const size_t blockCount = m_pBlockVector->m_Blocks.size();
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
+ pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
+ m_Blocks.push_back(pBlockInfo);
+ }
+
+ // Sort them by m_pBlock pointer value.
+ VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
+
+ // Move allocation infos from m_Allocations to appropriate m_Blocks[memTypeIndex].m_Allocations.
+ for(size_t blockIndex = 0, allocCount = m_Allocations.size(); blockIndex < allocCount; ++blockIndex)
+ {
+ AllocationInfo& allocInfo = m_Allocations[blockIndex];
+ // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
+ if(allocInfo.m_hAllocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
+ {
+ VmaDeviceMemoryBlock* pBlock = allocInfo.m_hAllocation->GetBlock();
+ BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
+ if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
+ {
+ (*it)->m_Allocations.push_back(allocInfo);
+ }
+ else
+ {
+ VMA_ASSERT(0);
+ }
+ }
+ }
+ m_Allocations.clear();
+
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ BlockInfo* pBlockInfo = m_Blocks[blockIndex];
+ pBlockInfo->CalcHasNonMovableAllocations();
+ pBlockInfo->SortAllocationsBySizeDescecnding();
+ }
+
+ // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
+ VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
+
+ // Execute defragmentation rounds (the main part).
+ VkResult result = VK_SUCCESS;
+ for(size_t round = 0; (round < 2) && (result == VK_SUCCESS); ++round)
+ {
+ result = DefragmentRound(maxBytesToMove, maxAllocationsToMove);
+ }
+
+ // Unmap blocks that were mapped for defragmentation.
+ for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ m_Blocks[blockIndex]->Unmap(m_hAllocator);
+ }
+
+ return result;
+}
+
+bool VmaDefragmentator::MoveMakesSense(
+ size_t dstBlockIndex, VkDeviceSize dstOffset,
+ size_t srcBlockIndex, VkDeviceSize srcOffset)
+{
+ if(dstBlockIndex < srcBlockIndex)
+ {
+ return true;
+ }
+ if(dstBlockIndex > srcBlockIndex)
+ {
+ return false;
+ }
+ if(dstOffset < srcOffset)
+ {
+ return true;
+ }
+ return false;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// VmaAllocator_T
+
+VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
+ m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
+ m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
+ m_hDevice(pCreateInfo->device),
+ m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
+ m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
+ *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
+ m_PreferredLargeHeapBlockSize(0),
+ m_PhysicalDevice(pCreateInfo->physicalDevice),
+ m_CurrentFrameIndex(0),
+ m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks()))
+{
+ VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);
+
+ memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
+ memset(&m_MemProps, 0, sizeof(m_MemProps));
+ memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
+
+ memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
+ memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));
+
+ for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+ {
+ m_HeapSizeLimit[i] = VK_WHOLE_SIZE;
+ }
+
+ if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
+ {
+ m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
+ m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
+ }
+
+ ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
+
+ (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
+ (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
+
+ m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
+ pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
+
+ if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
+ {
+ for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
+ {
+ const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
+ if(limit != VK_WHOLE_SIZE)
+ {
+ m_HeapSizeLimit[heapIndex] = limit;
+ if(limit < m_MemProps.memoryHeaps[heapIndex].size)
+ {
+ m_MemProps.memoryHeaps[heapIndex].size = limit;
+ }
+ }
+ }
+ }
+
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
+
+ m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
+ this,
+ memTypeIndex,
+ preferredBlockSize,
+ 0,
+ SIZE_MAX,
+ GetBufferImageGranularity(),
+ pCreateInfo->frameInUseCount,
+ false); // isCustomPool
+ // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
+ // becase minBlockCount is 0.
+ m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
+ }
+}
+
+VmaAllocator_T::~VmaAllocator_T()
+{
+ VMA_ASSERT(m_Pools.empty());
+
+ for(size_t i = GetMemoryTypeCount(); i--; )
+ {
+ vma_delete(this, m_pDedicatedAllocations[i]);
+ vma_delete(this, m_pBlockVectors[i]);
+ }
+}
+
+void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
+{
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+ m_VulkanFunctions.vkGetPhysicalDeviceProperties = &vkGetPhysicalDeviceProperties;
+ m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = &vkGetPhysicalDeviceMemoryProperties;
+ m_VulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+ m_VulkanFunctions.vkFreeMemory = &vkFreeMemory;
+ m_VulkanFunctions.vkMapMemory = &vkMapMemory;
+ m_VulkanFunctions.vkUnmapMemory = &vkUnmapMemory;
+ m_VulkanFunctions.vkBindBufferMemory = &vkBindBufferMemory;
+ m_VulkanFunctions.vkBindImageMemory = &vkBindImageMemory;
+ m_VulkanFunctions.vkGetBufferMemoryRequirements = &vkGetBufferMemoryRequirements;
+ m_VulkanFunctions.vkGetImageMemoryRequirements = &vkGetImageMemoryRequirements;
+ m_VulkanFunctions.vkCreateBuffer = &vkCreateBuffer;
+ m_VulkanFunctions.vkDestroyBuffer = &vkDestroyBuffer;
+ m_VulkanFunctions.vkCreateImage = &vkCreateImage;
+ m_VulkanFunctions.vkDestroyImage = &vkDestroyImage;
+ if(m_UseKhrDedicatedAllocation)
+ {
+ m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =
+ (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR");
+ m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =
+ (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR");
+ }
+#endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
+
+#define VMA_COPY_IF_NOT_NULL(funcName) \
+ if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
+
+ if(pVulkanFunctions != VMA_NULL)
+ {
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
+ VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
+ VMA_COPY_IF_NOT_NULL(vkFreeMemory);
+ VMA_COPY_IF_NOT_NULL(vkMapMemory);
+ VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
+ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
+ VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
+ VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
+ VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
+ VMA_COPY_IF_NOT_NULL(vkCreateImage);
+ VMA_COPY_IF_NOT_NULL(vkDestroyImage);
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
+ }
+
+#undef VMA_COPY_IF_NOT_NULL
+
+ // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1
+ // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
+ if(m_UseKhrDedicatedAllocation)
+ {
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
+ }
+}
+
+VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
+{
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+ const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
+ const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
+ return isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize;
+}
+
+VkResult VmaAllocator_T::AllocateMemoryOfType(
+ const VkMemoryRequirements& vkMemReq,
+ bool dedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ uint32_t memTypeIndex,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation)
+{
+ VMA_ASSERT(pAllocation != VMA_NULL);
+ VMA_DEBUG_LOG(" AllocateMemory: MemoryTypeIndex=%u, Size=%llu", memTypeIndex, vkMemReq.size);
+
+ VmaAllocationCreateInfo finalCreateInfo = createInfo;
+
+ // If memory type is not HOST_VISIBLE, disable MAPPED.
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+ (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
+ }
+
+ VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(blockVector);
+
+ const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
+ bool preferDedicatedMemory =
+ VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
+ dedicatedAllocation ||
+ // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
+ vkMemReq.size > preferredBlockSize / 2;
+
+ if(preferDedicatedMemory &&
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
+ finalCreateInfo.pool == VK_NULL_HANDLE)
+ {
+ finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+ }
+
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
+ {
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ else
+ {
+ return AllocateDedicatedMemory(
+ vkMemReq.size,
+ suballocType,
+ memTypeIndex,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+ finalCreateInfo.pUserData,
+ dedicatedBuffer,
+ dedicatedImage,
+ pAllocation);
+ }
+ }
+ else
+ {
+ VkResult res = blockVector->Allocate(
+ VK_NULL_HANDLE, // hCurrentPool
+ m_CurrentFrameIndex.load(),
+ vkMemReq,
+ finalCreateInfo,
+ suballocType,
+ pAllocation);
+ if(res == VK_SUCCESS)
+ {
+ return res;
+ }
+
+ // 5. Try dedicated memory.
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ else
+ {
+ res = AllocateDedicatedMemory(
+ vkMemReq.size,
+ suballocType,
+ memTypeIndex,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+ finalCreateInfo.pUserData,
+ dedicatedBuffer,
+ dedicatedImage,
+ pAllocation);
+ if(res == VK_SUCCESS)
+ {
+ // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
+ VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
+ return VK_SUCCESS;
+ }
+ else
+ {
+ // Everything failed: Return error code.
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
+ return res;
+ }
+ }
+ }
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemory(
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ bool map,
+ bool isUserDataString,
+ void* pUserData,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaAllocation* pAllocation)
+{
+ VMA_ASSERT(pAllocation);
+
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+ allocInfo.memoryTypeIndex = memTypeIndex;
+ allocInfo.allocationSize = size;
+
+ VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
+ if(m_UseKhrDedicatedAllocation)
+ {
+ if(dedicatedBuffer != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
+ dedicatedAllocInfo.buffer = dedicatedBuffer;
+ allocInfo.pNext = &dedicatedAllocInfo;
+ }
+ else if(dedicatedImage != VK_NULL_HANDLE)
+ {
+ dedicatedAllocInfo.image = dedicatedImage;
+ allocInfo.pNext = &dedicatedAllocInfo;
+ }
+ }
+
+ // Allocate VkDeviceMemory.
+ VkDeviceMemory hMemory = VK_NULL_HANDLE;
+ VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
+ if(res < 0)
+ {
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
+ return res;
+ }
+
+ void* pMappedData = VMA_NULL;
+ if(map)
+ {
+ res = (*m_VulkanFunctions.vkMapMemory)(
+ m_hDevice,
+ hMemory,
+ 0,
+ VK_WHOLE_SIZE,
+ 0,
+ &pMappedData);
+ if(res < 0)
+ {
+ VMA_DEBUG_LOG(" vkMapMemory FAILED");
+ FreeVulkanMemory(memTypeIndex, size, hMemory);
+ return res;
+ }
+ }
+
+ *pAllocation = vma_new(this, VmaAllocation_T)(m_CurrentFrameIndex.load(), isUserDataString);
+ (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
+ (*pAllocation)->SetUserData(this, pUserData);
+
+ // Register it in m_pDedicatedAllocations.
+ {
+ VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocations);
+ VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, *pAllocation);
+ }
+
+ VMA_DEBUG_LOG(" Allocated DedicatedMemory MemoryTypeIndex=#%u", memTypeIndex);
+
+ return VK_SUCCESS;
+}
+
+void VmaAllocator_T::GetBufferMemoryRequirements(
+ VkBuffer hBuffer,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const
+{
+ if(m_UseKhrDedicatedAllocation)
+ {
+ VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
+ memReqInfo.buffer = hBuffer;
+
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+ memReq2.pNext = &memDedicatedReq;
+
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+ memReq = memReq2.memoryRequirements;
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
+ }
+ else
+ {
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
+ requiresDedicatedAllocation = false;
+ prefersDedicatedAllocation = false;
+ }
+}
+
+void VmaAllocator_T::GetImageMemoryRequirements(
+ VkImage hImage,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const
+{
+ if(m_UseKhrDedicatedAllocation)
+ {
+ VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
+ memReqInfo.image = hImage;
+
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+ memReq2.pNext = &memDedicatedReq;
+
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+ memReq = memReq2.memoryRequirements;
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
+ }
+ else
+ {
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
+ requiresDedicatedAllocation = false;
+ prefersDedicatedAllocation = false;
+ }
+}
+
+VkResult VmaAllocator_T::AllocateMemory(
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation)
+{
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
+ (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+ (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ if(requiresDedicatedAllocation)
+ {
+ if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ if(createInfo.pool != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ if((createInfo.pool != VK_NULL_HANDLE) &&
+ ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+
+ if(createInfo.pool != VK_NULL_HANDLE)
+ {
+ return createInfo.pool->m_BlockVector.Allocate(
+ createInfo.pool,
+ m_CurrentFrameIndex.load(),
+ vkMemReq,
+ createInfo,
+ suballocType,
+ pAllocation);
+ }
+ else
+ {
+ // Bit mask of memory Vulkan types acceptable for this allocation.
+ uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
+ uint32_t memTypeIndex = UINT32_MAX;
+ VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+ if(res == VK_SUCCESS)
+ {
+ res = AllocateMemoryOfType(
+ vkMemReq,
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
+ dedicatedBuffer,
+ dedicatedImage,
+ createInfo,
+ memTypeIndex,
+ suballocType,
+ pAllocation);
+ // Succeeded on first try.
+ if(res == VK_SUCCESS)
+ {
+ return res;
+ }
+ // Allocation from this memory type failed. Try other compatible memory types.
+ else
+ {
+ for(;;)
+ {
+ // Remove old memTypeIndex from list of possibilities.
+ memoryTypeBits &= ~(1u << memTypeIndex);
+ // Find alternative memTypeIndex.
+ res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
+ if(res == VK_SUCCESS)
+ {
+ res = AllocateMemoryOfType(
+ vkMemReq,
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
+ dedicatedBuffer,
+ dedicatedImage,
+ createInfo,
+ memTypeIndex,
+ suballocType,
+ pAllocation);
+ // Allocation from this alternative memory type succeeded.
+ if(res == VK_SUCCESS)
+ {
+ return res;
+ }
+ // else: Allocation from this memory type failed. Try next one - next loop iteration.
+ }
+ // No other matching memory type index could be found.
+ else
+ {
+ // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ }
+ }
+ // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
+ else
+ return res;
+ }
+}
+
+void VmaAllocator_T::FreeMemory(const VmaAllocation allocation)
+{
+ VMA_ASSERT(allocation);
+
+ if(allocation->CanBecomeLost() == false ||
+ allocation->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
+ {
+ switch(allocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaBlockVector* pBlockVector = VMA_NULL;
+ VmaPool hPool = allocation->GetPool();
+ if(hPool != VK_NULL_HANDLE)
+ {
+ pBlockVector = &hPool->m_BlockVector;
+ }
+ else
+ {
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ pBlockVector = m_pBlockVectors[memTypeIndex];
+ }
+ pBlockVector->Free(allocation);
+ }
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ FreeDedicatedMemory(allocation);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+ }
+
+ allocation->SetUserData(this, VMA_NULL);
+ vma_delete(this, allocation);
+}
+
+void VmaAllocator_T::CalculateStats(VmaStats* pStats)
+{
+ // Initialize.
+ InitStatInfo(pStats->total);
+ for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
+ InitStatInfo(pStats->memoryType[i]);
+ for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+ InitStatInfo(pStats->memoryHeap[i]);
+
+ // Process default pools.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(pBlockVector);
+ pBlockVector->AddStats(pStats);
+ }
+
+ // Process custom pools.
+ {
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+ for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
+ {
+ m_Pools[poolIndex]->GetBlockVector().AddStats(pStats);
+ }
+ }
+
+ // Process dedicated allocations.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+ VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocVector);
+ for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)
+ {
+ VmaStatInfo allocationStatInfo;
+ (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);
+ VmaAddStatInfo(pStats->total, allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
+ VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
+ }
+ }
+
+ // Postprocess.
+ VmaPostprocessCalcStatInfo(pStats->total);
+ for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
+ VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
+ for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
+ VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
+}
+
+static const uint32_t VMA_VENDOR_ID_AMD = 4098;
+
+VkResult VmaAllocator_T::Defragment(
+ VmaAllocation* pAllocations,
+ size_t allocationCount,
+ VkBool32* pAllocationsChanged,
+ const VmaDefragmentationInfo* pDefragmentationInfo,
+ VmaDefragmentationStats* pDefragmentationStats)
+{
+ if(pAllocationsChanged != VMA_NULL)
+ {
+ memset(pAllocationsChanged, 0, sizeof(*pAllocationsChanged));
+ }
+ if(pDefragmentationStats != VMA_NULL)
+ {
+ memset(pDefragmentationStats, 0, sizeof(*pDefragmentationStats));
+ }
+
+ const uint32_t currentFrameIndex = m_CurrentFrameIndex.load();
+
+ VmaMutexLock poolsLock(m_PoolsMutex, m_UseMutex);
+
+ const size_t poolCount = m_Pools.size();
+
+ // Dispatch pAllocations among defragmentators. Create them in BlockVectors when necessary.
+ for(size_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ VmaAllocation hAlloc = pAllocations[allocIndex];
+ VMA_ASSERT(hAlloc);
+ const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
+ // DedicatedAlloc cannot be defragmented.
+ if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
+ // Only HOST_VISIBLE memory types can be defragmented.
+ ((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) &&
+ // Lost allocation cannot be defragmented.
+ (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
+ {
+ VmaBlockVector* pAllocBlockVector = VMA_NULL;
+
+ const VmaPool hAllocPool = hAlloc->GetPool();
+ // This allocation belongs to custom pool.
+ if(hAllocPool != VK_NULL_HANDLE)
+ {
+ pAllocBlockVector = &hAllocPool->GetBlockVector();
+ }
+ // This allocation belongs to general pool.
+ else
+ {
+ pAllocBlockVector = m_pBlockVectors[memTypeIndex];
+ }
+
+ VmaDefragmentator* const pDefragmentator = pAllocBlockVector->EnsureDefragmentator(this, currentFrameIndex);
+
+ VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
+ &pAllocationsChanged[allocIndex] : VMA_NULL;
+ pDefragmentator->AddAllocation(hAlloc, pChanged);
+ }
+ }
+
+ VkResult result = VK_SUCCESS;
+
+ // ======== Main processing.
+
+ VkDeviceSize maxBytesToMove = SIZE_MAX;
+ uint32_t maxAllocationsToMove = UINT32_MAX;
+ if(pDefragmentationInfo != VMA_NULL)
+ {
+ maxBytesToMove = pDefragmentationInfo->maxBytesToMove;
+ maxAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
+ }
+
+ // Process standard memory.
+ for(uint32_t memTypeIndex = 0;
+ (memTypeIndex < GetMemoryTypeCount()) && (result == VK_SUCCESS);
+ ++memTypeIndex)
+ {
+ // Only HOST_VISIBLE memory types can be defragmented.
+ if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+ {
+ result = m_pBlockVectors[memTypeIndex]->Defragment(
+ pDefragmentationStats,
+ maxBytesToMove,
+ maxAllocationsToMove);
+ }
+ }
+
+ // Process custom pools.
+ for(size_t poolIndex = 0; (poolIndex < poolCount) && (result == VK_SUCCESS); ++poolIndex)
+ {
+ result = m_Pools[poolIndex]->GetBlockVector().Defragment(
+ pDefragmentationStats,
+ maxBytesToMove,
+ maxAllocationsToMove);
+ }
+
+ // ======== Destroy defragmentators.
+
+ // Process custom pools.
+ for(size_t poolIndex = poolCount; poolIndex--; )
+ {
+ m_Pools[poolIndex]->GetBlockVector().DestroyDefragmentator();
+ }
+
+ // Process standard memory.
+ for(uint32_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
+ {
+ if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+ {
+ m_pBlockVectors[memTypeIndex]->DestroyDefragmentator();
+ }
+ }
+
+ return result;
+}
+
+void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
+{
+ if(hAllocation->CanBecomeLost())
+ {
+ /*
+ Warning: This is a carefully designed algorithm.
+ Do not modify unless you really know what you're doing :)
+ */
+ uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+ uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+ for(;;)
+ {
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+ {
+ pAllocationInfo->memoryType = UINT32_MAX;
+ pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
+ pAllocationInfo->offset = 0;
+ pAllocationInfo->size = hAllocation->GetSize();
+ pAllocationInfo->pMappedData = VMA_NULL;
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
+ return;
+ }
+ else if(localLastUseFrameIndex == localCurrFrameIndex)
+ {
+ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+ pAllocationInfo->offset = hAllocation->GetOffset();
+ pAllocationInfo->size = hAllocation->GetSize();
+ pAllocationInfo->pMappedData = VMA_NULL;
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
+ return;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+ {
+ localLastUseFrameIndex = localCurrFrameIndex;
+ }
+ }
+ }
+ }
+ else
+ {
+ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+ pAllocationInfo->offset = hAllocation->GetOffset();
+ pAllocationInfo->size = hAllocation->GetSize();
+ pAllocationInfo->pMappedData = hAllocation->GetMappedData();
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
+ }
+}
+
+bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation)
+{
+ // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.
+ if(hAllocation->CanBecomeLost())
+ {
+ uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
+ uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
+ for(;;)
+ {
+ if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
+ {
+ return false;
+ }
+ else if(localLastUseFrameIndex == localCurrFrameIndex)
+ {
+ return true;
+ }
+ else // Last use time earlier than current time.
+ {
+ if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
+ {
+ localLastUseFrameIndex = localCurrFrameIndex;
+ }
+ }
+ }
+ }
+ else
+ {
+ return true;
+ }
+}
+
+VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
+{
+ VMA_DEBUG_LOG(" CreatePool: MemoryTypeIndex=%u", pCreateInfo->memoryTypeIndex);
+
+ VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
+
+ if(newCreateInfo.maxBlockCount == 0)
+ {
+ newCreateInfo.maxBlockCount = SIZE_MAX;
+ }
+ if(newCreateInfo.blockSize == 0)
+ {
+ newCreateInfo.blockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
+ }
+
+ *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo);
+
+ VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
+ if(res != VK_SUCCESS)
+ {
+ vma_delete(this, *pPool);
+ *pPool = VMA_NULL;
+ return res;
+ }
+
+ // Add to m_Pools.
+ {
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+ VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaAllocator_T::DestroyPool(VmaPool pool)
+{
+ // Remove from m_Pools.
+ {
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+ bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
+ VMA_ASSERT(success && "Pool not found in Allocator.");
+ }
+
+ vma_delete(this, pool);
+}
+
+void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
+{
+ pool->m_BlockVector.GetPoolStats(pPoolStats);
+}
+
+void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
+{
+ m_CurrentFrameIndex.store(frameIndex);
+}
+
+void VmaAllocator_T::MakePoolAllocationsLost(
+ VmaPool hPool,
+ size_t* pLostAllocationCount)
+{
+ hPool->m_BlockVector.MakePoolAllocationsLost(
+ m_CurrentFrameIndex.load(),
+ pLostAllocationCount);
+}
+
+void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
+{
+ *pAllocation = vma_new(this, VmaAllocation_T)(VMA_FRAME_INDEX_LOST, false);
+ (*pAllocation)->InitLost();
+}
+
+VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
+{
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
+
+ VkResult res;
+ if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
+ {
+ VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
+ if(m_HeapSizeLimit[heapIndex] >= pAllocateInfo->allocationSize)
+ {
+ res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+ if(res == VK_SUCCESS)
+ {
+ m_HeapSizeLimit[heapIndex] -= pAllocateInfo->allocationSize;
+ }
+ }
+ else
+ {
+ res = VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ else
+ {
+ res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+ }
+
+ if(res == VK_SUCCESS && m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
+ {
+ (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);
+ }
+
+ return res;
+}
+
+void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
+{
+ if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
+ {
+ (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);
+ }
+
+ (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
+
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
+ if(m_HeapSizeLimit[heapIndex] != VK_WHOLE_SIZE)
+ {
+ VmaMutexLock lock(m_HeapSizeLimitMutex, m_UseMutex);
+ m_HeapSizeLimit[heapIndex] += size;
+ }
+}
+
+VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
+{
+ if(hAllocation->CanBecomeLost())
+ {
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ char *pBytes = VMA_NULL;
+ VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
+ if(res == VK_SUCCESS)
+ {
+ *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
+ hAllocation->BlockAllocMap();
+ }
+ return res;
+ }
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ return hAllocation->DedicatedAllocMap(this, ppData);
+ default:
+ VMA_ASSERT(0);
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+}
+
+void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
+{
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ hAllocation->BlockAllocUnmap();
+ pBlock->Unmap(this, 1);
+ }
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ hAllocation->DedicatedAllocUnmap(this);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+}
+
+VkResult VmaAllocator_T::BindBufferMemory(VmaAllocation hAllocation, VkBuffer hBuffer)
+{
+ VkResult res = VK_SUCCESS;
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ res = GetVulkanFunctions().vkBindBufferMemory(
+ m_hDevice,
+ hBuffer,
+ hAllocation->GetMemory(),
+ 0); //memoryOffset
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+ VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");
+ res = pBlock->BindBufferMemory(this, hAllocation, hBuffer);
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+ return res;
+}
+
+VkResult VmaAllocator_T::BindImageMemory(VmaAllocation hAllocation, VkImage hImage)
+{
+ VkResult res = VK_SUCCESS;
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ res = GetVulkanFunctions().vkBindImageMemory(
+ m_hDevice,
+ hImage,
+ hAllocation->GetMemory(),
+ 0); //memoryOffset
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+ VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");
+ res = pBlock->BindImageMemory(this, hAllocation, hImage);
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+ return res;
+}
+
+void VmaAllocator_T::FreeDedicatedMemory(VmaAllocation allocation)
+{
+ VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ {
+ VmaMutexLock lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocations);
+ bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);
+ VMA_ASSERT(success);
+ }
+
+ VkDeviceMemory hMemory = allocation->GetMemory();
+
+ if(allocation->GetMappedData() != VMA_NULL)
+ {
+ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+ }
+
+ FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
+
+ VMA_DEBUG_LOG(" Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
+{
+ bool dedicatedAllocationsStarted = false;
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ VmaMutexLock dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
+ AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
+ VMA_ASSERT(pDedicatedAllocVector);
+ if(pDedicatedAllocVector->empty() == false)
+ {
+ if(dedicatedAllocationsStarted == false)
+ {
+ dedicatedAllocationsStarted = true;
+ json.WriteString("DedicatedAllocations");
+ json.BeginObject();
+ }
+
+ json.BeginString("Type ");
+ json.ContinueString(memTypeIndex);
+ json.EndString();
+
+ json.BeginArray();
+
+ for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)
+ {
+ const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];
+ json.BeginObject(true);
+
+ json.WriteString("Type");
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[hAlloc->GetSuballocationType()]);
+
+ json.WriteString("Size");
+ json.WriteNumber(hAlloc->GetSize());
+
+ const void* pUserData = hAlloc->GetUserData();
+ if(pUserData != VMA_NULL)
+ {
+ json.WriteString("UserData");
+ if(hAlloc->IsUserDataString())
+ {
+ json.WriteString((const char*)pUserData);
+ }
+ else
+ {
+ json.BeginString();
+ json.ContinueString_Pointer(pUserData);
+ json.EndString();
+ }
+ }
+
+ json.EndObject();
+ }
+
+ json.EndArray();
+ }
+ }
+ if(dedicatedAllocationsStarted)
+ {
+ json.EndObject();
+ }
+
+ {
+ bool allocationsStarted = false;
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)
+ {
+ if(allocationsStarted == false)
+ {
+ allocationsStarted = true;
+ json.WriteString("DefaultPools");
+ json.BeginObject();
+ }
+
+ json.BeginString("Type ");
+ json.ContinueString(memTypeIndex);
+ json.EndString();
+
+ m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
+ }
+ }
+ if(allocationsStarted)
+ {
+ json.EndObject();
+ }
+ }
+
+ {
+ VmaMutexLock lock(m_PoolsMutex, m_UseMutex);
+ const size_t poolCount = m_Pools.size();
+ if(poolCount > 0)
+ {
+ json.WriteString("Pools");
+ json.BeginArray();
+ for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
+ {
+ m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
+ }
+ json.EndArray();
+ }
+ }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+static VkResult AllocateMemoryForImage(
+ VmaAllocator allocator,
+ VkImage image,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation)
+{
+ VMA_ASSERT(allocator && (image != VK_NULL_HANDLE) && pAllocationCreateInfo && pAllocation);
+
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetImageMemoryRequirements(image, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ return allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ VK_NULL_HANDLE, // dedicatedBuffer
+ image, // dedicatedImage
+ *pAllocationCreateInfo,
+ suballocType,
+ pAllocation);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Public interface
+
+VkResult vmaCreateAllocator(
+ const VmaAllocatorCreateInfo* pCreateInfo,
+ VmaAllocator* pAllocator)
+{
+ VMA_ASSERT(pCreateInfo && pAllocator);
+ VMA_DEBUG_LOG("vmaCreateAllocator");
+ *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
+ return VK_SUCCESS;
+}
+
+void vmaDestroyAllocator(
+ VmaAllocator allocator)
+{
+ if(allocator != VK_NULL_HANDLE)
+ {
+ VMA_DEBUG_LOG("vmaDestroyAllocator");
+ VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
+ vma_delete(&allocationCallbacks, allocator);
+ }
+}
+
+void vmaGetPhysicalDeviceProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
+{
+ VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
+ *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
+}
+
+void vmaGetMemoryProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
+{
+ VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
+ *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
+}
+
+void vmaGetMemoryTypeProperties(
+ VmaAllocator allocator,
+ uint32_t memoryTypeIndex,
+ VkMemoryPropertyFlags* pFlags)
+{
+ VMA_ASSERT(allocator && pFlags);
+ VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
+ *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
+}
+
+void vmaSetCurrentFrameIndex(
+ VmaAllocator allocator,
+ uint32_t frameIndex)
+{
+ VMA_ASSERT(allocator);
+ VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->SetCurrentFrameIndex(frameIndex);
+}
+
+void vmaCalculateStats(
+ VmaAllocator allocator,
+ VmaStats* pStats)
+{
+ VMA_ASSERT(allocator && pStats);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+ allocator->CalculateStats(pStats);
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+void vmaBuildStatsString(
+ VmaAllocator allocator,
+ char** ppStatsString,
+ VkBool32 detailedMap)
+{
+ VMA_ASSERT(allocator && ppStatsString);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VmaStringBuilder sb(allocator);
+ {
+ VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
+ json.BeginObject();
+
+ VmaStats stats;
+ allocator->CalculateStats(&stats);
+
+ json.WriteString("Total");
+ VmaPrintStatInfo(json, stats.total);
+
+ for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
+ {
+ json.BeginString("Heap ");
+ json.ContinueString(heapIndex);
+ json.EndString();
+ json.BeginObject();
+
+ json.WriteString("Size");
+ json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
+
+ json.WriteString("Flags");
+ json.BeginArray(true);
+ if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
+ {
+ json.WriteString("DEVICE_LOCAL");
+ }
+ json.EndArray();
+
+ if(stats.memoryHeap[heapIndex].blockCount > 0)
+ {
+ json.WriteString("Stats");
+ VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
+ }
+
+ for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
+ {
+ if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
+ {
+ json.BeginString("Type ");
+ json.ContinueString(typeIndex);
+ json.EndString();
+
+ json.BeginObject();
+
+ json.WriteString("Flags");
+ json.BeginArray(true);
+ VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
+ if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
+ {
+ json.WriteString("DEVICE_LOCAL");
+ }
+ if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+ {
+ json.WriteString("HOST_VISIBLE");
+ }
+ if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
+ {
+ json.WriteString("HOST_COHERENT");
+ }
+ if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
+ {
+ json.WriteString("HOST_CACHED");
+ }
+ if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
+ {
+ json.WriteString("LAZILY_ALLOCATED");
+ }
+ json.EndArray();
+
+ if(stats.memoryType[typeIndex].blockCount > 0)
+ {
+ json.WriteString("Stats");
+ VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
+ }
+
+ json.EndObject();
+ }
+ }
+
+ json.EndObject();
+ }
+ if(detailedMap == VK_TRUE)
+ {
+ allocator->PrintDetailedMap(json);
+ }
+
+ json.EndObject();
+ }
+
+ const size_t len = sb.GetLength();
+ char* const pChars = vma_new_array(allocator, char, len + 1);
+ if(len > 0)
+ {
+ memcpy(pChars, sb.GetData(), len);
+ }
+ pChars[len] = '\0';
+ *ppStatsString = pChars;
+}
+
+void vmaFreeStatsString(
+ VmaAllocator allocator,
+ char* pStatsString)
+{
+ if(pStatsString != VMA_NULL)
+ {
+ VMA_ASSERT(allocator);
+ size_t len = strlen(pStatsString);
+ vma_delete_array(allocator, pStatsString, len + 1);
+ }
+}
+
+#endif // #if VMA_STATS_STRING_ENABLED
+
+/*
+This function is not protected by any mutex because it just reads immutable data.
+*/
+VkResult vmaFindMemoryTypeIndex(
+ VmaAllocator allocator,
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ if(pAllocationCreateInfo->memoryTypeBits != 0)
+ {
+ memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
+ }
+
+ uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
+ uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
+
+ // Convert usage to requiredFlags and preferredFlags.
+ switch(pAllocationCreateInfo->usage)
+ {
+ case VMA_MEMORY_USAGE_UNKNOWN:
+ break;
+ case VMA_MEMORY_USAGE_GPU_ONLY:
+ preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ break;
+ case VMA_MEMORY_USAGE_CPU_ONLY:
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+ break;
+ case VMA_MEMORY_USAGE_CPU_TO_GPU:
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ break;
+ case VMA_MEMORY_USAGE_GPU_TO_CPU:
+ requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ preferredFlags |= VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+ break;
+ default:
+ break;
+ }
+
+ *pMemoryTypeIndex = UINT32_MAX;
+ uint32_t minCost = UINT32_MAX;
+ for(uint32_t memTypeIndex = 0, memTypeBit = 1;
+ memTypeIndex < allocator->GetMemoryTypeCount();
+ ++memTypeIndex, memTypeBit <<= 1)
+ {
+ // This memory type is acceptable according to memoryTypeBits bitmask.
+ if((memTypeBit & memoryTypeBits) != 0)
+ {
+ const VkMemoryPropertyFlags currFlags =
+ allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
+ // This memory type contains requiredFlags.
+ if((requiredFlags & ~currFlags) == 0)
+ {
+ // Calculate cost as number of bits from preferredFlags not present in this memory type.
+ uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags);
+ // Remember memory type with lowest cost.
+ if(currCost < minCost)
+ {
+ *pMemoryTypeIndex = memTypeIndex;
+ if(currCost == 0)
+ {
+ return VK_SUCCESS;
+ }
+ minCost = currCost;
+ }
+ }
+ }
+ }
+ return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
+}
+
+VkResult vmaFindMemoryTypeIndexForBufferInfo(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ const VkDevice hDev = allocator->m_hDevice;
+ VkBuffer hBuffer = VK_NULL_HANDLE;
+ VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer(
+ hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
+ if(res == VK_SUCCESS)
+ {
+ VkMemoryRequirements memReq = {};
+ allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements(
+ hDev, hBuffer, &memReq);
+
+ res = vmaFindMemoryTypeIndex(
+ allocator,
+ memReq.memoryTypeBits,
+ pAllocationCreateInfo,
+ pMemoryTypeIndex);
+
+ allocator->GetVulkanFunctions().vkDestroyBuffer(
+ hDev, hBuffer, allocator->GetAllocationCallbacks());
+ }
+ return res;
+}
+
+VkResult vmaFindMemoryTypeIndexForImageInfo(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pImageCreateInfo != VMA_NULL);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ const VkDevice hDev = allocator->m_hDevice;
+ VkImage hImage = VK_NULL_HANDLE;
+ VkResult res = allocator->GetVulkanFunctions().vkCreateImage(
+ hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
+ if(res == VK_SUCCESS)
+ {
+ VkMemoryRequirements memReq = {};
+ allocator->GetVulkanFunctions().vkGetImageMemoryRequirements(
+ hDev, hImage, &memReq);
+
+ res = vmaFindMemoryTypeIndex(
+ allocator,
+ memReq.memoryTypeBits,
+ pAllocationCreateInfo,
+ pMemoryTypeIndex);
+
+ allocator->GetVulkanFunctions().vkDestroyImage(
+ hDev, hImage, allocator->GetAllocationCallbacks());
+ }
+ return res;
+}
+
+VkResult vmaCreatePool(
+ VmaAllocator allocator,
+ const VmaPoolCreateInfo* pCreateInfo,
+ VmaPool* pPool)
+{
+ VMA_ASSERT(allocator && pCreateInfo && pPool);
+
+ VMA_DEBUG_LOG("vmaCreatePool");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->CreatePool(pCreateInfo, pPool);
+}
+
+void vmaDestroyPool(
+ VmaAllocator allocator,
+ VmaPool pool)
+{
+ VMA_ASSERT(allocator);
+
+ if(pool == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaDestroyPool");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->DestroyPool(pool);
+}
+
+void vmaGetPoolStats(
+ VmaAllocator allocator,
+ VmaPool pool,
+ VmaPoolStats* pPoolStats)
+{
+ VMA_ASSERT(allocator && pool && pPoolStats);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->GetPoolStats(pool, pPoolStats);
+}
+
+void vmaMakePoolAllocationsLost(
+ VmaAllocator allocator,
+ VmaPool pool,
+ size_t* pLostAllocationCount)
+{
+ VMA_ASSERT(allocator && pool);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
+}
+
+VkResult vmaAllocateMemory(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult result = allocator->AllocateMemory(
+ *pVkMemoryRequirements,
+ false, // requiresDedicatedAllocation
+ false, // prefersDedicatedAllocation
+ VK_NULL_HANDLE, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN,
+ pAllocation);
+
+ if(pAllocationInfo && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+VkResult vmaAllocateMemoryForBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation);
+
+ VkResult result = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ buffer, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_BUFFER,
+ pAllocation);
+
+ if(pAllocationInfo && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+VkResult vmaAllocateMemoryForImage(
+ VmaAllocator allocator,
+ VkImage image,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult result = AllocateMemoryForImage(
+ allocator,
+ image,
+ pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
+ pAllocation);
+
+ if(pAllocationInfo && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+void vmaFreeMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_LOG("vmaFreeMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->FreeMemory(allocation);
+}
+
+void vmaGetAllocationInfo(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && allocation && pAllocationInfo);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->GetAllocationInfo(allocation, pAllocationInfo);
+}
+
+VkBool32 vmaTouchAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->TouchAllocation(allocation);
+}
+
+void vmaSetAllocationUserData(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void* pUserData)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocation->SetUserData(allocator, pUserData);
+}
+
+void vmaCreateLostAllocation(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocation)
+{
+ VMA_ASSERT(allocator && pAllocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+
+ allocator->CreateLostAllocation(pAllocation);
+}
+
+VkResult vmaMapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void** ppData)
+{
+ VMA_ASSERT(allocator && allocation && ppData);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->Map(allocation, ppData);
+}
+
+void vmaUnmapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->Unmap(allocation);
+}
+
+VkResult vmaDefragment(
+ VmaAllocator allocator,
+ VmaAllocation* pAllocations,
+ size_t allocationCount,
+ VkBool32* pAllocationsChanged,
+ const VmaDefragmentationInfo *pDefragmentationInfo,
+ VmaDefragmentationStats* pDefragmentationStats)
+{
+ VMA_ASSERT(allocator && pAllocations);
+
+ VMA_DEBUG_LOG("vmaDefragment");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->Defragment(pAllocations, allocationCount, pAllocationsChanged, pDefragmentationInfo, pDefragmentationStats);
+}
+
+VkResult vmaBindBufferMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkBuffer buffer)
+{
+ VMA_ASSERT(allocator && allocation && buffer);
+
+ VMA_DEBUG_LOG("vmaBindBufferMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindBufferMemory(allocation, buffer);
+}
+
+VkResult vmaBindImageMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkImage image)
+{
+ VMA_ASSERT(allocator && allocation && image);
+
+ VMA_DEBUG_LOG("vmaBindImageMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindImageMemory(allocation, image);
+}
+
+VkResult vmaCreateBuffer(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkBuffer* pBuffer,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
+
+ VMA_DEBUG_LOG("vmaCreateBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pBuffer = VK_NULL_HANDLE;
+ *pAllocation = VK_NULL_HANDLE;
+
+ // 1. Create VkBuffer.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
+ allocator->m_hDevice,
+ pBufferCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pBuffer);
+ if(res >= 0)
+ {
+ // 2. vkGetBufferMemoryRequirements.
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ // Make sure alignment requirements for specific buffer usages reported
+ // in Physical Device Properties are included in alignment reported by memory requirements.
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) != 0)
+ {
+ VMA_ASSERT(vkMemReq.alignment %
+ allocator->m_PhysicalDeviceProperties.limits.minTexelBufferOffsetAlignment == 0);
+ }
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT) != 0)
+ {
+ VMA_ASSERT(vkMemReq.alignment %
+ allocator->m_PhysicalDeviceProperties.limits.minUniformBufferOffsetAlignment == 0);
+ }
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT) != 0)
+ {
+ VMA_ASSERT(vkMemReq.alignment %
+ allocator->m_PhysicalDeviceProperties.limits.minStorageBufferOffsetAlignment == 0);
+ }
+
+ // 3. Allocate memory using allocator.
+ res = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ *pBuffer, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ *pAllocationCreateInfo,
+ VMA_SUBALLOCATION_TYPE_BUFFER,
+ pAllocation);
+ if(res >= 0)
+ {
+ // 3. Bind buffer with memory.
+ res = allocator->BindBufferMemory(*pAllocation, *pBuffer);
+ if(res >= 0)
+ {
+ // All steps succeeded.
+ if(pAllocationInfo != VMA_NULL)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+ return VK_SUCCESS;
+ }
+ allocator->FreeMemory(*pAllocation);
+ *pAllocation = VK_NULL_HANDLE;
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ return res;
+}
+
+void vmaDestroyBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ VmaAllocation allocation)
+{
+ if(buffer != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_LOG("vmaDestroyBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
+
+ allocator->FreeMemory(allocation);
+ }
+}
+
+VkResult vmaCreateImage(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkImage* pImage,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
+
+ VMA_DEBUG_LOG("vmaCreateImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pImage = VK_NULL_HANDLE;
+ *pAllocation = VK_NULL_HANDLE;
+
+ // 1. Create VkImage.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
+ allocator->m_hDevice,
+ pImageCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pImage);
+ if(res >= 0)
+ {
+ VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
+
+ // 2. Allocate memory using allocator.
+ res = AllocateMemoryForImage(allocator, *pImage, pAllocationCreateInfo, suballocType, pAllocation);
+ if(res >= 0)
+ {
+ // 3. Bind image with memory.
+ res = allocator->BindImageMemory(*pAllocation, *pImage);
+ if(res >= 0)
+ {
+ // All steps succeeded.
+ if(pAllocationInfo != VMA_NULL)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+ return VK_SUCCESS;
+ }
+ allocator->FreeMemory(*pAllocation);
+ *pAllocation = VK_NULL_HANDLE;
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+ *pImage = VK_NULL_HANDLE;
+ return res;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+ *pImage = VK_NULL_HANDLE;
+ return res;
+ }
+ return res;
+}
+
+void vmaDestroyImage(
+ VmaAllocator allocator,
+ VkImage image,
+ VmaAllocation allocation)
+{
+ if(image != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_LOG("vmaDestroyImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
+
+ allocator->FreeMemory(allocation);
+ }
+}
+
+#endif // #ifdef VMA_IMPLEMENTATION