aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar mtklein <mtklein@google.com>2015-11-06 11:34:06 -0800
committerGravatar Commit bot <commit-bot@chromium.org>2015-11-06 11:34:06 -0800
commit135805107356fefd8e7787c2a2964fe9177b223c (patch)
treede27971f8c68065ed6298c97150cdd772b1bc1d8
parent6065d8eae621b02405dc44481cb8cc620de01a0d (diff)
Revert of SkPx: new approach to fixed-point SIMD (patchset #12 id:220001 of https://codereview.chromium.org/1317233005/ )
Reason for revert: master-skia unhappy: https://android-build.storage.googleapis.com/builds/git_master-skia-linux-volantis-userdebug/2404853/e6c439e806fb0bd0f872a3d7a5cf0637d4ad11bfaa89e9bc18b651dc65f0a36b/logs/build_error.log?GoogleAccessId=701025073339-mqn0q2nvir9iurm6q5d00tdv7blbgvjr%40developer.gserviceaccount.com&Signature=WOqQO7xHkv83SmC4h5tNUIp%2BREaYULqK11hNTWlhj1XXo0NAOQd7GNSIHl775uRRZpBw2LkHeb2Ups3LsgRPrldqymposFtDa%2BUEW0Jv2NWAr%2F1Cqt6lwWsfknvJLN9NiEGfpCCye3Q%2FEYx9bU1ozMBG6h2DRHJUMRS%2FjstkJg0%3D&Expires=1446838937 Original issue's description: > SkPx: new approach to fixed-point SIMD > > SkPx is like Sk4px, except each platform implementation of SkPx can declare > a different sweet spot of N pixels, with extra loads and stores to handle the > ragged edge of 0<n<N pixels. > > In this case, _sse's sweet spot remains 4 pixels. _neon jumps up to 8 so > we can now use NEON's transposing loads and stores, and _none is just 1. > This makes operations involving alpha considerably more efficient on NEON, > as alpha is its own distinct 8x8 bit plane that's easy to toss around. > > This incorporates a few other improvements I've been wanting: > - no requirement that we're dealing with SkPMColor. SkColor works too. > - no anonymous namespace hack to differentiate implementations. > > Codegen and perf look good on Clang/x86-64 and GCC/ARMv7. > The NEON code looks very similar to the old NEON code, as intended. > No .skp or GM diffs on my laptop. Don't expect any. > > I intend this to replace Sk4px. Plan after landing: > - port SkXfermode_opts.h > - port Color32 in SkBlitRow_D32.cpp (and move to SkBlitRow_opts.h like other > SkOpts code) > - delete all Sk4px-related code > - clean up evolutionary dead ends in SkNx (Sk16b, Sk16h, Sk4i, Sk4d, etc.) > leaving Sk2f, Sk4f (and Sk2s, Sk4s). > - find a machine with AVX2 to work on, write SkPx_avx2.h handling 8 pixels > at a time. > > In the end we'll have Sk4f for float pixels, SkPx for fixed-point pixels. > > BUG=skia:4117 > > Committed: https://skia.googlesource.com/skia/+/82c93b45ed6ac0b628adb8375389c202d1f586f9 > > CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;client.skia.compile:Build-Mac10.8-Clang-Arm7-Debug-Android-Trybot > > Committed: https://skia.googlesource.com/skia/+/a7627dc5cc2bf5d9a95d883d20c40d477ecadadf TBR=msarett@google.com,mtklein@chromium.org NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true BUG=skia:4117 Review URL: https://codereview.chromium.org/1409843005
-rw-r--r--src/core/SkPx.h89
-rw-r--r--src/opts/SkBlitMask_opts.h213
-rw-r--r--src/opts/SkPx_neon.h214
-rw-r--r--src/opts/SkPx_none.h106
-rw-r--r--src/opts/SkPx_sse.h150
5 files changed, 173 insertions, 599 deletions
diff --git a/src/core/SkPx.h b/src/core/SkPx.h
deleted file mode 100644
index 129fc07fbc..0000000000
--- a/src/core/SkPx.h
+++ /dev/null
@@ -1,89 +0,0 @@
-/*
- * Copyright 2015 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef SkPx_DEFINED
-#define SkPx_DEFINED
-
-#include "SkTypes.h"
-#include "SkColorPriv.h"
-
-// We'll include one of src/opts/SkPx_{sse,neon,none}.h to define a type SkPx.
-//
-// SkPx represents up to SkPx::N 8888 pixels. It's agnostic to whether these
-// are SkColors or SkPMColors; it only assumes that alpha is the high byte.
-static_assert(SK_A32_SHIFT == 24, "For both SkColor and SkPMColor, alpha is always the high byte.");
-//
-// SkPx::Alpha represents up to SkPx::N 8-bit values, usually coverage or alpha.
-// SkPx::Wide represents up to SkPx::N pixels with 16 bits per component.
-//
-// SkPx supports the following methods:
-// static SkPx Dup(uint32_t);
-// static SkPx Load(const uint32_t*);
-// static SkPx Load(const uint32_t*, int n); // where 0<n<SkPx::N
-// void store(uint32_t*) const;
-// void store(uint32_t*, int n) const; // where 0<n<SkPx::N
-//
-// Alpha alpha() const; // argb -> a
-// Wide widenLo() const; // argb -> 0a0r0g0b
-// Wide widenHi() const; // argb -> a0r0g0b0
-// Wide widenLoHi() const; // argb -> aarrggbb
-//
-// SkPx operator+(const SkPx&) const;
-// SkPx operator-(const SkPx&) const;
-// SkPx saturatedAdd(const SkPx&) const;
-//
-// Wide operator*(const Alpha&) const; // argb * A -> (a*A)(r*A)(g*A)(b*A)
-//
-// // Fast approximate (px*a+127)/255.
-// // Never off by more than 1, and always correct when px or a is 0 or 255.
-// // We use the approximation (px*a+px)/256.
-// SkPx approxMulDiv255(const Alpha&) const;
-//
-// SkPx addAlpha(const Alpha&) const; // argb + A -> (a+A)rgb
-//
-// SkPx::Alpha supports the following methods:
-// static Alpha Dup(uint8_t);
-// static Alpha Load(const uint8_t*);
-// static Alpha Load(const uint8_t*, int n); // where 0<n<SkPx::N
-//
-// Alpha inv() const; // a -> 255-a
-//
-// SkPx::Wide supports the following methods:
-// Wide operator+(const Wide&);
-// Wide operator-(const Wide&);
-// Wide operator<<(int bits);
-// Wide operator>>(int bits);
-//
-// // Return the high byte of each component of (*this + o.widenLo()).
-// SkPx addNarrowHi(const SkPx& o);
-//
-// Methods left unwritten, but certainly to come:
-// SkPx SkPx::operator<(const SkPx&) const;
-// SkPx SkPx::thenElse(const SkPx& then, const SkPx& else) const;
-// Wide Wide::operator<(const Wide&) const;
-// Wide Wide::thenElse(const Wide& then, const Wide& else) const;
-//
-// SkPx Wide::div255() const; // Rounds, think (*this + 127) / 255.
-//
-// The different implementations of SkPx have complete freedom to choose
-// SkPx::N and how they represent SkPx, SkPx::Alpha, and SkPx::Wide.
-//
-// All observable math must remain identical.
-
-#if defined(SKNX_NO_SIMD)
- #include "../opts/SkPx_none.h"
-#else
- #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
- #include "../opts/SkPx_sse.h"
- #elif defined(SK_ARM_HAS_NEON)
- #include "../opts/SkPx_neon.h"
- #else
- #include "../opts/SkPx_none.h"
- #endif
-#endif
-
-#endif//SkPx_DEFINED
diff --git a/src/opts/SkBlitMask_opts.h b/src/opts/SkBlitMask_opts.h
index f4d7e7973f..2f4fe6ffb8 100644
--- a/src/opts/SkBlitMask_opts.h
+++ b/src/opts/SkBlitMask_opts.h
@@ -9,62 +9,195 @@
#define SkBlitMask_opts_DEFINED
#include "Sk4px.h"
-#include "SkPx.h"
namespace SK_OPTS_NS {
-template <typename Fn>
-static void blit_mask_d32_a8(const Fn& fn, SkPMColor* dst, size_t dstRB,
- const SkAlpha* mask, size_t maskRB,
- int w, int h) {
- while (h --> 0) {
- int n = w;
- while (n >= SkPx::N) {
- fn(SkPx::Load(dst), SkPx::Alpha::Load(mask)).store(dst);
- dst += SkPx::N; mask += SkPx::N; n -= SkPx::N;
+#if defined(SK_ARM_HAS_NEON)
+ // The Sk4px versions below will work fine with NEON, but we have had many indications
+ // that it doesn't perform as well as this NEON-specific code. TODO(mtklein): why?
+ #include "SkColor_opts_neon.h"
+
+ template <bool isColor>
+ static void D32_A8_Opaque_Color_neon(void* SK_RESTRICT dst, size_t dstRB,
+ const void* SK_RESTRICT maskPtr, size_t maskRB,
+ SkColor color, int width, int height) {
+ SkPMColor pmc = SkPreMultiplyColor(color);
+ SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
+ const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
+ uint8x8x4_t vpmc;
+
+ maskRB -= width;
+ dstRB -= (width << 2);
+
+ if (width >= 8) {
+ vpmc.val[NEON_A] = vdup_n_u8(SkGetPackedA32(pmc));
+ vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc));
+ vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc));
+ vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc));
}
- if (n > 0) {
- fn(SkPx::Load(dst, n), SkPx::Alpha::Load(mask, n)).store(dst, n);
- dst += n; mask += n;
+ do {
+ int w = width;
+ while (w >= 8) {
+ uint8x8_t vmask = vld1_u8(mask);
+ uint16x8_t vscale, vmask256 = SkAlpha255To256_neon8(vmask);
+ if (isColor) {
+ vscale = vsubw_u8(vdupq_n_u16(256),
+ SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256));
+ } else {
+ vscale = vsubw_u8(vdupq_n_u16(256), vmask);
+ }
+ uint8x8x4_t vdev = vld4_u8((uint8_t*)device);
+
+ vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)
+ + SkAlphaMul_neon8(vdev.val[NEON_A], vscale);
+ vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256)
+ + SkAlphaMul_neon8(vdev.val[NEON_R], vscale);
+ vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256)
+ + SkAlphaMul_neon8(vdev.val[NEON_G], vscale);
+ vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256)
+ + SkAlphaMul_neon8(vdev.val[NEON_B], vscale);
+
+ vst4_u8((uint8_t*)device, vdev);
+
+ mask += 8;
+ device += 8;
+ w -= 8;
+ }
+
+ while (w--) {
+ unsigned aa = *mask++;
+ if (isColor) {
+ *device = SkBlendARGB32(pmc, *device, aa);
+ } else {
+ *device = SkAlphaMulQ(pmc, SkAlpha255To256(aa))
+ + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
+ }
+ device += 1;
+ };
+
+ device = (uint32_t*)((char*)device + dstRB);
+ mask += maskRB;
+
+ } while (--height != 0);
+ }
+
+ static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* mask, size_t maskRB,
+ SkColor color, int w, int h) {
+ D32_A8_Opaque_Color_neon<true>(dst, dstRB, mask, maskRB, color, w, h);
+ }
+
+ // As above, but made slightly simpler by requiring that color is opaque.
+ static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* mask, size_t maskRB,
+ SkColor color, int w, int h) {
+ D32_A8_Opaque_Color_neon<false>(dst, dstRB, mask, maskRB, color, w, h);
+ }
+
+ // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
+ static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* maskPtr, size_t maskRB,
+ int width, int height) {
+ SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
+ const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
+
+ maskRB -= width;
+ dstRB -= (width << 2);
+ do {
+ int w = width;
+ while (w >= 8) {
+ uint8x8_t vmask = vld1_u8(mask);
+ uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask);
+ uint8x8x4_t vdevice = vld4_u8((uint8_t*)device);
+
+ vdevice = SkAlphaMulQ_neon8(vdevice, vscale);
+ vdevice.val[NEON_A] += vmask;
+
+ vst4_u8((uint8_t*)device, vdevice);
+
+ mask += 8;
+ device += 8;
+ w -= 8;
+ }
+ while (w-- > 0) {
+ unsigned aa = *mask++;
+ *device = (aa << SK_A32_SHIFT)
+ + SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
+ device += 1;
+ };
+ device = (uint32_t*)((char*)device + dstRB);
+ mask += maskRB;
+ } while (--height != 0);
+ }
+
+#else
+ static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* mask, size_t maskRB,
+ SkColor color, int w, int h) {
+ auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
+ auto fn = [&](const Sk4px& d, const Sk4px& aa) {
+ // = (s + d(1-sa))aa + d(1-aa)
+ // = s*aa + d(1-sa*aa)
+ auto left = s.approxMulDiv255(aa),
+ right = d.approxMulDiv255(left.alphas().inv());
+ return left + right; // This does not overflow (exhaustively checked).
+ };
+ while (h --> 0) {
+ Sk4px::MapDstAlpha(w, dst, mask, fn);
+ dst += dstRB / sizeof(*dst);
+ mask += maskRB / sizeof(*mask);
}
- dst += dstRB / sizeof(*dst) - w;
- mask += maskRB / sizeof(*mask) - w;
}
-}
-static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
- const SkAlpha* mask, size_t maskRB,
- SkColor color, int w, int h) {
- auto s = SkPx::Dup(SkPreMultiplyColor(color));
+ // As above, but made slightly simpler by requiring that color is opaque.
+ static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* mask, size_t maskRB,
+ SkColor color, int w, int h) {
+ SkASSERT(SkColorGetA(color) == 0xFF);
+ auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
+ auto fn = [&](const Sk4px& d, const Sk4px& aa) {
+ // = (s + d(1-sa))aa + d(1-aa)
+ // = s*aa + d(1-sa*aa)
+ // ~~~>
+ // = s*aa + d(1-aa)
+ return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv());
+ };
+ while (h --> 0) {
+ Sk4px::MapDstAlpha(w, dst, mask, fn);
+ dst += dstRB / sizeof(*dst);
+ mask += maskRB / sizeof(*mask);
+ }
+ }
- if (color == SK_ColorBLACK) {
- auto fn = [](const SkPx& d, const SkPx::Alpha& aa) {
+ // Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
+ static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* mask, size_t maskRB,
+ int w, int h) {
+ auto fn = [](const Sk4px& d, const Sk4px& aa) {
// = (s + d(1-sa))aa + d(1-aa)
// = s*aa + d(1-sa*aa)
// ~~~>
// a = 1*aa + d(1-1*aa) = aa + d(1-aa)
// c = 0*aa + d(1-1*aa) = d(1-aa)
- return d.approxMulDiv255(aa.inv()).addAlpha(aa);
+ return aa.zeroColors() + d.approxMulDiv255(aa.inv());
};
- blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h);
+ while (h --> 0) {
+ Sk4px::MapDstAlpha(w, dst, mask, fn);
+ dst += dstRB / sizeof(*dst);
+ mask += maskRB / sizeof(*mask);
+ }
+ }
+#endif
+
+static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
+ const SkAlpha* mask, size_t maskRB,
+ SkColor color, int w, int h) {
+ if (color == SK_ColorBLACK) {
+ blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h);
} else if (SkColorGetA(color) == 0xFF) {
- auto fn = [&](const SkPx& d, const SkPx::Alpha& aa) {
- // = (s + d(1-sa))aa + d(1-aa)
- // = s*aa + d(1-sa*aa)
- // ~~~>
- // = s*aa + d(1-aa)
- return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv());
- };
- blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h);
+ blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h);
} else {
- auto fn = [&](const SkPx& d, const SkPx::Alpha& aa) {
- // = (s + d(1-sa))aa + d(1-aa)
- // = s*aa + d(1-sa*aa)
- auto left = s.approxMulDiv255(aa),
- right = d.approxMulDiv255(left.alpha().inv());
- return left + right; // This does not overflow (exhaustively checked).
- };
- blit_mask_d32_a8(fn, dst, dstRB, mask, maskRB, w, h);
+ blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h);
}
}
diff --git a/src/opts/SkPx_neon.h b/src/opts/SkPx_neon.h
deleted file mode 100644
index 8daa5297f1..0000000000
--- a/src/opts/SkPx_neon.h
+++ /dev/null
@@ -1,214 +0,0 @@
-/*
- * Copyright 2015 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef SkPx_neon_DEFINED
-#define SkPx_neon_DEFINED
-
-// When we have NEON, we like to work 8 pixels at a time.
-// This lets us exploit vld4/vst4 and represent SkPx as planar uint8x8x4_t,
-// Wide as planar uint16x8x4_t, and Alpha as a single uint8x8_t plane.
-
-struct SkPx_neon {
- static const int N = 8;
-
- uint8x8x4_t fVec;
- SkPx_neon(uint8x8x4_t vec) : fVec(vec) {}
-
- static SkPx_neon Dup(uint32_t px) { return vld4_dup_u8((const uint8_t*)&px); }
- static SkPx_neon Load(const uint32_t* px) { return vld4_u8((const uint8_t*)px); }
- static SkPx_neon Load(const uint32_t* px, int n) {
- SkASSERT(0 < n && n < 8);
- uint8x8x4_t v = vld4_dup_u8((const uint8_t*)px); // n>=1, so start all lanes with pixel 0.
- switch (n) {
- case 7: v = vld4_lane_u8((const uint8_t*)(px+6), v, 6); // fall through
- case 6: v = vld4_lane_u8((const uint8_t*)(px+5), v, 5); // fall through
- case 5: v = vld4_lane_u8((const uint8_t*)(px+4), v, 4); // fall through
- case 4: v = vld4_lane_u8((const uint8_t*)(px+3), v, 3); // fall through
- case 3: v = vld4_lane_u8((const uint8_t*)(px+2), v, 2); // fall through
- case 2: v = vld4_lane_u8((const uint8_t*)(px+1), v, 1);
- }
- return v;
- }
-
- void store(uint32_t* px) const { vst4_u8((uint8_t*)px, fVec); }
- void store(uint32_t* px, int n) const {
- SkASSERT(0 < n && n < 8);
- switch (n) {
- case 7: vst4_lane_u8((uint8_t*)(px+6), fVec, 6);
- case 6: vst4_lane_u8((uint8_t*)(px+5), fVec, 5);
- case 5: vst4_lane_u8((uint8_t*)(px+4), fVec, 4);
- case 4: vst4_lane_u8((uint8_t*)(px+3), fVec, 3);
- case 3: vst4_lane_u8((uint8_t*)(px+2), fVec, 2);
- case 2: vst4_lane_u8((uint8_t*)(px+1), fVec, 1);
- case 1: vst4_lane_u8((uint8_t*)(px+0), fVec, 0);
- }
- }
-
- struct Alpha {
- uint8x8_t fA;
- Alpha(uint8x8_t a) : fA(a) {}
-
- static Alpha Dup(uint8_t a) { return vdup_n_u8(a); }
- static Alpha Load(const uint8_t* a) { return vld1_u8(a); }
- static Alpha Load(const uint8_t* a, int n) {
- SkASSERT(0 < n && n < 8);
- uint8x8_t v = vld1_dup_u8(a); // n>=1, so start all lanes with alpha 0.
- switch (n) {
- case 7: v = vld1_lane_u8(a+6, v, 6); // fall through
- case 6: v = vld1_lane_u8(a+5, v, 5); // fall through
- case 5: v = vld1_lane_u8(a+4, v, 4); // fall through
- case 4: v = vld1_lane_u8(a+3, v, 3); // fall through
- case 3: v = vld1_lane_u8(a+2, v, 2); // fall through
- case 2: v = vld1_lane_u8(a+1, v, 1);
- }
- return v;
- }
- Alpha inv() const { return vsub_u8(vdup_n_u8(255), fA); }
- };
-
- struct Wide {
- uint16x8x4_t fVec;
- Wide(uint16x8x4_t vec) : fVec(vec) {}
-
- Wide operator+(const Wide& o) const {
- return (uint16x8x4_t) {{
- vaddq_u16(fVec.val[0], o.fVec.val[0]),
- vaddq_u16(fVec.val[1], o.fVec.val[1]),
- vaddq_u16(fVec.val[2], o.fVec.val[2]),
- vaddq_u16(fVec.val[3], o.fVec.val[3]),
- }};
- }
- Wide operator-(const Wide& o) const {
- return (uint16x8x4_t) {{
- vsubq_u16(fVec.val[0], o.fVec.val[0]),
- vsubq_u16(fVec.val[1], o.fVec.val[1]),
- vsubq_u16(fVec.val[2], o.fVec.val[2]),
- vsubq_u16(fVec.val[3], o.fVec.val[3]),
- }};
- }
- Wide operator<<(int bits) const {
- #if defined(SK_DEBUG)
- return (uint16x8x4_t) {{
- shift_slow(fVec.val[0], -bits),
- shift_slow(fVec.val[1], -bits),
- shift_slow(fVec.val[2], -bits),
- shift_slow(fVec.val[3], -bits),
- }};
- #else
- return (uint16x8x4_t) {{
- vshlq_n_u16(fVec.val[0], bits),
- vshlq_n_u16(fVec.val[1], bits),
- vshlq_n_u16(fVec.val[2], bits),
- vshlq_n_u16(fVec.val[3], bits),
- }};
- #endif
- }
- Wide operator>>(int bits) const {
- #if defined(SK_DEBUG)
- return (uint16x8x4_t) {{
- shift_slow(fVec.val[0], bits),
- shift_slow(fVec.val[1], bits),
- shift_slow(fVec.val[2], bits),
- shift_slow(fVec.val[3], bits),
- }};
- #else
- return (uint16x8x4_t) {{
- vshrq_n_u16(fVec.val[0], bits),
- vshrq_n_u16(fVec.val[1], bits),
- vshrq_n_u16(fVec.val[2], bits),
- vshrq_n_u16(fVec.val[3], bits),
- }};
- #endif
- }
-
- // v >> bits, for bits in [-15, 16].
- static uint16x8_t shift_slow(uint16x8_t v, int bits) {
- SkASSERT(bits >= -16 && bits <= 16);
- switch (bits) {
- #define L(n) case -n: return vshlq_n_u16(v, n);
- #define R(n) case n: return vshrq_n_u16(v, n);
- L(15) L(14) L(13) L(10) L(9) L(8) L(7) L(6) L(5) L(4) L(3) L(2) L(1)
- R(16) R(15) R(14) R(13) R(10) R(9) R(8) R(7) R(6) R(5) R(4) R(3) R(2) R(1)
- #undef L
- #undef R
- }
- return v;
- }
-
- SkPx_neon addNarrowHi(const SkPx_neon& o) const {
- return (uint8x8x4_t) {{
- vshrn_n_u16(vaddw_u8(fVec.val[0], o.fVec.val[0]), 8),
- vshrn_n_u16(vaddw_u8(fVec.val[1], o.fVec.val[1]), 8),
- vshrn_n_u16(vaddw_u8(fVec.val[2], o.fVec.val[2]), 8),
- vshrn_n_u16(vaddw_u8(fVec.val[3], o.fVec.val[3]), 8),
- }};
- }
- };
-
- Alpha alpha() const { return fVec.val[3]; }
-
- Wide widenLo() const {
- return (uint16x8x4_t) {{
- vmovl_u8(fVec.val[0]),
- vmovl_u8(fVec.val[1]),
- vmovl_u8(fVec.val[2]),
- vmovl_u8(fVec.val[3]),
- }};
- }
- // TODO: these two can probably be done faster.
- Wide widenHi() const { return this->widenLo() << 8; }
- Wide widenLoHi() const { return this->widenLo() + this->widenHi(); }
-
- SkPx_neon operator+(const SkPx_neon& o) const {
- return (uint8x8x4_t) {{
- vadd_u8(fVec.val[0], o.fVec.val[0]),
- vadd_u8(fVec.val[1], o.fVec.val[1]),
- vadd_u8(fVec.val[2], o.fVec.val[2]),
- vadd_u8(fVec.val[3], o.fVec.val[3]),
- }};
- }
- SkPx_neon operator-(const SkPx_neon& o) const {
- return (uint8x8x4_t) {{
- vsub_u8(fVec.val[0], o.fVec.val[0]),
- vsub_u8(fVec.val[1], o.fVec.val[1]),
- vsub_u8(fVec.val[2], o.fVec.val[2]),
- vsub_u8(fVec.val[3], o.fVec.val[3]),
- }};
- }
- SkPx_neon saturatedAdd(const SkPx_neon& o) const {
- return (uint8x8x4_t) {{
- vqadd_u8(fVec.val[0], o.fVec.val[0]),
- vqadd_u8(fVec.val[1], o.fVec.val[1]),
- vqadd_u8(fVec.val[2], o.fVec.val[2]),
- vqadd_u8(fVec.val[3], o.fVec.val[3]),
- }};
- }
-
- Wide operator*(const Alpha& a) const {
- return (uint16x8x4_t) {{
- vmull_u8(fVec.val[0], a.fA),
- vmull_u8(fVec.val[1], a.fA),
- vmull_u8(fVec.val[2], a.fA),
- vmull_u8(fVec.val[3], a.fA),
- }};
- }
- SkPx_neon approxMulDiv255(const Alpha& a) const {
- return (*this * a).addNarrowHi(*this);
- }
-
- SkPx_neon addAlpha(const Alpha& a) const {
- return (uint8x8x4_t) {{
- fVec.val[0],
- fVec.val[1],
- fVec.val[2],
- vadd_u8(fVec.val[3], a.fA),
- }};
- }
-};
-typedef SkPx_neon SkPx;
-
-#endif//SkPx_neon_DEFINED
diff --git a/src/opts/SkPx_none.h b/src/opts/SkPx_none.h
deleted file mode 100644
index 3825f03dde..0000000000
--- a/src/opts/SkPx_none.h
+++ /dev/null
@@ -1,106 +0,0 @@
-/*
- * Copyright 2015 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef SkPx_none_DEFINED
-#define SkPx_none_DEFINED
-
-// Nothing fancy here. We're the backup _none case after all.
-// Our declared sweet spot is simply a single pixel at a time.
-
-struct SkPx_none {
- static const int N = 1;
- uint8_t f8[4];
-
- SkPx_none(uint32_t px) { memcpy(f8, &px, 4); }
- SkPx_none(uint8_t x, uint8_t y, uint8_t z, uint8_t a) {
- f8[0] = x; f8[1] = y; f8[2] = z; f8[3] = a;
- }
-
- static SkPx_none Dup(uint32_t px) { return px; }
- static SkPx_none Load(const uint32_t* px) { return *px; }
- static SkPx_none Load(const uint32_t* px, int n) {
- SkASSERT(false); // There are no 0<n<1.
- return 0;
- }
-
- void store(uint32_t* px) const { memcpy(px, f8, 4); }
- void store(uint32_t* px, int n) const {
- SkASSERT(false); // There are no 0<n<1.
- }
-
- struct Alpha {
- uint8_t fA;
- Alpha(uint8_t a) : fA(a) {}
-
- static Alpha Dup(uint8_t a) { return a; }
- static Alpha Load(const uint8_t* a) { return *a; }
- static Alpha Load(const uint8_t* a, int n) {
- SkASSERT(false); // There are no 0<n<1.
- return 0;
- }
- Alpha inv() const { return 255 - fA; }
- };
-
- struct Wide {
- uint16_t f16[4];
-
- Wide(uint16_t x, uint16_t y, uint16_t z, uint16_t a) {
- f16[0] = x; f16[1] = y; f16[2] = z; f16[3] = a;
- }
-
- Wide operator+(const Wide& o) const {
- return Wide(f16[0]+o.f16[0], f16[1]+o.f16[1], f16[2]+o.f16[2], f16[3]+o.f16[3]);
- }
- Wide operator-(const Wide& o) const {
- return Wide(f16[0]-o.f16[0], f16[1]-o.f16[1], f16[2]-o.f16[2], f16[3]-o.f16[3]);
- }
- Wide operator<<(int bits) const {
- return Wide(f16[0]<<bits, f16[1]<<bits, f16[2]<<bits, f16[3]<<bits);
- }
- Wide operator>>(int bits) const {
- return Wide(f16[0]>>bits, f16[1]>>bits, f16[2]>>bits, f16[3]>>bits);
- }
-
- SkPx_none addNarrowHi(const SkPx_none& o) const {
- Wide sum = (*this + o.widenLo()) >> 8;
- return SkPx_none(sum.f16[0], sum.f16[1], sum.f16[2], sum.f16[3]);
- }
- };
-
- Alpha alpha() const { return f8[3]; }
-
- Wide widenLo() const { return Wide(f8[0], f8[1], f8[2], f8[3]); }
- Wide widenHi() const { return this->widenLo() << 8; }
- Wide widenLoHi() const { return this->widenLo() + this->widenHi(); }
-
- SkPx_none operator+(const SkPx_none& o) const {
- return SkPx_none(f8[0]+o.f8[0], f8[1]+o.f8[1], f8[2]+o.f8[2], f8[3]+o.f8[3]);
- }
- SkPx_none operator-(const SkPx_none& o) const {
- return SkPx_none(f8[0]-o.f8[0], f8[1]-o.f8[1], f8[2]-o.f8[2], f8[3]-o.f8[3]);
- }
- SkPx_none saturatedAdd(const SkPx_none& o) const {
- return SkPx_none(SkTMax(0, SkTMin(255, f8[0]+o.f8[0])),
- SkTMax(0, SkTMin(255, f8[1]+o.f8[1])),
- SkTMax(0, SkTMin(255, f8[2]+o.f8[2])),
- SkTMax(0, SkTMin(255, f8[3]+o.f8[3])));
- }
-
- Wide operator*(const Alpha& a) const {
- return Wide(f8[0]*a.fA, f8[1]*a.fA, f8[2]*a.fA, f8[3]*a.fA);
- }
- SkPx_none approxMulDiv255(const Alpha& a) const {
- return (*this * a).addNarrowHi(*this);
- }
-
- SkPx_none addAlpha(const Alpha& a) const {
- return SkPx_none(f8[0], f8[1], f8[2], f8[3]+a.fA);
- }
-};
-typedef SkPx_none SkPx;
-
-#endif//SkPx_none_DEFINED
diff --git a/src/opts/SkPx_sse.h b/src/opts/SkPx_sse.h
deleted file mode 100644
index b82d4e5f93..0000000000
--- a/src/opts/SkPx_sse.h
+++ /dev/null
@@ -1,150 +0,0 @@
-/*
- * Copyright 2015 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#ifndef SkPx_sse_DEFINED
-#define SkPx_sse_DEFINED
-
-// SkPx_sse's sweet spot is to work with 4 pixels at a time,
-// stored interlaced, just as they sit in memory: rgba rgba rgba rgba.
-
-// SkPx_sse's best way to work with alphas is similar,
-// replicating the 4 alphas 4 times each across the pixel: aaaa aaaa aaaa aaaa.
-
-// When working with fewer than 4 pixels, we load the pixels in the low lanes,
-// usually filling the top lanes with zeros (but who cares, might be junk).
-
-struct SkPx_sse {
- static const int N = 4;
-
- __m128i fVec;
- SkPx_sse(__m128i vec) : fVec(vec) {}
-
- static SkPx_sse Dup(uint32_t px) { return _mm_set1_epi32(px); }
- static SkPx_sse Load(const uint32_t* px) { return _mm_loadu_si128((const __m128i*)px); }
- static SkPx_sse Load(const uint32_t* px, int n) {
- SkASSERT(n > 0 && n < 4);
- switch (n) {
- case 1: return _mm_cvtsi32_si128(px[0]);
- case 2: return _mm_loadl_epi64((const __m128i*)px);
- case 3: return _mm_or_si128(_mm_loadl_epi64((const __m128i*)px),
- _mm_slli_si128(_mm_cvtsi32_si128(px[2]), 8));
- }
- return _mm_setzero_si128(); // Not actually reachable.
- }
-
- void store(uint32_t* px) const { _mm_storeu_si128((__m128i*)px, fVec); }
- void store(uint32_t* px, int n) const {
- SkASSERT(n > 0 && n < 4);
- __m128i v = fVec;
- if (n & 1) {
- *px++ = _mm_cvtsi128_si32(v);
- v = _mm_srli_si128(v, 4);
- }
- if (n & 2) {
- _mm_storel_epi64((__m128i*)px, v);
- }
- }
-
- struct Alpha {
- __m128i fVec;
- Alpha(__m128i vec) : fVec(vec) {}
-
- static Alpha Dup(uint8_t a) { return _mm_set1_epi8(a); }
- static Alpha Load(const uint8_t* a) {
- __m128i as = _mm_cvtsi32_si128(*(const uint32_t*)a); // ____ ____ ____ 3210
- #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
- return _mm_shuffle_epi8(as, _mm_set_epi8(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0));
- #else
- as = _mm_unpacklo_epi8 (as, _mm_setzero_si128()); // ____ ____ _3_2 _1_0
- as = _mm_unpacklo_epi16(as, _mm_setzero_si128()); // ___3 ___2 ___1 ___0
- as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00
- return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000
- #endif
- }
- static Alpha Load(const uint8_t* a, int n) {
- SkASSERT(n > 0 && n < 4);
- uint8_t a4[] = { 0,0,0,0 };
- switch (n) {
- case 3: a4[2] = a[2]; // fall through
- case 2: a4[1] = a[1]; // fall through
- case 1: a4[0] = a[0];
- }
- return Load(a4);
- }
-
- Alpha inv() const { return _mm_sub_epi8(_mm_set1_epi8(~0), fVec); }
- };
-
- struct Wide {
- __m128i fLo, fHi;
- Wide(__m128i lo, __m128i hi) : fLo(lo), fHi(hi) {}
-
- Wide operator+(const Wide& o) const {
- return Wide(_mm_add_epi16(fLo, o.fLo), _mm_add_epi16(fHi, o.fHi));
- }
- Wide operator-(const Wide& o) const {
- return Wide(_mm_sub_epi16(fLo, o.fLo), _mm_sub_epi16(fHi, o.fHi));
- }
- Wide operator<<(int bits) const {
- return Wide(_mm_slli_epi16(fLo, bits), _mm_slli_epi16(fHi, bits));
- }
- Wide operator>>(int bits) const {
- return Wide(_mm_srli_epi16(fLo, bits), _mm_srli_epi16(fHi, bits));
- }
-
- SkPx_sse addNarrowHi(const SkPx_sse& o) const {
- Wide sum = (*this + o.widenLo()) >> 8;
- return _mm_packus_epi16(sum.fLo, sum.fHi);
- }
- };
-
- Alpha alpha() const {
- #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
- return _mm_shuffle_epi8(fVec, _mm_set_epi8(15,15,15,15, 11,11,11,11, 7,7,7,7, 3,3,3,3));
- #else
- __m128i as = _mm_srli_epi32(fVec, 24); // ___3 ___2 ___1 ___0
- as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00
- return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000
- #endif
- }
-
- Wide widenLo() const {
- return Wide(_mm_unpacklo_epi8(fVec, _mm_setzero_si128()),
- _mm_unpackhi_epi8(fVec, _mm_setzero_si128()));
- }
- Wide widenHi() const {
- return Wide(_mm_unpacklo_epi8(_mm_setzero_si128(), fVec),
- _mm_unpackhi_epi8(_mm_setzero_si128(), fVec));
- }
- Wide widenLoHi() const {
- return Wide(_mm_unpacklo_epi8(fVec, fVec),
- _mm_unpackhi_epi8(fVec, fVec));
- }
-
- SkPx_sse operator+(const SkPx_sse& o) const { return _mm_add_epi8(fVec, o.fVec); }
- SkPx_sse operator-(const SkPx_sse& o) const { return _mm_sub_epi8(fVec, o.fVec); }
- SkPx_sse saturatedAdd(const SkPx_sse& o) const { return _mm_adds_epi8(fVec, o.fVec); }
-
- Wide operator*(const Alpha& a) const {
- __m128i pLo = _mm_unpacklo_epi8( fVec, _mm_setzero_si128()),
- aLo = _mm_unpacklo_epi8(a.fVec, _mm_setzero_si128()),
- pHi = _mm_unpackhi_epi8( fVec, _mm_setzero_si128()),
- aHi = _mm_unpackhi_epi8(a.fVec, _mm_setzero_si128());
- return Wide(_mm_mullo_epi16(pLo, aLo), _mm_mullo_epi16(pHi, aHi));
- }
- SkPx_sse approxMulDiv255(const Alpha& a) const {
- return (*this * a).addNarrowHi(*this);
- }
-
- SkPx_sse addAlpha(const Alpha& a) const {
- return _mm_add_epi8(fVec, _mm_and_si128(a.fVec, _mm_set1_epi32(0xFF000000)));
- }
-};
-
-typedef SkPx_sse SkPx;
-
-#endif//SkPx_sse_DEFINED