1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
|
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/**
* @fileoverview This file contains helper code used by jspb.BinaryReader
* and BinaryWriter.
*
* @author aappleby@google.com (Austin Appleby)
*/
goog.provide('jspb.utils');
goog.require('goog.asserts');
goog.require('goog.crypt.base64');
goog.require('goog.string');
goog.require('jspb.BinaryConstants');
/**
* Javascript can't natively handle 64-bit data types, so to manipulate them we
* have to split them into two 32-bit halves and do the math manually.
*
* Instead of instantiating and passing small structures around to do this, we
* instead just use two global temporary values. This one stores the low 32
* bits of a split value - for example, if the original value was a 64-bit
* integer, this temporary value will contain the low 32 bits of that integer.
* If the original value was a double, this temporary value will contain the
* low 32 bits of the binary representation of that double, etcetera.
* @type {number}
*/
jspb.utils.split64Low = 0;
/**
* And correspondingly, this temporary variable will contain the high 32 bits
* of whatever value was split.
* @type {number}
*/
jspb.utils.split64High = 0;
/**
* Splits an unsigned Javascript integer into two 32-bit halves and stores it
* in the temp values above.
* @param {number} value The number to split.
*/
jspb.utils.splitUint64 = function(value) {
// Extract low 32 bits and high 32 bits as unsigned integers.
var lowBits = value >>> 0;
var highBits = Math.floor((value - lowBits) /
jspb.BinaryConstants.TWO_TO_32) >>> 0;
jspb.utils.split64Low = lowBits;
jspb.utils.split64High = highBits;
};
/**
* Splits a signed Javascript integer into two 32-bit halves and stores it in
* the temp values above.
* @param {number} value The number to split.
*/
jspb.utils.splitInt64 = function(value) {
// Convert to sign-magnitude representation.
var sign = (value < 0);
value = Math.abs(value);
// Extract low 32 bits and high 32 bits as unsigned integers.
var lowBits = value >>> 0;
var highBits = Math.floor((value - lowBits) /
jspb.BinaryConstants.TWO_TO_32);
highBits = highBits >>> 0;
// Perform two's complement conversion if the sign bit was set.
if (sign) {
highBits = ~highBits >>> 0;
lowBits = ~lowBits >>> 0;
lowBits += 1;
if (lowBits > 0xFFFFFFFF) {
lowBits = 0;
highBits++;
if (highBits > 0xFFFFFFFF) highBits = 0;
}
}
jspb.utils.split64Low = lowBits;
jspb.utils.split64High = highBits;
};
/**
* Convers a signed Javascript integer into zigzag format, splits it into two
* 32-bit halves, and stores it in the temp values above.
* @param {number} value The number to split.
*/
jspb.utils.splitZigzag64 = function(value) {
// Convert to sign-magnitude and scale by 2 before we split the value.
var sign = (value < 0);
value = Math.abs(value) * 2;
jspb.utils.splitUint64(value);
var lowBits = jspb.utils.split64Low;
var highBits = jspb.utils.split64High;
// If the value is negative, subtract 1 from the split representation so we
// don't lose the sign bit due to precision issues.
if (sign) {
if (lowBits == 0) {
if (highBits == 0) {
lowBits = 0xFFFFFFFF;
highBits = 0xFFFFFFFF;
} else {
highBits--;
lowBits = 0xFFFFFFFF;
}
} else {
lowBits--;
}
}
jspb.utils.split64Low = lowBits;
jspb.utils.split64High = highBits;
};
/**
* Converts a floating-point number into 32-bit IEEE representation and stores
* it in the temp values above.
* @param {number} value
*/
jspb.utils.splitFloat32 = function(value) {
var sign = (value < 0) ? 1 : 0;
value = sign ? -value : value;
var exp;
var mant;
// Handle zeros.
if (value === 0) {
if ((1 / value) > 0) {
// Positive zero.
jspb.utils.split64High = 0;
jspb.utils.split64Low = 0x00000000;
} else {
// Negative zero.
jspb.utils.split64High = 0;
jspb.utils.split64Low = 0x80000000;
}
return;
}
// Handle nans.
if (isNaN(value)) {
jspb.utils.split64High = 0;
jspb.utils.split64Low = 0x7FFFFFFF;
return;
}
// Handle infinities.
if (value > jspb.BinaryConstants.FLOAT32_MAX) {
jspb.utils.split64High = 0;
jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0;
return;
}
// Handle denormals.
if (value < jspb.BinaryConstants.FLOAT32_MIN) {
// Number is a denormal.
mant = Math.round(value / Math.pow(2, -149));
jspb.utils.split64High = 0;
jspb.utils.split64Low = ((sign << 31) | mant) >>> 0;
return;
}
exp = Math.floor(Math.log(value) / Math.LN2);
mant = value * Math.pow(2, -exp);
mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF;
jspb.utils.split64High = 0;
jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0;
};
/**
* Converts a floating-point number into 64-bit IEEE representation and stores
* it in the temp values above.
* @param {number} value
*/
jspb.utils.splitFloat64 = function(value) {
var sign = (value < 0) ? 1 : 0;
value = sign ? -value : value;
// Handle zeros.
if (value === 0) {
if ((1 / value) > 0) {
// Positive zero.
jspb.utils.split64High = 0x00000000;
jspb.utils.split64Low = 0x00000000;
} else {
// Negative zero.
jspb.utils.split64High = 0x80000000;
jspb.utils.split64Low = 0x00000000;
}
return;
}
// Handle nans.
if (isNaN(value)) {
jspb.utils.split64High = 0x7FFFFFFF;
jspb.utils.split64Low = 0xFFFFFFFF;
return;
}
// Handle infinities.
if (value > jspb.BinaryConstants.FLOAT64_MAX) {
jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0;
jspb.utils.split64Low = 0;
return;
}
// Handle denormals.
if (value < jspb.BinaryConstants.FLOAT64_MIN) {
// Number is a denormal.
var mant = value / Math.pow(2, -1074);
var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32);
jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0;
jspb.utils.split64Low = (mant >>> 0);
return;
}
var exp = Math.floor(Math.log(value) / Math.LN2);
if (exp == 1024) exp = 1023;
var mant = value * Math.pow(2, -exp);
var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF;
var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0;
jspb.utils.split64High =
((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0;
jspb.utils.split64Low = mantLow;
};
/**
* Converts an 8-character hash string into two 32-bit numbers and stores them
* in the temp values above.
* @param {string} hash
*/
jspb.utils.splitHash64 = function(hash) {
var a = hash.charCodeAt(0);
var b = hash.charCodeAt(1);
var c = hash.charCodeAt(2);
var d = hash.charCodeAt(3);
var e = hash.charCodeAt(4);
var f = hash.charCodeAt(5);
var g = hash.charCodeAt(6);
var h = hash.charCodeAt(7);
jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0;
jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0;
};
/**
* Joins two 32-bit values into a 64-bit unsigned integer. Precision will be
* lost if the result is greater than 2^52.
* @param {number} bitsLow
* @param {number} bitsHigh
* @return {number}
*/
jspb.utils.joinUint64 = function(bitsLow, bitsHigh) {
return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + bitsLow;
};
/**
* Joins two 32-bit values into a 64-bit signed integer. Precision will be lost
* if the result is greater than 2^52.
* @param {number} bitsLow
* @param {number} bitsHigh
* @return {number}
*/
jspb.utils.joinInt64 = function(bitsLow, bitsHigh) {
// If the high bit is set, do a manual two's complement conversion.
var sign = (bitsHigh & 0x80000000);
if (sign) {
bitsLow = (~bitsLow + 1) >>> 0;
bitsHigh = ~bitsHigh >>> 0;
if (bitsLow == 0) {
bitsHigh = (bitsHigh + 1) >>> 0;
}
}
var result = jspb.utils.joinUint64(bitsLow, bitsHigh);
return sign ? -result : result;
};
/**
* Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag
* decoding. Precision will be lost if the result is greater than 2^52.
* @param {number} bitsLow
* @param {number} bitsHigh
* @return {number}
*/
jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) {
// Extract the sign bit and shift right by one.
var sign = bitsLow & 1;
bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) >>> 0;
bitsHigh = bitsHigh >>> 1;
// Increment the split value if the sign bit was set.
if (sign) {
bitsLow = (bitsLow + 1) >>> 0;
if (bitsLow == 0) {
bitsHigh = (bitsHigh + 1) >>> 0;
}
}
var result = jspb.utils.joinUint64(bitsLow, bitsHigh);
return sign ? -result : result;
};
/**
* Joins two 32-bit values into a 32-bit IEEE floating point number and
* converts it back into a Javascript number.
* @param {number} bitsLow The low 32 bits of the binary number;
* @param {number} bitsHigh The high 32 bits of the binary number.
* @return {number}
*/
jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) {
var sign = ((bitsLow >> 31) * 2 + 1);
var exp = (bitsLow >>> 23) & 0xFF;
var mant = bitsLow & 0x7FFFFF;
if (exp == 0xFF) {
if (mant) {
return NaN;
} else {
return sign * Infinity;
}
}
if (exp == 0) {
// Denormal.
return sign * Math.pow(2, -149) * mant;
} else {
return sign * Math.pow(2, exp - 150) *
(mant + Math.pow(2, 23));
}
};
/**
* Joins two 32-bit values into a 64-bit IEEE floating point number and
* converts it back into a Javascript number.
* @param {number} bitsLow The low 32 bits of the binary number;
* @param {number} bitsHigh The high 32 bits of the binary number.
* @return {number}
*/
jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) {
var sign = ((bitsHigh >> 31) * 2 + 1);
var exp = (bitsHigh >>> 20) & 0x7FF;
var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow;
if (exp == 0x7FF) {
if (mant) {
return NaN;
} else {
return sign * Infinity;
}
}
if (exp == 0) {
// Denormal.
return sign * Math.pow(2, -1074) * mant;
} else {
return sign * Math.pow(2, exp - 1075) *
(mant + jspb.BinaryConstants.TWO_TO_52);
}
};
/**
* Joins two 32-bit values into an 8-character hash string.
* @param {number} bitsLow
* @param {number} bitsHigh
* @return {string}
*/
jspb.utils.joinHash64 = function(bitsLow, bitsHigh) {
var a = (bitsLow >>> 0) & 0xFF;
var b = (bitsLow >>> 8) & 0xFF;
var c = (bitsLow >>> 16) & 0xFF;
var d = (bitsLow >>> 24) & 0xFF;
var e = (bitsHigh >>> 0) & 0xFF;
var f = (bitsHigh >>> 8) & 0xFF;
var g = (bitsHigh >>> 16) & 0xFF;
var h = (bitsHigh >>> 24) & 0xFF;
return String.fromCharCode(a, b, c, d, e, f, g, h);
};
/**
* Individual digits for number->string conversion.
* @const {!Array.<number>}
*/
jspb.utils.DIGITS = [
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
];
/**
* Losslessly converts a 64-bit unsigned integer in 32:32 split representation
* into a decimal string.
* @param {number} bitsLow The low 32 bits of the binary number;
* @param {number} bitsHigh The high 32 bits of the binary number.
* @return {string} The binary number represented as a string.
*/
jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) {
// Skip the expensive conversion if the number is small enough to use the
// built-in conversions.
if (bitsHigh <= 0x1FFFFF) {
return '' + (jspb.BinaryConstants.TWO_TO_32 * bitsHigh + bitsLow);
}
// What this code is doing is essentially converting the input number from
// base-2 to base-1e7, which allows us to represent the 64-bit range with
// only 3 (very large) digits. Those digits are then trivial to convert to
// a base-10 string.
// The magic numbers used here are -
// 2^24 = 16777216 = (1,6777216) in base-1e7.
// 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7.
// Split 32:32 representation into 16:24:24 representation so our
// intermediate digits don't overflow.
var low = bitsLow & 0xFFFFFF;
var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF;
var high = (bitsHigh >> 16) & 0xFFFF;
// Assemble our three base-1e7 digits, ignoring carries. The maximum
// value in a digit at this step is representable as a 48-bit integer, which
// can be stored in a 64-bit floating point number.
var digitA = low + (mid * 6777216) + (high * 6710656);
var digitB = mid + (high * 8147497);
var digitC = (high * 2);
// Apply carries from A to B and from B to C.
var base = 10000000;
if (digitA >= base) {
digitB += Math.floor(digitA / base);
digitA %= base;
}
if (digitB >= base) {
digitC += Math.floor(digitB / base);
digitB %= base;
}
// Convert base-1e7 digits to base-10, omitting leading zeroes.
var table = jspb.utils.DIGITS;
var start = false;
var result = '';
function emit(digit) {
var temp = base;
for (var i = 0; i < 7; i++) {
temp /= 10;
var decimalDigit = ((digit / temp) % 10) >>> 0;
if ((decimalDigit == 0) && !start) continue;
start = true;
result += table[decimalDigit];
}
}
if (digitC || start) emit(digitC);
if (digitB || start) emit(digitB);
if (digitA || start) emit(digitA);
return result;
};
/**
* Losslessly converts a 64-bit signed integer in 32:32 split representation
* into a decimal string.
* @param {number} bitsLow The low 32 bits of the binary number;
* @param {number} bitsHigh The high 32 bits of the binary number.
* @return {string} The binary number represented as a string.
*/
jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) {
// If we're treating the input as a signed value and the high bit is set, do
// a manual two's complement conversion before the decimal conversion.
var negative = (bitsHigh & 0x80000000);
if (negative) {
bitsLow = (~bitsLow + 1) >>> 0;
var carry = (bitsLow == 0) ? 1 : 0;
bitsHigh = (~bitsHigh + carry) >>> 0;
}
var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);
return negative ? '-' + result : result;
};
/**
* Convert an 8-character hash string representing either a signed or unsigned
* 64-bit integer into its decimal representation without losing accuracy.
* @param {string} hash The hash string to convert.
* @param {boolean} signed True if we should treat the hash string as encoding
* a signed integer.
* @return {string}
*/
jspb.utils.hash64ToDecimalString = function(hash, signed) {
jspb.utils.splitHash64(hash);
var bitsLow = jspb.utils.split64Low;
var bitsHigh = jspb.utils.split64High;
return signed ?
jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) :
jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);
};
/**
* Converts an array of 8-character hash strings into their decimal
* representations.
* @param {!Array.<string>} hashes The array of hash strings to convert.
* @param {boolean} signed True if we should treat the hash string as encoding
* a signed integer.
* @return {!Array.<string>}
*/
jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) {
var result = new Array(hashes.length);
for (var i = 0; i < hashes.length; i++) {
result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed);
}
return result;
};
/**
* Converts an 8-character hash string into its hexadecimal representation.
* @param {string} hash
* @return {string}
*/
jspb.utils.hash64ToHexString = function(hash) {
var temp = new Array(18);
temp[0] = '0';
temp[1] = 'x';
for (var i = 0; i < 8; i++) {
var c = hash.charCodeAt(7 - i);
temp[i * 2 + 2] = jspb.utils.DIGITS[c >> 4];
temp[i * 2 + 3] = jspb.utils.DIGITS[c & 0xF];
}
var result = temp.join('');
return result;
};
/**
* Converts a '0x<16 digits>' hex string into its hash string representation.
* @param {string} hex
* @return {string}
*/
jspb.utils.hexStringToHash64 = function(hex) {
hex = hex.toLowerCase();
goog.asserts.assert(hex.length == 18);
goog.asserts.assert(hex[0] == '0');
goog.asserts.assert(hex[1] == 'x');
var result = '';
for (var i = 0; i < 8; i++) {
var hi = jspb.utils.DIGITS.indexOf(hex[i * 2 + 2]);
var lo = jspb.utils.DIGITS.indexOf(hex[i * 2 + 3]);
result = String.fromCharCode(hi * 16 + lo) + result;
}
return result;
};
/**
* Convert an 8-character hash string representing either a signed or unsigned
* 64-bit integer into a Javascript number. Will lose accuracy if the result is
* larger than 2^52.
* @param {string} hash The hash string to convert.
* @param {boolean} signed True if the has should be interpreted as a signed
* number.
* @return {number}
*/
jspb.utils.hash64ToNumber = function(hash, signed) {
jspb.utils.splitHash64(hash);
var bitsLow = jspb.utils.split64Low;
var bitsHigh = jspb.utils.split64High;
return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) :
jspb.utils.joinUint64(bitsLow, bitsHigh);
};
/**
* Convert a Javascript number into an 8-character hash string. Will lose
* precision if the value is non-integral or greater than 2^64.
* @param {number} value The integer to convert.
* @return {string}
*/
jspb.utils.numberToHash64 = function(value) {
jspb.utils.splitInt64(value);
return jspb.utils.joinHash64(jspb.utils.split64Low,
jspb.utils.split64High);
};
/**
* Counts the number of contiguous varints in a buffer.
* @param {!Uint8Array} buffer The buffer to scan.
* @param {number} start The starting point in the buffer to scan.
* @param {number} end The end point in the buffer to scan.
* @return {number} The number of varints in the buffer.
*/
jspb.utils.countVarints = function(buffer, start, end) {
// Count how many high bits of each byte were set in the buffer.
var count = 0;
for (var i = start; i < end; i++) {
count += buffer[i] >> 7;
}
// The number of varints in the buffer equals the size of the buffer minus
// the number of non-terminal bytes in the buffer (those with the high bit
// set).
return (end - start) - count;
};
/**
* Counts the number of contiguous varint fields with the given field number in
* the buffer.
* @param {!Uint8Array} buffer The buffer to scan.
* @param {number} start The starting point in the buffer to scan.
* @param {number} end The end point in the buffer to scan.
* @param {number} field The field number to count.
* @return {number} The number of matching fields in the buffer.
*/
jspb.utils.countVarintFields = function(buffer, start, end, field) {
var count = 0;
var cursor = start;
var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT;
if (tag < 128) {
// Single-byte field tag, we can use a slightly quicker count.
while (cursor < end) {
// Skip the field tag, or exit if we find a non-matching tag.
if (buffer[cursor++] != tag) return count;
// Field tag matches, we've found a valid field.
count++;
// Skip the varint.
while (1) {
var x = buffer[cursor++];
if ((x & 0x80) == 0) break;
}
}
} else {
while (cursor < end) {
// Skip the field tag, or exit if we find a non-matching tag.
var temp = tag;
while (temp > 128) {
if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count;
cursor++;
temp >>= 7;
}
if (buffer[cursor++] != temp) return count;
// Field tag matches, we've found a valid field.
count++;
// Skip the varint.
while (1) {
var x = buffer[cursor++];
if ((x & 0x80) == 0) break;
}
}
}
return count;
};
/**
* Counts the number of contiguous fixed32 fields with the given tag in the
* buffer.
* @param {!Uint8Array} buffer The buffer to scan.
* @param {number} start The starting point in the buffer to scan.
* @param {number} end The end point in the buffer to scan.
* @param {number} tag The tag value to count.
* @param {number} stride The number of bytes to skip per field.
* @return {number} The number of fields with a matching tag in the buffer.
* @private
*/
jspb.utils.countFixedFields_ =
function(buffer, start, end, tag, stride) {
var count = 0;
var cursor = start;
if (tag < 128) {
// Single-byte field tag, we can use a slightly quicker count.
while (cursor < end) {
// Skip the field tag, or exit if we find a non-matching tag.
if (buffer[cursor++] != tag) return count;
// Field tag matches, we've found a valid field.
count++;
// Skip the value.
cursor += stride;
}
} else {
while (cursor < end) {
// Skip the field tag, or exit if we find a non-matching tag.
var temp = tag;
while (temp > 128) {
if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;
temp >>= 7;
}
if (buffer[cursor++] != temp) return count;
// Field tag matches, we've found a valid field.
count++;
// Skip the value.
cursor += stride;
}
}
return count;
};
/**
* Counts the number of contiguous fixed32 fields with the given field number
* in the buffer.
* @param {!Uint8Array} buffer The buffer to scan.
* @param {number} start The starting point in the buffer to scan.
* @param {number} end The end point in the buffer to scan.
* @param {number} field The field number to count.
* @return {number} The number of matching fields in the buffer.
*/
jspb.utils.countFixed32Fields = function(buffer, start, end, field) {
var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32;
return jspb.utils.countFixedFields_(buffer, start, end, tag, 4);
};
/**
* Counts the number of contiguous fixed64 fields with the given field number
* in the buffer.
* @param {!Uint8Array} buffer The buffer to scan.
* @param {number} start The starting point in the buffer to scan.
* @param {number} end The end point in the buffer to scan.
* @param {number} field The field number to count
* @return {number} The number of matching fields in the buffer.
*/
jspb.utils.countFixed64Fields = function(buffer, start, end, field) {
var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64;
return jspb.utils.countFixedFields_(buffer, start, end, tag, 8);
};
/**
* Counts the number of contiguous delimited fields with the given field number
* in the buffer.
* @param {!Uint8Array} buffer The buffer to scan.
* @param {number} start The starting point in the buffer to scan.
* @param {number} end The end point in the buffer to scan.
* @param {number} field The field number to count.
* @return {number} The number of matching fields in the buffer.
*/
jspb.utils.countDelimitedFields = function(buffer, start, end, field) {
var count = 0;
var cursor = start;
var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED;
while (cursor < end) {
// Skip the field tag, or exit if we find a non-matching tag.
var temp = tag;
while (temp > 128) {
if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;
temp >>= 7;
}
if (buffer[cursor++] != temp) return count;
// Field tag matches, we've found a valid field.
count++;
// Decode the length prefix.
var length = 0;
var shift = 1;
while (1) {
temp = buffer[cursor++];
length += (temp & 0x7f) * shift;
shift *= 128;
if ((temp & 0x80) == 0) break;
}
// Advance the cursor past the blob.
cursor += length;
}
return count;
};
/**
* Clones a scalar field. Pulling this out to a helper method saves us a few
* bytes of generated code.
* @param {Array} array
* @return {Array}
*/
jspb.utils.cloneRepeatedScalarField = function(array) {
return array ? array.slice() : null;
};
/**
* Clones an array of messages using the provided cloner function.
* @param {Array.<jspb.BinaryMessage>} messages
* @param {jspb.ClonerFunction} cloner
* @return {Array.<jspb.BinaryMessage>}
*/
jspb.utils.cloneRepeatedMessageField = function(messages, cloner) {
if (messages === null) return null;
var result = [];
for (var i = 0; i < messages.length; i++) {
result.push(cloner(messages[i]));
}
return result;
};
/**
* Clones an array of byte blobs.
* @param {Array.<Uint8Array>} blobs
* @return {Array.<Uint8Array>}
*/
jspb.utils.cloneRepeatedBlobField = function(blobs) {
if (blobs === null) return null;
var result = [];
for (var i = 0; i < blobs.length; i++) {
result.push(new Uint8Array(blobs[i]));
}
return result;
};
/**
* String-ify bytes for text format. Should be optimized away in non-debug.
* The returned string uses \xXX escapes for all values and is itself quoted.
* [1, 31] serializes to '"\x01\x1f"'.
* @param {jspb.ByteSource} byteSource The bytes to serialize.
* @param {boolean=} opt_stringIsRawBytes The string is interpreted as a series
* of raw bytes rather than base64 data.
* @return {string} Stringified bytes for text format.
*/
jspb.utils.debugBytesToTextFormat = function(byteSource,
opt_stringIsRawBytes) {
var s = '"';
if (byteSource) {
var bytes =
jspb.utils.byteSourceToUint8Array(byteSource, opt_stringIsRawBytes);
for (var i = 0; i < bytes.length; i++) {
s += '\\x';
if (bytes[i] < 16) s += '0';
s += bytes[i].toString(16);
}
}
return s + '"';
};
/**
* String-ify a scalar for text format. Should be optimized away in non-debug.
* @param {string|number|boolean} scalar The scalar to stringify.
* @return {string} Stringified scalar for text format.
*/
jspb.utils.debugScalarToTextFormat = function(scalar) {
if (goog.isString(scalar)) {
return goog.string.quote(scalar);
} else {
return scalar.toString();
}
};
/**
* Utility function: convert a string with codepoints 0--255 inclusive to a
* Uint8Array. If any codepoints greater than 255 exist in the string, throws an
* exception.
* @param {string} str
* @return {!Uint8Array}
* @private
*/
jspb.utils.stringToByteArray_ = function(str) {
var arr = new Uint8Array(str.length);
for (var i = 0; i < str.length; i++) {
var codepoint = str.charCodeAt(i);
if (codepoint > 255) {
throw new Error('Conversion error: string contains codepoint ' +
'outside of byte range');
}
arr[i] = codepoint;
}
return arr;
};
/**
* Converts any type defined in jspb.ByteSource into a Uint8Array.
* @param {!jspb.ByteSource} data
* @param {boolean=} opt_stringIsRawBytes Interpret a string as a series of raw
* bytes (encoded as codepoints 0--255 inclusive) rather than base64 data
* (default behavior).
* @return {!Uint8Array}
* @suppress {invalidCasts}
*/
jspb.utils.byteSourceToUint8Array = function(data, opt_stringIsRawBytes) {
if (data.constructor === Uint8Array) {
return /** @type {!Uint8Array} */(data);
}
if (data.constructor === ArrayBuffer) {
data = /** @type {!ArrayBuffer} */(data);
return /** @type {!Uint8Array} */(new Uint8Array(data));
}
if (data.constructor === Array) {
data = /** @type {!Array.<number>} */(data);
return /** @type {!Uint8Array} */(new Uint8Array(data));
}
if (data.constructor === String) {
data = /** @type {string} */(data);
if (opt_stringIsRawBytes) {
return jspb.utils.stringToByteArray_(data);
} else {
return goog.crypt.base64.decodeStringToUint8Array(data);
}
}
goog.asserts.fail('Type not convertible to Uint8Array.');
return /** @type {!Uint8Array} */(new Uint8Array(0));
};
|