aboutsummaryrefslogtreecommitdiffhomepage
path: root/java/core/src/main/java/com/google/protobuf/Utf8.java
blob: be7b746e5a285b3f3f1f4b34ffe9540b8e2a22fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf;

import static com.google.protobuf.UnsafeUtil.addressOffset;
import static com.google.protobuf.UnsafeUtil.getArrayBaseOffset;
import static com.google.protobuf.UnsafeUtil.hasUnsafeArrayOperations;
import static com.google.protobuf.UnsafeUtil.hasUnsafeByteBufferOperations;
import static java.lang.Character.MAX_SURROGATE;
import static java.lang.Character.MIN_SURROGATE;
import static java.lang.Character.isSurrogatePair;
import static java.lang.Character.toCodePoint;

import java.nio.ByteBuffer;

/**
 * A set of low-level, high-performance static utility methods related
 * to the UTF-8 character encoding.  This class has no dependencies
 * outside of the core JDK libraries.
 *
 * <p>There are several variants of UTF-8.  The one implemented by
 * this class is the restricted definition of UTF-8 introduced in
 * Unicode 3.1, which mandates the rejection of "overlong" byte
 * sequences as well as rejection of 3-byte surrogate codepoint byte
 * sequences.  Note that the UTF-8 decoder included in Oracle's JDK
 * has been modified to also reject "overlong" byte sequences, but (as
 * of 2011) still accepts 3-byte surrogate codepoint byte sequences.
 *
 * <p>The byte sequences considered valid by this class are exactly
 * those that can be roundtrip converted to Strings and back to bytes
 * using the UTF-8 charset, without loss: <pre> {@code
 * Arrays.equals(bytes, new String(bytes, Internal.UTF_8).getBytes(Internal.UTF_8))
 * }</pre>
 *
 * <p>See the Unicode Standard,</br>
 * Table 3-6. <em>UTF-8 Bit Distribution</em>,</br>
 * Table 3-7. <em>Well Formed UTF-8 Byte Sequences</em>.
 *
 * <p>This class supports decoding of partial byte sequences, so that the
 * bytes in a complete UTF-8 byte sequences can be stored in multiple
 * segments.  Methods typically return {@link #MALFORMED} if the partial
 * byte sequence is definitely not well-formed, {@link #COMPLETE} if it is
 * well-formed in the absence of additional input, or if the byte sequence
 * apparently terminated in the middle of a character, an opaque integer
 * "state" value containing enough information to decode the character when
 * passed to a subsequent invocation of a partial decoding method.
 *
 * @author martinrb@google.com (Martin Buchholz)
 */
// TODO(nathanmittler): Copy changes in this class back to Guava
final class Utf8 {

  /**
   * UTF-8 is a runtime hot spot so we attempt to provide heavily optimized implementations
   * depending on what is available on the platform. The processor is the platform-optimized
   * delegate for which all methods are delegated directly to.
   */
  private static final Processor processor =
      UnsafeProcessor.isAvailable() ? new UnsafeProcessor() : new SafeProcessor();

  /**
   * A mask used when performing unsafe reads to determine if a long value contains any non-ASCII
   * characters (i.e. any byte >= 0x80).
   */
  private static final long ASCII_MASK_LONG = 0x8080808080808080L;

  /**
   * Maximum number of bytes per Java UTF-16 char in UTF-8.
   * @see java.nio.charset.CharsetEncoder#maxBytesPerChar()
   */
  static final int MAX_BYTES_PER_CHAR = 3;

  /**
   * State value indicating that the byte sequence is well-formed and
   * complete (no further bytes are needed to complete a character).
   */
  public static final int COMPLETE = 0;

  /**
   * State value indicating that the byte sequence is definitely not
   * well-formed.
   */
  public static final int MALFORMED = -1;

  /**
   * Used by {@code Unsafe} UTF-8 string validation logic to determine the minimum string length
   * above which to employ an optimized algorithm for counting ASCII characters. The reason for this
   * threshold is that for small strings, the optimization may not be beneficial or may even
   * negatively impact performance since it requires additional logic to avoid unaligned reads
   * (when calling {@code Unsafe.getLong}). This threshold guarantees that even if the initial
   * offset is unaligned, we're guaranteed to make at least one call to {@code Unsafe.getLong()}
   * which provides a performance improvement that entirely subsumes the cost of the additional
   * logic.
   */
  private static final int UNSAFE_COUNT_ASCII_THRESHOLD = 16;

  // Other state values include the partial bytes of the incomplete
  // character to be decoded in the simplest way: we pack the bytes
  // into the state int in little-endian order.  For example:
  //
  // int state = byte1 ^ (byte2 << 8) ^ (byte3 << 16);
  //
  // Such a state is unpacked thus (note the ~ operation for byte2 to
  // undo byte1's sign-extension bits):
  //
  // int byte1 = (byte) state;
  // int byte2 = (byte) ~(state >> 8);
  // int byte3 = (byte) (state >> 16);
  //
  // We cannot store a zero byte in the state because it would be
  // indistinguishable from the absence of a byte.  But we don't need
  // to, because partial bytes must always be negative.  When building
  // a state, we ensure that byte1 is negative and subsequent bytes
  // are valid trailing bytes.

  /**
   * Returns {@code true} if the given byte array is a well-formed
   * UTF-8 byte sequence.
   *
   * <p>This is a convenience method, equivalent to a call to {@code
   * isValidUtf8(bytes, 0, bytes.length)}.
   */
  public static boolean isValidUtf8(byte[] bytes) {
    return processor.isValidUtf8(bytes, 0, bytes.length);
  }

  /**
   * Returns {@code true} if the given byte array slice is a
   * well-formed UTF-8 byte sequence.  The range of bytes to be
   * checked extends from index {@code index}, inclusive, to {@code
   * limit}, exclusive.
   *
   * <p>This is a convenience method, equivalent to {@code
   * partialIsValidUtf8(bytes, index, limit) == Utf8.COMPLETE}.
   */
  public static boolean isValidUtf8(byte[] bytes, int index, int limit) {
    return processor.isValidUtf8(bytes, index, limit);
  }

  /**
   * Tells whether the given byte array slice is a well-formed,
   * malformed, or incomplete UTF-8 byte sequence.  The range of bytes
   * to be checked extends from index {@code index}, inclusive, to
   * {@code limit}, exclusive.
   *
   * @param state either {@link Utf8#COMPLETE} (if this is the initial decoding
   * operation) or the value returned from a call to a partial decoding method
   * for the previous bytes
   *
   * @return {@link #MALFORMED} if the partial byte sequence is
   * definitely not well-formed, {@link #COMPLETE} if it is well-formed
   * (no additional input needed), or if the byte sequence is
   * "incomplete", i.e. apparently terminated in the middle of a character,
   * an opaque integer "state" value containing enough information to
   * decode the character when passed to a subsequent invocation of a
   * partial decoding method.
   */
  public static int partialIsValidUtf8(int state, byte[] bytes, int index, int limit) {
    return processor.partialIsValidUtf8(state, bytes, index, limit);
  }

  private static int incompleteStateFor(int byte1) {
    return (byte1 > (byte) 0xF4) ?
        MALFORMED : byte1;
  }

  private static int incompleteStateFor(int byte1, int byte2) {
    return (byte1 > (byte) 0xF4 ||
            byte2 > (byte) 0xBF) ?
        MALFORMED : byte1 ^ (byte2 << 8);
  }

  private static int incompleteStateFor(int byte1, int byte2, int byte3) {
    return (byte1 > (byte) 0xF4 ||
            byte2 > (byte) 0xBF ||
            byte3 > (byte) 0xBF) ?
        MALFORMED : byte1 ^ (byte2 << 8) ^ (byte3 << 16);
  }

  private static int incompleteStateFor(byte[] bytes, int index, int limit) {
    int byte1 = bytes[index - 1];
    switch (limit - index) {
      case 0: return incompleteStateFor(byte1);
      case 1: return incompleteStateFor(byte1, bytes[index]);
      case 2: return incompleteStateFor(byte1, bytes[index], bytes[index + 1]);
      default: throw new AssertionError();
    }
  }

  private static int incompleteStateFor(
      final ByteBuffer buffer, final int byte1, final int index, final int remaining) {
    switch (remaining) {
      case 0:
        return incompleteStateFor(byte1);
      case 1:
        return incompleteStateFor(byte1, buffer.get(index));
      case 2:
        return incompleteStateFor(byte1, buffer.get(index), buffer.get(index + 1));
      default:
        throw new AssertionError();
    }
  }

  // These UTF-8 handling methods are copied from Guava's Utf8 class with a modification to throw
  // a protocol buffer local exception. This exception is then caught in CodedOutputStream so it can
  // fallback to more lenient behavior.
  
  static class UnpairedSurrogateException extends IllegalArgumentException {
    UnpairedSurrogateException(int index, int length) {
      super("Unpaired surrogate at index " + index + " of " + length);
    }
  }

  /**
   * Returns the number of bytes in the UTF-8-encoded form of {@code sequence}. For a string,
   * this method is equivalent to {@code string.getBytes(UTF_8).length}, but is more efficient in
   * both time and space.
   *
   * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired
   *     surrogates)
   */
  static int encodedLength(CharSequence sequence) {
    // Warning to maintainers: this implementation is highly optimized.
    int utf16Length = sequence.length();
    int utf8Length = utf16Length;
    int i = 0;

    // This loop optimizes for pure ASCII.
    while (i < utf16Length && sequence.charAt(i) < 0x80) {
      i++;
    }

    // This loop optimizes for chars less than 0x800.
    for (; i < utf16Length; i++) {
      char c = sequence.charAt(i);
      if (c < 0x800) {
        utf8Length += ((0x7f - c) >>> 31);  // branch free!
      } else {
        utf8Length += encodedLengthGeneral(sequence, i);
        break;
      }
    }

    if (utf8Length < utf16Length) {
      // Necessary and sufficient condition for overflow because of maximum 3x expansion
      throw new IllegalArgumentException("UTF-8 length does not fit in int: "
              + (utf8Length + (1L << 32)));
    }
    return utf8Length;
  }

  private static int encodedLengthGeneral(CharSequence sequence, int start) {
    int utf16Length = sequence.length();
    int utf8Length = 0;
    for (int i = start; i < utf16Length; i++) {
      char c = sequence.charAt(i);
      if (c < 0x800) {
        utf8Length += (0x7f - c) >>> 31; // branch free!
      } else {
        utf8Length += 2;
        // jdk7+: if (Character.isSurrogate(c)) {
        if (Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE) {
          // Check that we have a well-formed surrogate pair.
          int cp = Character.codePointAt(sequence, i);
          if (cp < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
            throw new UnpairedSurrogateException(i, utf16Length);
          }
          i++;
        }
      }
    }
    return utf8Length;
  }

  static int encode(CharSequence in, byte[] out, int offset, int length) {
    return processor.encodeUtf8(in, out, offset, length);
  }
  // End Guava UTF-8 methods.

  /**
   * Determines if the given {@link ByteBuffer} is a valid UTF-8 string.
   *
   * <p>Selects an optimal algorithm based on the type of {@link ByteBuffer} (i.e. heap or direct)
   * and the capabilities of the platform.
   *
   * @param buffer the buffer to check.
   * @see Utf8#isValidUtf8(byte[], int, int)
   */
  static boolean isValidUtf8(ByteBuffer buffer) {
    return processor.isValidUtf8(buffer, buffer.position(), buffer.remaining());
  }

  /**
   * Determines if the given {@link ByteBuffer} is a partially valid UTF-8 string.
   *
   * <p>Selects an optimal algorithm based on the type of {@link ByteBuffer} (i.e. heap or direct)
   * and the capabilities of the platform.
   *
   * @param buffer the buffer to check.
   * @see Utf8#partialIsValidUtf8(int, byte[], int, int)
   */
  static int partialIsValidUtf8(int state, ByteBuffer buffer, int index, int limit) {
    return processor.partialIsValidUtf8(state, buffer, index, limit);
  }

  /**
   * Encodes the given characters to the target {@link ByteBuffer} using UTF-8 encoding.
   *
   * <p>Selects an optimal algorithm based on the type of {@link ByteBuffer} (i.e. heap or direct)
   * and the capabilities of the platform.
   *
   * @param in the source string to be encoded
   * @param out the target buffer to receive the encoded string.
   * @see Utf8#encode(CharSequence, byte[], int, int)
   */
  static void encodeUtf8(CharSequence in, ByteBuffer out) {
    processor.encodeUtf8(in, out);
  }

  /**
   * Counts (approximately) the number of consecutive ASCII characters in the given buffer.
   * The byte order of the {@link ByteBuffer} does not matter, so performance can be improved if
   * native byte order is used (i.e. no byte-swapping in {@link ByteBuffer#getLong(int)}).
   *
   * @param buffer the buffer to be scanned for ASCII chars
   * @param index the starting index of the scan
   * @param limit the limit within buffer for the scan
   * @return the number of ASCII characters found. The stopping position will be at or
   * before the first non-ASCII byte.
   */
  private static int estimateConsecutiveAscii(ByteBuffer buffer, int index, int limit) {
    int i = index;
    final int lim = limit - 7;
    // This simple loop stops when we encounter a byte >= 0x80 (i.e. non-ASCII).
    // To speed things up further, we're reading longs instead of bytes so we use a mask to
    // determine if any byte in the current long is non-ASCII.
    for (; i < lim && (buffer.getLong(i) & ASCII_MASK_LONG) == 0; i += 8) {}
    return i - index;
  }

  /**
   * A processor of UTF-8 strings, providing methods for checking validity and encoding.
   */
  // TODO(nathanmittler): Add support for Memory/MemoryBlock on Android.
  abstract static class Processor {
    /**
     * Returns {@code true} if the given byte array slice is a
     * well-formed UTF-8 byte sequence.  The range of bytes to be
     * checked extends from index {@code index}, inclusive, to {@code
     * limit}, exclusive.
     *
     * <p>This is a convenience method, equivalent to {@code
     * partialIsValidUtf8(bytes, index, limit) == Utf8.COMPLETE}.
     */
    final boolean isValidUtf8(byte[] bytes, int index, int limit) {
      return partialIsValidUtf8(COMPLETE, bytes, index, limit) == COMPLETE;
    }

    /**
     * Tells whether the given byte array slice is a well-formed,
     * malformed, or incomplete UTF-8 byte sequence.  The range of bytes
     * to be checked extends from index {@code index}, inclusive, to
     * {@code limit}, exclusive.
     *
     * @param state either {@link Utf8#COMPLETE} (if this is the initial decoding
     * operation) or the value returned from a call to a partial decoding method
     * for the previous bytes
     *
     * @return {@link #MALFORMED} if the partial byte sequence is
     * definitely not well-formed, {@link #COMPLETE} if it is well-formed
     * (no additional input needed), or if the byte sequence is
     * "incomplete", i.e. apparently terminated in the middle of a character,
     * an opaque integer "state" value containing enough information to
     * decode the character when passed to a subsequent invocation of a
     * partial decoding method.
     */
    abstract int partialIsValidUtf8(int state, byte[] bytes, int index, int limit);

    /**
     * Returns {@code true} if the given portion of the {@link ByteBuffer} is a
     * well-formed UTF-8 byte sequence.  The range of bytes to be
     * checked extends from index {@code index}, inclusive, to {@code
     * limit}, exclusive.
     *
     * <p>This is a convenience method, equivalent to {@code
     * partialIsValidUtf8(bytes, index, limit) == Utf8.COMPLETE}.
     */
    final boolean isValidUtf8(ByteBuffer buffer, int index, int limit) {
      return partialIsValidUtf8(COMPLETE, buffer, index, limit) == COMPLETE;
    }

    /**
     * Indicates whether or not the given buffer contains a valid UTF-8 string.
     *
     * @param buffer the buffer to check.
     * @return {@code true} if the given buffer contains a valid UTF-8 string.
     */
    final int partialIsValidUtf8(
        final int state, final ByteBuffer buffer, int index, final int limit) {
      if (buffer.hasArray()) {
        final int offset = buffer.arrayOffset();
        return partialIsValidUtf8(state, buffer.array(), offset + index, offset + limit);
      } else if (buffer.isDirect()){
        return partialIsValidUtf8Direct(state, buffer, index, limit);
      }
      return partialIsValidUtf8Default(state, buffer, index, limit);
    }

    /**
     * Performs validation for direct {@link ByteBuffer} instances.
     */
    abstract int partialIsValidUtf8Direct(
        final int state, final ByteBuffer buffer, int index, final int limit);

    /**
     * Performs validation for {@link ByteBuffer} instances using the {@link ByteBuffer} API rather
     * than potentially faster approaches. This first completes validation for the current
     * character (provided by {@code state}) and then finishes validation for the sequence.
     */
    final int partialIsValidUtf8Default(
        final int state, final ByteBuffer buffer, int index, final int limit) {
      if (state != COMPLETE) {
        // The previous decoding operation was incomplete (or malformed).
        // We look for a well-formed sequence consisting of bytes from
        // the previous decoding operation (stored in state) together
        // with bytes from the array slice.
        //
        // We expect such "straddler characters" to be rare.

        if (index >= limit) { // No bytes? No progress.
          return state;
        }

        byte byte1 = (byte) state;
        // byte1 is never ASCII.
        if (byte1 < (byte) 0xE0) {
          // two-byte form

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2
              // byte2 trailing-byte test
              || buffer.get(index++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else if (byte1 < (byte) 0xF0) {
          // three-byte form

          // Get byte2 from saved state or array
          byte byte2 = (byte) ~(state >> 8);
          if (byte2 == 0) {
            byte2 = buffer.get(index++);
            if (index >= limit) {
              return incompleteStateFor(byte1, byte2);
            }
          }
          if (byte2 > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // illegal surrogate codepoint?
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || buffer.get(index++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else {
          // four-byte form

          // Get byte2 and byte3 from saved state or array
          byte byte2 = (byte) ~(state >> 8);
          byte byte3 = 0;
          if (byte2 == 0) {
            byte2 = buffer.get(index++);
            if (index >= limit) {
              return incompleteStateFor(byte1, byte2);
            }
          } else {
            byte3 = (byte) (state >> 16);
          }
          if (byte3 == 0) {
            byte3 = buffer.get(index++);
            if (index >= limit) {
              return incompleteStateFor(byte1, byte2, byte3);
            }
          }

          // If we were called with state == MALFORMED, then byte1 is 0xFF,
          // which never occurs in well-formed UTF-8, and so we will return
          // MALFORMED again below.

          if (byte2 > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || byte3 > (byte) 0xBF
              // byte4 trailing-byte test
              || buffer.get(index++) > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }

      // Finish validation for the sequence.
      return partialIsValidUtf8(buffer, index, limit);
    }

    /**
     * Performs validation for {@link ByteBuffer} instances using the {@link ByteBuffer} API rather
     * than potentially faster approaches.
     */
    private static int partialIsValidUtf8(final ByteBuffer buffer, int index, final int limit) {
      index += estimateConsecutiveAscii(buffer, index, limit);

      for (;;) {
        // Optimize for interior runs of ASCII bytes.
        // TODO(nathanmittler): Consider checking 8 bytes at a time after some threshold?
        // Maybe after seeing a few in a row that are ASCII, go back to fast mode?
        int byte1;
        do {
          if (index >= limit) {
            return COMPLETE;
          }
        } while ((byte1 = buffer.get(index++)) >= 0);

        // If we're here byte1 is not ASCII. Only need to handle 2-4 byte forms.
        if (byte1 < (byte) 0xE0) {
          // Two-byte form (110xxxxx 10xxxxxx)
          if (index >= limit) {
            // Incomplete sequence
            return byte1;
          }

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2 || buffer.get(index) > (byte) 0xBF) {
            return MALFORMED;
          }
          index++;
        } else if (byte1 < (byte) 0xF0) {
          // Three-byte form (1110xxxx 10xxxxxx 10xxxxxx)
          if (index >= limit - 1) {
            // Incomplete sequence
            return incompleteStateFor(buffer, byte1, index, limit - index);
          }

          final byte byte2 = buffer.get(index++);
          if (byte2 > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // check for illegal surrogate codepoints
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || buffer.get(index) > (byte) 0xBF) {
            return MALFORMED;
          }
          index++;
        } else {
          // Four-byte form (1110xxxx 10xxxxxx 10xxxxxx 10xxxxxx)
          if (index >= limit - 2) {
            // Incomplete sequence
            return incompleteStateFor(buffer, byte1, index, limit - index);
          }

          // TODO(nathanmittler): Consider using getInt() to improve performance.
          final int byte2 = buffer.get(index++);
          if (byte2 > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || buffer.get(index++) > (byte) 0xBF
              // byte4 trailing-byte test
              || buffer.get(index++) > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }
    }

    /**
     * Encodes an input character sequence ({@code in}) to UTF-8 in the target array ({@code out}).
     * For a string, this method is similar to
     * <pre>{@code
     * byte[] a = string.getBytes(UTF_8);
     * System.arraycopy(a, 0, bytes, offset, a.length);
     * return offset + a.length;
     * }</pre>
     *
     * but is more efficient in both time and space. One key difference is that this method
     * requires paired surrogates, and therefore does not support chunking.
     * While {@code String.getBytes(UTF_8)} replaces unpaired surrogates with the default
     * replacement character, this method throws {@link UnpairedSurrogateException}.
     *
     * <p>To ensure sufficient space in the output buffer, either call {@link #encodedLength} to
     * compute the exact amount needed, or leave room for 
     * {@code Utf8.MAX_BYTES_PER_CHAR * sequence.length()}, which is the largest possible number
     * of bytes that any input can be encoded to.
     *
     * @param in the input character sequence to be encoded
     * @param out the target array
     * @param offset the starting offset in {@code bytes} to start writing at
     * @param length the length of the {@code bytes}, starting from {@code offset}
     * @throws UnpairedSurrogateException if {@code sequence} contains ill-formed UTF-16 (unpaired
     *     surrogates)
     * @throws ArrayIndexOutOfBoundsException if {@code sequence} encoded in UTF-8 is longer than
     *     {@code bytes.length - offset}
     * @return the new offset, equivalent to {@code offset + Utf8.encodedLength(sequence)}
     */
    abstract int encodeUtf8(CharSequence in, byte[] out, int offset, int length);

    /**
     * Encodes an input character sequence ({@code in}) to UTF-8 in the target buffer ({@code out}).
     * Upon returning from this method, the {@code out} position will point to the position after
     * the last encoded byte. This method requires paired surrogates, and therefore does not
     * support chunking.
     *
     * <p>To ensure sufficient space in the output buffer, either call {@link #encodedLength} to
     * compute the exact amount needed, or leave room for
     * {@code Utf8.MAX_BYTES_PER_CHAR * in.length()}, which is the largest possible number
     * of bytes that any input can be encoded to.
     *
     * @param in the source character sequence to be encoded
     * @param out the target buffer
     * @throws UnpairedSurrogateException if {@code in} contains ill-formed UTF-16 (unpaired
     *     surrogates)
     * @throws ArrayIndexOutOfBoundsException if {@code in} encoded in UTF-8 is longer than
     *     {@code out.remaining()}
     */
    final void encodeUtf8(CharSequence in, ByteBuffer out) {
      if (out.hasArray()) {
        final int offset = out.arrayOffset();
        int endIndex =
            Utf8.encode(in, out.array(), offset + out.position(), out.remaining());
        out.position(endIndex - offset);
      } else if (out.isDirect()) {
        encodeUtf8Direct(in, out);
      } else {
        encodeUtf8Default(in, out);
      }
    }

    /**
     * Encodes the input character sequence to a direct {@link ByteBuffer} instance.
     */
    abstract void encodeUtf8Direct(CharSequence in, ByteBuffer out);

    /**
     * Encodes the input character sequence to a {@link ByteBuffer} instance using the {@link
     * ByteBuffer} API, rather than potentially faster approaches.
     */
    final void encodeUtf8Default(CharSequence in, ByteBuffer out) {
      final int inLength = in.length();
      int outIx = out.position();
      int inIx = 0;

      // Since ByteBuffer.putXXX() already checks boundaries for us, no need to explicitly check
      // access. Assume the buffer is big enough and let it handle the out of bounds exception
      // if it occurs.
      try {
        // Designed to take advantage of
        // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination
        for (char c; inIx < inLength && (c = in.charAt(inIx)) < 0x80; ++inIx) {
          out.put(outIx + inIx, (byte) c);
        }
        if (inIx == inLength) {
          // Successfully encoded the entire string.
          out.position(outIx + inIx);
          return;
        }

        outIx += inIx;
        for (char c; inIx < inLength; ++inIx, ++outIx) {
          c = in.charAt(inIx);
          if (c < 0x80) {
            // One byte (0xxx xxxx)
            out.put(outIx, (byte) c);
          } else if (c < 0x800) {
            // Two bytes (110x xxxx 10xx xxxx)

            // Benchmarks show put performs better than putShort here (for HotSpot).
            out.put(outIx++, (byte) (0xC0 | (c >>> 6)));
            out.put(outIx, (byte) (0x80 | (0x3F & c)));
          } else if (c < MIN_SURROGATE || MAX_SURROGATE < c) {
            // Three bytes (1110 xxxx 10xx xxxx 10xx xxxx)
            // Maximum single-char code point is 0xFFFF, 16 bits.

            // Benchmarks show put performs better than putShort here (for HotSpot).
            out.put(outIx++, (byte) (0xE0 | (c >>> 12)));
            out.put(outIx++, (byte) (0x80 | (0x3F & (c >>> 6))));
            out.put(outIx, (byte) (0x80 | (0x3F & c)));
          } else {
            // Four bytes (1111 xxxx 10xx xxxx 10xx xxxx 10xx xxxx)

            // Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8
            // bytes
            final char low;
            if (inIx + 1 == inLength || !isSurrogatePair(c, (low = in.charAt(++inIx)))) {
              throw new UnpairedSurrogateException(inIx, inLength);
            }
            // TODO(nathanmittler): Consider using putInt() to improve performance.
            int codePoint = toCodePoint(c, low);
            out.put(outIx++, (byte) ((0xF << 4) | (codePoint >>> 18)));
            out.put(outIx++, (byte) (0x80 | (0x3F & (codePoint >>> 12))));
            out.put(outIx++, (byte) (0x80 | (0x3F & (codePoint >>> 6))));
            out.put(outIx, (byte) (0x80 | (0x3F & codePoint)));
          }
        }

        // Successfully encoded the entire string.
        out.position(outIx);
      } catch (IndexOutOfBoundsException e) {
        // TODO(nathanmittler): Consider making the API throw IndexOutOfBoundsException instead.

        // If we failed in the outer ASCII loop, outIx will not have been updated. In this case,
        // use inIx to determine the bad write index.
        int badWriteIndex = out.position() + Math.max(inIx, outIx - out.position() + 1);
        throw new ArrayIndexOutOfBoundsException(
            "Failed writing " + in.charAt(inIx) + " at index " + badWriteIndex);
      }
    }
  }

  /**
   * {@link Processor} implementation that does not use any {@code sun.misc.Unsafe} methods.
   */
  static final class SafeProcessor extends Processor {
    @Override
    int partialIsValidUtf8(int state, byte[] bytes, int index, int limit) {
      if (state != COMPLETE) {
        // The previous decoding operation was incomplete (or malformed).
        // We look for a well-formed sequence consisting of bytes from
        // the previous decoding operation (stored in state) together
        // with bytes from the array slice.
        //
        // We expect such "straddler characters" to be rare.

        if (index >= limit) {  // No bytes? No progress.
          return state;
        }
        int byte1 = (byte) state;
        // byte1 is never ASCII.
        if (byte1 < (byte) 0xE0) {
          // two-byte form

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2
              // byte2 trailing-byte test
              || bytes[index++] > (byte) 0xBF) {
            return MALFORMED;
          }
        } else if (byte1 < (byte) 0xF0) {
          // three-byte form

          // Get byte2 from saved state or array
          int byte2 = (byte) ~(state >> 8);
          if (byte2 == 0) {
            byte2 = bytes[index++];
            if (index >= limit) {
              return incompleteStateFor(byte1, byte2);
            }
          }
          if (byte2 > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // illegal surrogate codepoint?
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || bytes[index++] > (byte) 0xBF) {
            return MALFORMED;
          }
        } else {
          // four-byte form

          // Get byte2 and byte3 from saved state or array
          int byte2 = (byte) ~(state >> 8);
          int byte3 = 0;
          if (byte2 == 0) {
            byte2 = bytes[index++];
            if (index >= limit) {
              return incompleteStateFor(byte1, byte2);
            }
          } else {
            byte3 = (byte) (state >> 16);
          }
          if (byte3 == 0) {
            byte3 = bytes[index++];
            if (index >= limit) {
              return incompleteStateFor(byte1, byte2, byte3);
            }
          }

          // If we were called with state == MALFORMED, then byte1 is 0xFF,
          // which never occurs in well-formed UTF-8, and so we will return
          // MALFORMED again below.

          if (byte2 > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || byte3 > (byte) 0xBF
              // byte4 trailing-byte test
              || bytes[index++] > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }

      return partialIsValidUtf8(bytes, index, limit);
    }

    @Override
    int partialIsValidUtf8Direct(int state, ByteBuffer buffer, int index, int limit) {
      // For safe processing, we have to use the ByteBuffer API.
      return partialIsValidUtf8Default(state, buffer, index, limit);
    }

    @Override
    int encodeUtf8(CharSequence in, byte[] out, int offset, int length) {
      int utf16Length = in.length();
      int j = offset;
      int i = 0;
      int limit = offset + length;
      // Designed to take advantage of
      // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination
      for (char c; i < utf16Length && i + j < limit && (c = in.charAt(i)) < 0x80; i++) {
        out[j + i] = (byte) c;
      }
      if (i == utf16Length) {
        return j + utf16Length;
      }
      j += i;
      for (char c; i < utf16Length; i++) {
        c = in.charAt(i);
        if (c < 0x80 && j < limit) {
          out[j++] = (byte) c;
        } else if (c < 0x800 && j <= limit - 2) { // 11 bits, two UTF-8 bytes
          out[j++] = (byte) ((0xF << 6) | (c >>> 6));
          out[j++] = (byte) (0x80 | (0x3F & c));
        } else if ((c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) && j <= limit - 3) {
          // Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes
          out[j++] = (byte) ((0xF << 5) | (c >>> 12));
          out[j++] = (byte) (0x80 | (0x3F & (c >>> 6)));
          out[j++] = (byte) (0x80 | (0x3F & c));
        } else if (j <= limit - 4) {
          // Minimum code point represented by a surrogate pair is 0x10000, 17 bits,
          // four UTF-8 bytes
          final char low;
          if (i + 1 == in.length()
                  || !Character.isSurrogatePair(c, (low = in.charAt(++i)))) {
            throw new UnpairedSurrogateException((i - 1), utf16Length);
          }
          int codePoint = Character.toCodePoint(c, low);
          out[j++] = (byte) ((0xF << 4) | (codePoint >>> 18));
          out[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 12)));
          out[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 6)));
          out[j++] = (byte) (0x80 | (0x3F & codePoint));
        } else {
          // If we are surrogates and we're not a surrogate pair, always throw an
          // UnpairedSurrogateException instead of an ArrayOutOfBoundsException.
          if ((Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE)
              && (i + 1 == in.length()
                  || !Character.isSurrogatePair(c, in.charAt(i + 1)))) {
            throw new UnpairedSurrogateException(i, utf16Length);
          }
          throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + j);
        }
      }
      return j;
    }

    @Override
    void encodeUtf8Direct(CharSequence in, ByteBuffer out) {
      // For safe processing, we have to use the ByteBuffer API.
      encodeUtf8Default(in, out);
    }

    private static int partialIsValidUtf8(byte[] bytes, int index, int limit) {
      // Optimize for 100% ASCII (Hotspot loves small simple top-level loops like this).
      // This simple loop stops when we encounter a byte >= 0x80 (i.e. non-ASCII).
      while (index < limit && bytes[index] >= 0) {
        index++;
      }

      return (index >= limit) ? COMPLETE : partialIsValidUtf8NonAscii(bytes, index, limit);
    }

    private static int partialIsValidUtf8NonAscii(byte[] bytes, int index, int limit) {
      for (;;) {
        int byte1, byte2;

        // Optimize for interior runs of ASCII bytes.
        do {
          if (index >= limit) {
            return COMPLETE;
          }
        } while ((byte1 = bytes[index++]) >= 0);

        if (byte1 < (byte) 0xE0) {
          // two-byte form

          if (index >= limit) {
            // Incomplete sequence
            return byte1;
          }

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2
              || bytes[index++] > (byte) 0xBF) {
            return MALFORMED;
          }
        } else if (byte1 < (byte) 0xF0) {
          // three-byte form

          if (index >= limit - 1) { // incomplete sequence
            return incompleteStateFor(bytes, index, limit);
          }
          if ((byte2 = bytes[index++]) > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // check for illegal surrogate codepoints
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || bytes[index++] > (byte) 0xBF) {
            return MALFORMED;
          }
        } else {
          // four-byte form

          if (index >= limit - 2) {  // incomplete sequence
            return incompleteStateFor(bytes, index, limit);
          }
          if ((byte2 = bytes[index++]) > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || bytes[index++] > (byte) 0xBF
              // byte4 trailing-byte test
              || bytes[index++] > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }
    }
  }

  /**
   * {@link Processor} that uses {@code sun.misc.Unsafe} where possible to improve performance.
   */
  static final class UnsafeProcessor extends Processor {
    /**
     * Indicates whether or not all required unsafe operations are supported on this platform.
     */
    static boolean isAvailable() {
      return hasUnsafeArrayOperations() && hasUnsafeByteBufferOperations();
    }

    @Override
    int partialIsValidUtf8(int state, byte[] bytes, final int index, final int limit) {
      if ((index | limit | bytes.length - limit) < 0) {
        throw new ArrayIndexOutOfBoundsException(
            String.format("Array length=%d, index=%d, limit=%d", bytes.length, index, limit));
      }
      long offset = getArrayBaseOffset() + index;
      final long offsetLimit = getArrayBaseOffset() + limit;
      if (state != COMPLETE) {
        // The previous decoding operation was incomplete (or malformed).
        // We look for a well-formed sequence consisting of bytes from
        // the previous decoding operation (stored in state) together
        // with bytes from the array slice.
        //
        // We expect such "straddler characters" to be rare.

        if (offset >= offsetLimit) {  // No bytes? No progress.
          return state;
        }
        int byte1 = (byte) state;
        // byte1 is never ASCII.
        if (byte1 < (byte) 0xE0) {
          // two-byte form

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2
              // byte2 trailing-byte test
              || UnsafeUtil.getByte(bytes, offset++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else if (byte1 < (byte) 0xF0) {
          // three-byte form

          // Get byte2 from saved state or array
          int byte2 = (byte) ~(state >> 8);
          if (byte2 == 0) {
            byte2 = UnsafeUtil.getByte(bytes, offset++);
            if (offset >= offsetLimit) {
              return incompleteStateFor(byte1, byte2);
            }
          }
          if (byte2 > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // illegal surrogate codepoint?
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || UnsafeUtil.getByte(bytes, offset++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else {
          // four-byte form

          // Get byte2 and byte3 from saved state or array
          int byte2 = (byte) ~(state >> 8);
          int byte3 = 0;
          if (byte2 == 0) {
            byte2 = UnsafeUtil.getByte(bytes, offset++);
            if (offset >= offsetLimit) {
              return incompleteStateFor(byte1, byte2);
            }
          } else {
            byte3 = (byte) (state >> 16);
          }
          if (byte3 == 0) {
            byte3 = UnsafeUtil.getByte(bytes, offset++);
            if (offset >= offsetLimit) {
              return incompleteStateFor(byte1, byte2, byte3);
            }
          }

          // If we were called with state == MALFORMED, then byte1 is 0xFF,
          // which never occurs in well-formed UTF-8, and so we will return
          // MALFORMED again below.

          if (byte2 > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || byte3 > (byte) 0xBF
              // byte4 trailing-byte test
              || UnsafeUtil.getByte(bytes, offset++) > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }

      return partialIsValidUtf8(bytes, offset, (int) (offsetLimit - offset));
    }

    @Override
    int partialIsValidUtf8Direct(
        final int state, ByteBuffer buffer, final int index, final int limit) {
      if ((index | limit | buffer.limit() - limit) < 0) {
        throw new ArrayIndexOutOfBoundsException(
            String.format("buffer limit=%d, index=%d, limit=%d", buffer.limit(), index, limit));
      }
      long address = addressOffset(buffer) + index;
      final long addressLimit = address + (limit - index);
      if (state != COMPLETE) {
        // The previous decoding operation was incomplete (or malformed).
        // We look for a well-formed sequence consisting of bytes from
        // the previous decoding operation (stored in state) together
        // with bytes from the array slice.
        //
        // We expect such "straddler characters" to be rare.

        if (address >= addressLimit) { // No bytes? No progress.
          return state;
        }

        final int byte1 = (byte) state;
        // byte1 is never ASCII.
        if (byte1 < (byte) 0xE0) {
          // two-byte form

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2
              // byte2 trailing-byte test
              || UnsafeUtil.getByte(address++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else if (byte1 < (byte) 0xF0) {
          // three-byte form

          // Get byte2 from saved state or array
          int byte2 = (byte) ~(state >> 8);
          if (byte2 == 0) {
            byte2 = UnsafeUtil.getByte(address++);
            if (address >= addressLimit) {
              return incompleteStateFor(byte1, byte2);
            }
          }
          if (byte2 > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // illegal surrogate codepoint?
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || UnsafeUtil.getByte(address++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else {
          // four-byte form

          // Get byte2 and byte3 from saved state or array
          int byte2 = (byte) ~(state >> 8);
          int byte3 = 0;
          if (byte2 == 0) {
            byte2 = UnsafeUtil.getByte(address++);
            if (address >= addressLimit) {
              return incompleteStateFor(byte1, byte2);
            }
          } else {
            byte3 = (byte) (state >> 16);
          }
          if (byte3 == 0) {
            byte3 = UnsafeUtil.getByte(address++);
            if (address >= addressLimit) {
              return incompleteStateFor(byte1, byte2, byte3);
            }
          }

          // If we were called with state == MALFORMED, then byte1 is 0xFF,
          // which never occurs in well-formed UTF-8, and so we will return
          // MALFORMED again below.

          if (byte2 > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || byte3 > (byte) 0xBF
              // byte4 trailing-byte test
              || UnsafeUtil.getByte(address++) > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }

      return partialIsValidUtf8(address, (int) (addressLimit - address));
    }

    @Override
    int encodeUtf8(final CharSequence in, final byte[] out, final int offset, final int length) {
      long outIx = getArrayBaseOffset() + offset;
      final long outLimit = outIx + length;
      final int inLimit = in.length();
      if (inLimit > length || out.length - length < offset) {
        // Not even enough room for an ASCII-encoded string.
        throw new ArrayIndexOutOfBoundsException(
            "Failed writing " + in.charAt(inLimit - 1) + " at index " + (offset + length));
      }

      // Designed to take advantage of
      // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination
      int inIx = 0;
      for (char c; inIx < inLimit && (c = in.charAt(inIx)) < 0x80; ++inIx) {
        UnsafeUtil.putByte(out, outIx++, (byte) c);
      }
      if (inIx == inLimit) {
        // We're done, it was ASCII encoded.
        return (int) (outIx - getArrayBaseOffset());
      }

      for (char c; inIx < inLimit; ++inIx) {
        c = in.charAt(inIx);
        if (c < 0x80 && outIx < outLimit) {
          UnsafeUtil.putByte(out, outIx++, (byte) c);
        } else if (c < 0x800 && outIx <= outLimit - 2L) { // 11 bits, two UTF-8 bytes
          UnsafeUtil.putByte(out, outIx++, (byte) ((0xF << 6) | (c >>> 6)));
          UnsafeUtil.putByte(out, outIx++, (byte) (0x80 | (0x3F & c)));
        } else if ((c < MIN_SURROGATE || MAX_SURROGATE < c) && outIx <= outLimit - 3L) {
          // Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes
          UnsafeUtil.putByte(out, outIx++, (byte) ((0xF << 5) | (c >>> 12)));
          UnsafeUtil.putByte(out, outIx++, (byte) (0x80 | (0x3F & (c >>> 6))));
          UnsafeUtil.putByte(out, outIx++, (byte) (0x80 | (0x3F & c)));
        } else if (outIx <= outLimit - 4L) {
          // Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8
          // bytes
          final char low;
          if (inIx + 1 == inLimit || !isSurrogatePair(c, (low = in.charAt(++inIx)))) {
            throw new UnpairedSurrogateException((inIx - 1), inLimit);
          }
          int codePoint = toCodePoint(c, low);
          UnsafeUtil.putByte(out, outIx++, (byte) ((0xF << 4) | (codePoint >>> 18)));
          UnsafeUtil.putByte(out, outIx++, (byte) (0x80 | (0x3F & (codePoint >>> 12))));
          UnsafeUtil.putByte(out, outIx++, (byte) (0x80 | (0x3F & (codePoint >>> 6))));
          UnsafeUtil.putByte(out, outIx++, (byte) (0x80 | (0x3F & codePoint)));
        } else {
          if ((MIN_SURROGATE <= c && c <= MAX_SURROGATE)
              && (inIx + 1 == inLimit || !isSurrogatePair(c, in.charAt(inIx + 1)))) {
            // We are surrogates and we're not a surrogate pair.
            throw new UnpairedSurrogateException(inIx, inLimit);
          }
          // Not enough space in the output buffer.
          throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + outIx);
        }
      }

      // All bytes have been encoded.
      return (int) (outIx - getArrayBaseOffset());
    }

    @Override
    void encodeUtf8Direct(CharSequence in, ByteBuffer out) {
      final long address = addressOffset(out);
      long outIx = address + out.position();
      final long outLimit = address + out.limit();
      final int inLimit = in.length();
      if (inLimit > outLimit - outIx) {
        // Not even enough room for an ASCII-encoded string.
        throw new ArrayIndexOutOfBoundsException(
            "Failed writing " + in.charAt(inLimit - 1) + " at index " + out.limit());
      }

      // Designed to take advantage of
      // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination
      int inIx = 0;
      for (char c; inIx < inLimit && (c = in.charAt(inIx)) < 0x80; ++inIx) {
        UnsafeUtil.putByte(outIx++, (byte) c);
      }
      if (inIx == inLimit) {
        // We're done, it was ASCII encoded.
        out.position((int) (outIx - address));
        return;
      }

      for (char c; inIx < inLimit; ++inIx) {
        c = in.charAt(inIx);
        if (c < 0x80 && outIx < outLimit) {
          UnsafeUtil.putByte(outIx++, (byte) c);
        } else if (c < 0x800 && outIx <= outLimit - 2L) { // 11 bits, two UTF-8 bytes
          UnsafeUtil.putByte(outIx++, (byte) ((0xF << 6) | (c >>> 6)));
          UnsafeUtil.putByte(outIx++, (byte) (0x80 | (0x3F & c)));
        } else if ((c < MIN_SURROGATE || MAX_SURROGATE < c) && outIx <= outLimit - 3L) {
          // Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes
          UnsafeUtil.putByte(outIx++, (byte) ((0xF << 5) | (c >>> 12)));
          UnsafeUtil.putByte(outIx++, (byte) (0x80 | (0x3F & (c >>> 6))));
          UnsafeUtil.putByte(outIx++, (byte) (0x80 | (0x3F & c)));
        } else if (outIx <= outLimit - 4L) {
          // Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8
          // bytes
          final char low;
          if (inIx + 1 == inLimit || !isSurrogatePair(c, (low = in.charAt(++inIx)))) {
            throw new UnpairedSurrogateException((inIx - 1), inLimit);
          }
          int codePoint = toCodePoint(c, low);
          UnsafeUtil.putByte(outIx++, (byte) ((0xF << 4) | (codePoint >>> 18)));
          UnsafeUtil.putByte(outIx++, (byte) (0x80 | (0x3F & (codePoint >>> 12))));
          UnsafeUtil.putByte(outIx++, (byte) (0x80 | (0x3F & (codePoint >>> 6))));
          UnsafeUtil.putByte(outIx++, (byte) (0x80 | (0x3F & codePoint)));
        } else {
          if ((MIN_SURROGATE <= c && c <= MAX_SURROGATE)
              && (inIx + 1 == inLimit || !isSurrogatePair(c, in.charAt(inIx + 1)))) {
            // We are surrogates and we're not a surrogate pair.
            throw new UnpairedSurrogateException(inIx, inLimit);
          }
          // Not enough space in the output buffer.
          throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + outIx);
        }
      }

      // All bytes have been encoded.
      out.position((int) (outIx - address));
    }

    /**
     * Counts (approximately) the number of consecutive ASCII characters starting from the given
     * position, using the most efficient method available to the platform.
     *
     * @param bytes the array containing the character sequence
     * @param offset the offset position of the index (same as index + arrayBaseOffset)
     * @param maxChars the maximum number of characters to count
     * @return the number of ASCII characters found. The stopping position will be at or
     * before the first non-ASCII byte.
     */
    private static int unsafeEstimateConsecutiveAscii(
        byte[] bytes, long offset, final int maxChars) {
      int remaining = maxChars;
      if (remaining < UNSAFE_COUNT_ASCII_THRESHOLD) {
        // Don't bother with small strings.
        return 0;
      }

      // Read bytes until 8-byte aligned so that we can read longs in the loop below.
      // Byte arrays are already either 8 or 16-byte aligned, so we just need to make sure that
      // the index (relative to the start of the array) is also 8-byte aligned. We do this by
      // ANDing the index with 7 to determine the number of bytes that need to be read before
      // we're 8-byte aligned.
      final int unaligned = 8 - ((int) offset & 7);
      for (int j = unaligned; j > 0; j--) {
        if (UnsafeUtil.getByte(bytes, offset++) < 0) {
          return unaligned - j;
        }
      }

      // This simple loop stops when we encounter a byte >= 0x80 (i.e. non-ASCII).
      // To speed things up further, we're reading longs instead of bytes so we use a mask to
      // determine if any byte in the current long is non-ASCII.
      remaining -= unaligned;
      for (; remaining >= 8 && (UnsafeUtil.getLong(bytes, offset) & ASCII_MASK_LONG) == 0;
          offset += 8, remaining -= 8) {}
      return maxChars - remaining;
    }

    /**
     * Same as {@link Utf8#estimateConsecutiveAscii(ByteBuffer, int, int)} except that it uses the
     * most efficient method available to the platform.
     */
    private static int unsafeEstimateConsecutiveAscii(long address, final int maxChars) {
      int remaining = maxChars;
      if (remaining < UNSAFE_COUNT_ASCII_THRESHOLD) {
        // Don't bother with small strings.
        return 0;
      }

      // Read bytes until 8-byte aligned so that we can read longs in the loop below.
      // We do this by ANDing the address with 7 to determine the number of bytes that need to
      // be read before we're 8-byte aligned.
      final int unaligned = (int) address & 7;
      for (int j = unaligned; j > 0; j--) {
        if (UnsafeUtil.getByte(address++) < 0) {
          return unaligned - j;
        }
      }

      // This simple loop stops when we encounter a byte >= 0x80 (i.e. non-ASCII).
      // To speed things up further, we're reading longs instead of bytes so we use a mask to
      // determine if any byte in the current long is non-ASCII.
      remaining -= unaligned;
      for (; remaining >= 8 && (UnsafeUtil.getLong(address) & ASCII_MASK_LONG) == 0;
          address += 8, remaining -= 8) {}
      return maxChars - remaining;
    }

    private static int partialIsValidUtf8(final byte[] bytes, long offset, int remaining) {
      // Skip past ASCII characters as quickly as possible. 
      final int skipped = unsafeEstimateConsecutiveAscii(bytes, offset, remaining);
      remaining -= skipped;
      offset += skipped;

      for (;;) {
        // Optimize for interior runs of ASCII bytes.
        // TODO(nathanmittler): Consider checking 8 bytes at a time after some threshold?
        // Maybe after seeing a few in a row that are ASCII, go back to fast mode?
        int byte1 = 0;
        for (; remaining > 0 && (byte1 = UnsafeUtil.getByte(bytes, offset++)) >= 0; --remaining) {
        }
        if (remaining == 0) {
          return COMPLETE;
        }
        remaining--;

        // If we're here byte1 is not ASCII. Only need to handle 2-4 byte forms.
        if (byte1 < (byte) 0xE0) {
          // Two-byte form (110xxxxx 10xxxxxx)
          if (remaining == 0) {
            // Incomplete sequence
            return byte1;
          }
          remaining--;

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2
              || UnsafeUtil.getByte(bytes, offset++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else if (byte1 < (byte) 0xF0) {
          // Three-byte form (1110xxxx 10xxxxxx 10xxxxxx)
          if (remaining < 2) {
            // Incomplete sequence
            return unsafeIncompleteStateFor(bytes, byte1, offset, remaining);
          }
          remaining -= 2;

          final int byte2;
          if ((byte2 = UnsafeUtil.getByte(bytes, offset++)) > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // check for illegal surrogate codepoints
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || UnsafeUtil.getByte(bytes, offset++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else {
          // Four-byte form (1110xxxx 10xxxxxx 10xxxxxx 10xxxxxx)
          if (remaining < 3) {
            // Incomplete sequence
            return unsafeIncompleteStateFor(bytes, byte1, offset, remaining);
          }
          remaining -= 3;

          final int byte2;
          if ((byte2 = UnsafeUtil.getByte(bytes, offset++)) > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || UnsafeUtil.getByte(bytes, offset++) > (byte) 0xBF
              // byte4 trailing-byte test
              || UnsafeUtil.getByte(bytes, offset++) > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }
    }

    private static int partialIsValidUtf8(long address, int remaining) {
      // Skip past ASCII characters as quickly as possible.
      final int skipped = unsafeEstimateConsecutiveAscii(address, remaining);
      address += skipped;
      remaining -= skipped;

      for (;;) {
        // Optimize for interior runs of ASCII bytes.
        // TODO(nathanmittler): Consider checking 8 bytes at a time after some threshold?
        // Maybe after seeing a few in a row that are ASCII, go back to fast mode?
        int byte1 = 0;
        for (; remaining > 0 && (byte1 = UnsafeUtil.getByte(address++)) >= 0; --remaining) {
        }
        if (remaining == 0) {
          return COMPLETE;
        }
        remaining--;

        if (byte1 < (byte) 0xE0) {
          // Two-byte form

          if (remaining == 0) {
            // Incomplete sequence
            return byte1;
          }
          remaining--;

          // Simultaneously checks for illegal trailing-byte in
          // leading position and overlong 2-byte form.
          if (byte1 < (byte) 0xC2 || UnsafeUtil.getByte(address++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else if (byte1 < (byte) 0xF0) {
          // Three-byte form

          if (remaining < 2) {
            // Incomplete sequence
            return unsafeIncompleteStateFor(address, byte1, remaining);
          }
          remaining -= 2;

          final byte byte2 = UnsafeUtil.getByte(address++);
          if (byte2 > (byte) 0xBF
              // overlong? 5 most significant bits must not all be zero
              || (byte1 == (byte) 0xE0 && byte2 < (byte) 0xA0)
              // check for illegal surrogate codepoints
              || (byte1 == (byte) 0xED && byte2 >= (byte) 0xA0)
              // byte3 trailing-byte test
              || UnsafeUtil.getByte(address++) > (byte) 0xBF) {
            return MALFORMED;
          }
        } else {
          // Four-byte form

          if (remaining < 3) {
            // Incomplete sequence
            return unsafeIncompleteStateFor(address, byte1, remaining);
          }
          remaining -= 3;

          final byte byte2 = UnsafeUtil.getByte(address++);
          if (byte2 > (byte) 0xBF
              // Check that 1 <= plane <= 16.  Tricky optimized form of:
              // if (byte1 > (byte) 0xF4 ||
              //     byte1 == (byte) 0xF0 && byte2 < (byte) 0x90 ||
              //     byte1 == (byte) 0xF4 && byte2 > (byte) 0x8F)
              || (((byte1 << 28) + (byte2 - (byte) 0x90)) >> 30) != 0
              // byte3 trailing-byte test
              || UnsafeUtil.getByte(address++) > (byte) 0xBF
              // byte4 trailing-byte test
              || UnsafeUtil.getByte(address++) > (byte) 0xBF) {
            return MALFORMED;
          }
        }
      }
    }

    private static int unsafeIncompleteStateFor(byte[] bytes, int byte1, long offset,
        int remaining) {
      switch (remaining) {
        case 0: {
          return incompleteStateFor(byte1);
        }
        case 1: {
          return incompleteStateFor(byte1, UnsafeUtil.getByte(bytes, offset));
        }
        case 2: {
          return incompleteStateFor(byte1, UnsafeUtil.getByte(bytes, offset),
              UnsafeUtil.getByte(bytes, offset + 1));
        }
        default: {
          throw new AssertionError();
        }
      }
    }

    private static int unsafeIncompleteStateFor(long address, final int byte1, int remaining) {
      switch (remaining) {
        case 0: {
          return incompleteStateFor(byte1);
        }
        case 1: {
          return incompleteStateFor(byte1, UnsafeUtil.getByte(address));
        }
        case 2: {
          return incompleteStateFor(byte1, UnsafeUtil.getByte(address),
              UnsafeUtil.getByte(address + 1));
        }
        default: {
          throw new AssertionError();
        }
      }
    }
  }

  private Utf8() {}
}