aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/google/protobuf/extension_set.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/google/protobuf/extension_set.h')
-rw-r--r--src/google/protobuf/extension_set.h555
1 files changed, 555 insertions, 0 deletions
diff --git a/src/google/protobuf/extension_set.h b/src/google/protobuf/extension_set.h
new file mode 100644
index 00000000..902ec736
--- /dev/null
+++ b/src/google/protobuf/extension_set.h
@@ -0,0 +1,555 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc.
+// http://code.google.com/p/protobuf/
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Author: kenton@google.com (Kenton Varda)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// This header is logically internal, but is made public because it is used
+// from protocol-compiler-generated code, which may reside in other components.
+
+#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
+#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
+
+#include <vector>
+#include <stack>
+#include <map>
+#include <utility>
+#include <string>
+
+#include <google/protobuf/message.h>
+
+namespace google {
+namespace protobuf {
+ class Descriptor; // descriptor.h
+ class FieldDescriptor; // descriptor.h
+ class DescriptorPool; // descriptor.h
+ class Message; // message.h
+ class MessageFactory; // message.h
+ namespace io {
+ class CodedInputStream; // coded_stream.h
+ class CodedOutputStream; // coded_stream.h
+ }
+ template <typename Element> class RepeatedField; // repeated_field.h
+ template <typename Element> class RepeatedPtrField; // repeated_field.h
+}
+
+namespace protobuf {
+namespace internal {
+
+// This is an internal helper class intended for use within the protocol buffer
+// library and generated classes. Clients should not use it directly. Instead,
+// use the generated accessors such as GetExtension() of the class being
+// extended.
+//
+// This class manages extensions for a protocol message object. The
+// message's HasExtension(), GetExtension(), MutableExtension(), and
+// ClearExtension() methods are just thin wrappers around the embedded
+// ExtensionSet. When parsing, if a tag number is encountered which is
+// inside one of the message type's extension ranges, the tag is passed
+// off to the ExtensionSet for parsing. Etc.
+class LIBPROTOBUF_EXPORT ExtensionSet {
+ public:
+ // Construct an ExtensionSet.
+ // extendee: Descriptor for the type being extended.
+ // pool: DescriptorPool to search for extension definitions.
+ // factory: MessageFactory used to construct implementations of messages
+ // for extensions with message type. This factory must be able
+ // to construct any message type found in "pool".
+ // All three objects remain property of the caller and must outlive the
+ // ExtensionSet.
+ ExtensionSet(const Descriptor* extendee,
+ const DescriptorPool* pool,
+ MessageFactory* factory);
+
+ ~ExtensionSet();
+
+ // Search for a known (compiled-in) extension of this type by name or number.
+ // Returns NULL if no extension is known.
+ const FieldDescriptor* FindKnownExtensionByName(const string& name) const;
+ const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
+
+ // Add all fields which are currently present to the given vector. This
+ // is useful to implement Message::Reflection::ListFields().
+ void AppendToList(vector<const FieldDescriptor*>* output) const;
+
+ // =================================================================
+ // Accessors
+ //
+ // Generated message classes include type-safe templated wrappers around
+ // these methods. Generally you should use those rather than call these
+ // directly, unless you are doing low-level memory management.
+ //
+ // When calling any of these accessors, the extension number requested
+ // MUST exist in the DescriptorPool provided to the constructor. Otheriwse,
+ // the method will fail an assert. Normally, though, you would not call
+ // these directly; you would either call the generated accessors of your
+ // message class (e.g. GetExtension()) or you would call the accessors
+ // of the reflection interface. In both cases, it is impossible to
+ // trigger this assert failure: the generated accessors only accept
+ // linked-in extension types as parameters, while the Reflection interface
+ // requires you to provide the FieldDescriptor describing the extension.
+ //
+ // When calling any of these accessors, a protocol-compiler-generated
+ // implementation of the extension corresponding to the number MUST
+ // be linked in, and the FieldDescriptor used to refer to it MUST be
+ // the one generated by that linked-in code. Otherwise, the method will
+ // die on an assert failure. The message objects returned by the message
+ // accessors are guaranteed to be of the correct linked-in type.
+ //
+ // These methods pretty much match Message::Reflection except that:
+ // - They're not virtual.
+ // - They identify fields by number rather than FieldDescriptors.
+ // - They identify enum values using integers rather than descriptors.
+ // - Strings provide Mutable() in addition to Set() accessors.
+
+ bool Has(int number) const;
+ int ExtensionSize(int number) const; // Size of a repeated extension.
+ void ClearExtension(int number);
+
+ // singular fields -------------------------------------------------
+
+ int32 GetInt32 (int number) const;
+ int64 GetInt64 (int number) const;
+ uint32 GetUInt32(int number) const;
+ uint64 GetUInt64(int number) const;
+ float GetFloat (int number) const;
+ double GetDouble(int number) const;
+ bool GetBool (int number) const;
+ int GetEnum (int number) const;
+ const string & GetString (int number) const;
+ const Message& GetMessage(int number) const;
+
+ void SetInt32 (int number, int32 value);
+ void SetInt64 (int number, int64 value);
+ void SetUInt32(int number, uint32 value);
+ void SetUInt64(int number, uint64 value);
+ void SetFloat (int number, float value);
+ void SetDouble(int number, double value);
+ void SetBool (int number, bool value);
+ void SetEnum (int number, int value);
+ void SetString(int number, const string& value);
+ string * MutableString (int number);
+ Message* MutableMessage(int number);
+
+ // repeated fields -------------------------------------------------
+
+ int32 GetRepeatedInt32 (int number, int index) const;
+ int64 GetRepeatedInt64 (int number, int index) const;
+ uint32 GetRepeatedUInt32(int number, int index) const;
+ uint64 GetRepeatedUInt64(int number, int index) const;
+ float GetRepeatedFloat (int number, int index) const;
+ double GetRepeatedDouble(int number, int index) const;
+ bool GetRepeatedBool (int number, int index) const;
+ int GetRepeatedEnum (int number, int index) const;
+ const string & GetRepeatedString (int number, int index) const;
+ const Message& GetRepeatedMessage(int number, int index) const;
+
+ void SetRepeatedInt32 (int number, int index, int32 value);
+ void SetRepeatedInt64 (int number, int index, int64 value);
+ void SetRepeatedUInt32(int number, int index, uint32 value);
+ void SetRepeatedUInt64(int number, int index, uint64 value);
+ void SetRepeatedFloat (int number, int index, float value);
+ void SetRepeatedDouble(int number, int index, double value);
+ void SetRepeatedBool (int number, int index, bool value);
+ void SetRepeatedEnum (int number, int index, int value);
+ void SetRepeatedString(int number, int index, const string& value);
+ string * MutableRepeatedString (int number, int index);
+ Message* MutableRepeatedMessage(int number, int index);
+
+ void AddInt32 (int number, int32 value);
+ void AddInt64 (int number, int64 value);
+ void AddUInt32(int number, uint32 value);
+ void AddUInt64(int number, uint64 value);
+ void AddFloat (int number, float value);
+ void AddDouble(int number, double value);
+ void AddBool (int number, bool value);
+ void AddEnum (int number, int value);
+ void AddString(int number, const string& value);
+ string * AddString (int number);
+ Message* AddMessage(int number);
+
+ // -----------------------------------------------------------------
+ // TODO(kenton): Hardcore memory management accessors
+
+ // =================================================================
+ // convenience methods for implementing methods of Message
+ //
+ // These could all be implemented in terms of the other methods of this
+ // class, but providing them here helps keep the generated code size down.
+
+ void Clear();
+ void MergeFrom(const ExtensionSet& other);
+ bool IsInitialized() const;
+
+ // These parsing and serialization functions all want a pointer to the
+ // reflection interface because they hand off the actual work to WireFormat,
+ // which works in terms of a reflection interface. Yes, this means there
+ // are some redundant virtual function calls that end up being made, but
+ // it probably doesn't matter much in practice, and the alternative would
+ // involve reproducing a lot of WireFormat's functionality.
+
+ // Parses a single extension from the input. The input should start out
+ // positioned immediately after the tag.
+ bool ParseField(uint32 tag, io::CodedInputStream* input,
+ Message::Reflection* reflection);
+
+ // Write all extension fields with field numbers in the range
+ // [start_field_number, end_field_number)
+ // to the output stream, using the cached sizes computed when ByteSize() was
+ // last called. Note that the range bounds are inclusive-exclusive.
+ bool SerializeWithCachedSizes(int start_field_number,
+ int end_field_number,
+ const Message::Reflection* reflection,
+ io::CodedOutputStream* output) const;
+
+ // Returns the total serialized size of all the extensions.
+ int ByteSize(const Message::Reflection* reflection) const;
+
+ private:
+ // Like FindKnownExtension(), but GOOGLE_CHECK-fail if not found.
+ const FieldDescriptor* FindKnownExtensionOrDie(int number) const;
+
+ // Get the prototype for the message.
+ const Message* GetPrototype(const Descriptor* message_type) const;
+
+ struct Extension {
+ union {
+ int32 int32_value;
+ int64 int64_value;
+ uint32 uint32_value;
+ uint64 uint64_value;
+ float float_value;
+ double double_value;
+ bool bool_value;
+ int enum_value;
+ string* string_value;
+ Message* message_value;
+
+ RepeatedField <int32 >* repeated_int32_value;
+ RepeatedField <int64 >* repeated_int64_value;
+ RepeatedField <uint32 >* repeated_uint32_value;
+ RepeatedField <uint64 >* repeated_uint64_value;
+ RepeatedField <float >* repeated_float_value;
+ RepeatedField <double >* repeated_double_value;
+ RepeatedField <bool >* repeated_bool_value;
+ RepeatedField <int >* repeated_enum_value;
+ RepeatedPtrField<string >* repeated_string_value;
+ RepeatedPtrField<Message>* repeated_message_value;
+ };
+
+ const FieldDescriptor* descriptor;
+
+ // For singular types, indicates if the extension is "cleared". This
+ // happens when an extension is set and then later cleared by the caller.
+ // We want to keep the Extension object around for reuse, so instead of
+ // removing it from the map, we just set is_cleared = true. This has no
+ // meaning for repeated types; for those, the size of the RepeatedField
+ // simply becomes zero when cleared.
+ bool is_cleared;
+
+ Extension(): descriptor(NULL), is_cleared(false) {}
+
+ // Some helper methods for operations on a single Extension.
+ bool SerializeFieldWithCachedSizes(
+ const Message::Reflection* reflection,
+ io::CodedOutputStream* output) const;
+ int64 ByteSize(const Message::Reflection* reflection) const;
+ void Clear();
+ int GetSize() const;
+ void Free();
+ };
+
+ // The Extension struct is small enough to be passed by value, so we use it
+ // directly as the value type in the map rather than use pointers. We use
+ // a map rather than hash_map here because we expect most ExtensionSets will
+ // only contain a small number of extensions whereas hash_map is optimized
+ // for 100 elements or more. Also, we want AppendToList() to order fields
+ // by field number.
+ map<int, Extension> extensions_;
+ const Descriptor* extendee_;
+ const DescriptorPool* descriptor_pool_;
+ MessageFactory* message_factory_;
+
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
+};
+
+// These are just for convenience...
+inline void ExtensionSet::SetString(int number, const string& value) {
+ MutableString(number)->assign(value);
+}
+inline void ExtensionSet::SetRepeatedString(int number, int index,
+ const string& value) {
+ MutableRepeatedString(number, index)->assign(value);
+}
+inline void ExtensionSet::AddString(int number, const string& value) {
+ AddString(number)->assign(value);
+}
+
+// ===================================================================
+// Implementation details
+//
+// DO NOT DEPEND ON ANYTHING BELOW THIS POINT. This is for use from
+// generated code only.
+
+// -------------------------------------------------------------------
+// Template magic
+
+// First we have a set of classes representing "type traits" for different
+// field types. A type traits class knows how to implement basic accessors
+// for extensions of a particular type given an ExtensionSet. The signature
+// for a type traits class looks like this:
+//
+// class TypeTraits {
+// public:
+// typedef ? ConstType;
+// typedef ? MutableType;
+//
+// static inline ConstType Get(int number, const ExtensionSet& set);
+// static inline void Set(int number, ConstType value, ExtensionSet* set);
+// static inline MutableType Mutable(int number, ExtensionSet* set);
+//
+// // Variants for repeated fields.
+// static inline ConstType Get(int number, const ExtensionSet& set,
+// int index);
+// static inline void Set(int number, int index,
+// ConstType value, ExtensionSet* set);
+// static inline MutableType Mutable(int number, int index,
+// ExtensionSet* set);
+// static inline void Add(int number, ConstType value, ExtensionSet* set);
+// static inline MutableType Add(int number, ExtensionSet* set);
+// };
+//
+// Not all of these methods make sense for all field types. For example, the
+// "Mutable" methods only make sense for strings and messages, and the
+// repeated methods only make sense for repeated types. So, each type
+// traits class implements only the set of methods from this signature that it
+// actually supports. This will cause a compiler error if the user tries to
+// access an extension using a method that doesn't make sense for its type.
+// For example, if "foo" is an extension of type "optional int32", then if you
+// try to write code like:
+// my_message.MutableExtension(foo)
+// you will get a compile error because PrimitiveTypeTraits<int32> does not
+// have a "Mutable()" method.
+
+// -------------------------------------------------------------------
+// PrimitiveTypeTraits
+
+// Since the ExtensionSet has different methods for each primitive type,
+// we must explicitly define the methods of the type traits class for each
+// known type.
+template <typename Type>
+class PrimitiveTypeTraits {
+ public:
+ typedef Type ConstType;
+
+ static inline ConstType Get(int number, const ExtensionSet& set);
+ static inline void Set(int number, ConstType value, ExtensionSet* set);
+};
+
+template <typename Type>
+class RepeatedPrimitiveTypeTraits {
+ public:
+ typedef Type ConstType;
+
+ static inline Type Get(int number, const ExtensionSet& set, int index);
+ static inline void Set(int number, int index, Type value, ExtensionSet* set);
+ static inline void Add(int number, Type value, ExtensionSet* set);
+};
+
+#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
+template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
+ int number, const ExtensionSet& set) { \
+ return set.Get##METHOD(number); \
+} \
+template<> inline void PrimitiveTypeTraits<TYPE>::Set( \
+ int number, ConstType value, ExtensionSet* set) { \
+ set->Set##METHOD(number, value); \
+} \
+ \
+template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
+ int number, const ExtensionSet& set, int index) { \
+ return set.GetRepeated##METHOD(number, index); \
+} \
+template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
+ int number, int index, ConstType value, ExtensionSet* set) { \
+ set->SetRepeated##METHOD(number, index, value); \
+} \
+template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
+ int number, ConstType value, ExtensionSet* set) { \
+ set->Add##METHOD(number, value); \
+}
+
+PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32, Int32)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64, Int64)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE( float, Float)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
+PROTOBUF_DEFINE_PRIMITIVE_TYPE( bool, Bool)
+
+#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
+
+// -------------------------------------------------------------------
+// StringTypeTraits
+
+// Strings support both Set() and Mutable().
+class LIBPROTOBUF_EXPORT StringTypeTraits {
+ public:
+ typedef const string& ConstType;
+ typedef string* MutableType;
+
+ static inline const string& Get(int number, const ExtensionSet& set) {
+ return set.GetString(number);
+ }
+ static inline void Set(int number, const string& value, ExtensionSet* set) {
+ set->SetString(number, value);
+ }
+ static inline string* Mutable(int number, ExtensionSet* set) {
+ return set->MutableString(number);
+ }
+};
+
+class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits {
+ public:
+ typedef const string& ConstType;
+ typedef string* MutableType;
+
+ static inline const string& Get(int number, const ExtensionSet& set,
+ int index) {
+ return set.GetRepeatedString(number, index);
+ }
+ static inline void Set(int number, int index,
+ const string& value, ExtensionSet* set) {
+ set->SetRepeatedString(number, index, value);
+ }
+ static inline string* Mutable(int number, int index, ExtensionSet* set) {
+ return set->MutableRepeatedString(number, index);
+ }
+ static inline void Add(int number, const string& value, ExtensionSet* set) {
+ set->AddString(number, value);
+ }
+ static inline string* Add(int number, ExtensionSet* set) {
+ return set->AddString(number);
+ }
+};
+
+// -------------------------------------------------------------------
+// EnumTypeTraits
+
+// ExtensionSet represents enums using integers internally, so we have to
+// static_cast around.
+template <typename Type>
+class EnumTypeTraits {
+ public:
+ typedef Type ConstType;
+
+ static inline ConstType Get(int number, const ExtensionSet& set) {
+ return static_cast<Type>(set.GetEnum(number));
+ }
+ static inline void Set(int number, ConstType value, ExtensionSet* set) {
+ set->SetEnum(number, value);
+ }
+};
+
+template <typename Type>
+class RepeatedEnumTypeTraits {
+ public:
+ typedef Type ConstType;
+
+ static inline ConstType Get(int number, const ExtensionSet& set, int index) {
+ return static_cast<Type>(set.GetRepeatedEnum(number, index));
+ }
+ static inline void Set(int number, int index,
+ ConstType value, ExtensionSet* set) {
+ set->SetRepeatedEnum(number, index, value);
+ }
+ static inline void Add(int number, ConstType value, ExtensionSet* set) {
+ set->AddEnum(number, value);
+ }
+};
+
+// -------------------------------------------------------------------
+// MessageTypeTraits
+
+// ExtensionSet guarantees that when manipulating extensions with message
+// types, the implementation used will be the compiled-in class representing
+// that type. So, we can static_cast down to the exact type we expect.
+template <typename Type>
+class MessageTypeTraits {
+ public:
+ typedef const Type& ConstType;
+ typedef Type* MutableType;
+
+ static inline ConstType Get(int number, const ExtensionSet& set) {
+ return static_cast<const Type&>(set.GetMessage(number));
+ }
+ static inline MutableType Mutable(int number, ExtensionSet* set) {
+ return static_cast<Type*>(set->MutableMessage(number));
+ }
+};
+
+template <typename Type>
+class RepeatedMessageTypeTraits {
+ public:
+ typedef const Type& ConstType;
+ typedef Type* MutableType;
+
+ static inline ConstType Get(int number, const ExtensionSet& set, int index) {
+ return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
+ }
+ static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
+ return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
+ }
+ static inline MutableType Add(int number, ExtensionSet* set) {
+ return static_cast<Type*>(set->AddMessage(number));
+ }
+};
+
+// -------------------------------------------------------------------
+// ExtensionIdentifier
+
+// This is the type of actual extension objects. E.g. if you have:
+// extends Foo with optional int32 bar = 1234;
+// then "bar" will be defined in C++ as:
+// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>> bar(1234);
+//
+// Note that we could, in theory, supply the field number as a template
+// parameter, and thus make an instance of ExtensionIdentifier have no
+// actual contents. However, if we did that, then using at extension
+// identifier would not necessarily cause the compiler to output any sort
+// of reference to any simple defined in the extension's .pb.o file. Some
+// linkers will actually drop object files that are not explicitly referenced,
+// but that would be bad because it would cause this extension to not be
+// registered at static initialization, and therefore using it would crash.
+
+template <typename ExtendeeType, typename TypeTraitsType>
+class ExtensionIdentifier {
+ public:
+ typedef TypeTraitsType TypeTraits;
+ typedef ExtendeeType Extendee;
+
+ ExtensionIdentifier(int number): number_(number) {}
+ inline int number() const { return number_; }
+ private:
+ const int number_;
+};
+
+} // namespace internal
+} // namespace protobuf
+
+} // namespace google
+#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__