aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/google/protobuf/message.h
diff options
context:
space:
mode:
authorGravatar temporal <temporal@630680e5-0e50-0410-840e-4b1c322b438d>2008-07-10 02:12:20 +0000
committerGravatar temporal <temporal@630680e5-0e50-0410-840e-4b1c322b438d>2008-07-10 02:12:20 +0000
commit40ee551715c3a784ea6132dbf604b0e665ca2def (patch)
tree6e3ea9674be5b0f59106f88f3afa1313854beebf /src/google/protobuf/message.h
Initial checkin.
Diffstat (limited to 'src/google/protobuf/message.h')
-rw-r--r--src/google/protobuf/message.h624
1 files changed, 624 insertions, 0 deletions
diff --git a/src/google/protobuf/message.h b/src/google/protobuf/message.h
new file mode 100644
index 00000000..2c2cf5bd
--- /dev/null
+++ b/src/google/protobuf/message.h
@@ -0,0 +1,624 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc.
+// http://code.google.com/p/protobuf/
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Author: kenton@google.com (Kenton Varda)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// This file contains the abstract interface for all protocol messages.
+// Although it's possible to implement this interface manually, most users
+// will use the protocol compiler to generate implementations.
+//
+// Example usage:
+//
+// Say you have a message defined as:
+//
+// message Foo {
+// optional string text = 1;
+// repeated int32 numbers = 2;
+// }
+//
+// Then, if you used the protocol compiler to generate a class from the above
+// definition, you could use it like so:
+//
+// string data; // Will store a serialized version of the message.
+//
+// {
+// // Create a message and serialize it.
+// Foo foo;
+// foo.set_text("Hello World!");
+// foo.add_numbers(1);
+// foo.add_numbers(5);
+// foo.add_numbers(42);
+//
+// foo.SerializeToString(&data);
+// }
+//
+// {
+// // Parse the serialized message and check that it contains the
+// // correct data.
+// Foo foo;
+// foo.ParseFromString(data);
+//
+// assert(foo.text() == "Hello World!");
+// assert(foo.numbers_size() == 3);
+// assert(foo.numbers(0) == 1);
+// assert(foo.numbers(1) == 5);
+// assert(foo.numbers(2) == 42);
+// }
+//
+// {
+// // Same as the last block, but do it dynamically via the Message
+// // reflection interface.
+// Message* foo = new Foo;
+// Descriptor* descriptor = foo->GetDescriptor();
+//
+// // Get the descriptors for the fields we're interested in and verify
+// // their types.
+// FieldDescriptor* text_field = descriptor->FindFieldByName("text");
+// assert(text_field != NULL);
+// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
+// assert(text_field->label() == FieldDescriptor::TYPE_OPTIONAL);
+// FieldDescriptor* numbers_field = descriptor->FindFieldByName("numbers");
+// assert(numbers_field != NULL);
+// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
+// assert(numbers_field->label() == FieldDescriptor::TYPE_REPEATED);
+//
+// // Parse the message.
+// foo->ParseFromString(data);
+//
+// // Use the reflection interface to examine the contents.
+// Message::Reflection* reflection = foo->GetReflection();
+// assert(reflection->GetString(text_field) == "Hello World!");
+// assert(reflection->CountField(numbers_field) == 3);
+// assert(reflection->GetInt32(numbers_field, 0) == 1);
+// assert(reflection->GetInt32(numbers_field, 1) == 5);
+// assert(reflection->GetInt32(numbers_field, 2) == 42);
+//
+// delete foo;
+// }
+
+#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
+#define GOOGLE_PROTOBUF_MESSAGE_H__
+
+#include <vector>
+#include <string>
+#include <iosfwd>
+#include <google/protobuf/stubs/common.h>
+
+namespace google {
+
+namespace protobuf {
+
+// Defined in this file.
+class Message;
+
+// Defined in other files.
+class Descriptor; // descriptor.h
+class FieldDescriptor; // descriptor.h
+class EnumValueDescriptor; // descriptor.h
+namespace io {
+ class ZeroCopyInputStream; // zero_copy_stream.h
+ class ZeroCopyOutputStream; // zero_copy_stream.h
+ class CodedInputStream; // coded_stream.h
+ class CodedOutputStream; // coded_stream.h
+}
+class UnknownFieldSet; // unknown_field_set.h
+
+// Abstract interface for protocol messages.
+//
+// The methods of this class that are virtual but not pure-virtual have
+// default implementations based on reflection. Message classes which are
+// optimized for speed will want to override these with faster implementations,
+// but classes optimized for code size may be happy with keeping them. See
+// the optimize_for option in descriptor.proto.
+class LIBPROTOBUF_EXPORT Message {
+ public:
+ inline Message() {}
+ virtual ~Message();
+
+ // Basic Operations ------------------------------------------------
+
+ // Construct a new instance of the same type. Ownership is passed to the
+ // caller.
+ virtual Message* New() const = 0;
+
+ // Make this message into a copy of the given message. The given message
+ // must have the same descriptor, but need not necessarily be the same class.
+ // By default this is just implemented as "Clear(); MergeFrom(from);".
+ virtual void CopyFrom(const Message& from);
+
+ // Merge the fields from the given message into this message. Singular
+ // fields will be overwritten, except for embedded messages which will
+ // be merged. Repeated fields will be concatenated. The given message
+ // must be of the same type as this message (i.e. the exact same class).
+ virtual void MergeFrom(const Message& from);
+
+ // Clear all fields of the message and set them to their default values.
+ // Clear() avoids freeing memory, assuming that any memory allocated
+ // to hold parts of the message will be needed again to hold the next
+ // message. If you actually want to free the memory used by a Message,
+ // you must delete it.
+ virtual void Clear();
+
+ // Quickly check if all required fields have values set.
+ virtual bool IsInitialized() const;
+
+ // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
+ // a nice error message.
+ void CheckInitialized() const;
+
+ // Slowly build a list of all required fields that are not set.
+ // This is much, much slower than IsInitialized() as it is implemented
+ // purely via reflection. Generally, you should not call this unless you
+ // have already determined that an error exists by calling IsInitialized().
+ void FindInitializationErrors(vector<string>* errors) const;
+
+ // Like FindInitializationErrors, but joins all the strings, delimited by
+ // commas, and returns them.
+ string InitializationErrorString() const;
+
+ // Clears all unknown fields from this message and all embedded messages.
+ // Normally, if unknown tag numbers are encountered when parsing a message,
+ // the tag and value are stored in the message's UnknownFieldSet and
+ // then written back out when the message is serialized. This allows servers
+ // which simply route messages to other servers to pass through messages
+ // that have new field definitions which they don't yet know about. However,
+ // this behavior can have security implications. To avoid it, call this
+ // method after parsing.
+ //
+ // See Reflection::GetUnknownFields() for more on unknown fields.
+ virtual void DiscardUnknownFields();
+
+ // Debugging -------------------------------------------------------
+
+ // Generates a human readable form of this message, useful for debugging
+ // and other purposes.
+ string DebugString() const;
+ // Like DebugString(), but with less whitespace.
+ string ShortDebugString() const;
+ // Convenience function useful in GDB. Prints DebugString() to stdout.
+ void PrintDebugString() const;
+
+ // Parsing ---------------------------------------------------------
+ // Methods for parsing in protocol buffer format. Most of these are
+ // just simple wrappers around MergeFromCodedStream().
+
+ // Fill the message with a protocol buffer parsed from the given input
+ // stream. Returns false on a read error or if the input is in the
+ // wrong format.
+ bool ParseFromCodedStream(io::CodedInputStream* input);
+ // Like ParseFromCodedStream(), but accepts messages that are missing
+ // required fields.
+ bool ParsePartialFromCodedStream(io::CodedInputStream* input);
+ // Read a protocol buffer from the given zero-copy input stream. If
+ // successful, the entire input will be consumed.
+ bool ParseFromZeroCopyStream(io::ZeroCopyInputStream* input);
+ // Like ParseFromZeroCopyStream(), but accepts messages that are missing
+ // required fields.
+ bool ParsePartialFromZeroCopyStream(io::ZeroCopyInputStream* input);
+ // Parse a protocol buffer contained in a string.
+ bool ParseFromString(const string& data);
+ // Like ParseFromString(), but accepts messages that are missing
+ // required fields.
+ bool ParsePartialFromString(const string& data);
+ // Parse a protocol buffer contained in an array of bytes.
+ bool ParseFromArray(const void* data, int size);
+ // Like ParseFromArray(), but accepts messages that are missing
+ // required fields.
+ bool ParsePartialFromArray(const void* data, int size);
+
+ // Parse a protocol buffer from a file descriptor. If successful, the entire
+ // input will be consumed.
+ bool ParseFromFileDescriptor(int file_descriptor);
+ // Like ParseFromFileDescriptor(), but accepts messages that are missing
+ // required fields.
+ bool ParsePartialFromFileDescriptor(int file_descriptor);
+ // Parse a protocol buffer from a C++ istream. If successful, the entire
+ // input will be consumed.
+ bool ParseFromIstream(istream* input);
+ // Like ParseFromIstream(), but accepts messages that are missing
+ // required fields.
+ bool ParsePartialFromIstream(istream* input);
+
+
+ // Reads a protocol buffer from the stream and merges it into this
+ // Message. Singular fields read from the input overwrite what is
+ // already in the Message and repeated fields are appended to those
+ // already present.
+ //
+ // It is the responsibility of the caller to call input->LastTagWas()
+ // (for groups) or input->ConsumedEntireMessage() (for non-groups) after
+ // this returns to verify that the message's end was delimited correctly.
+ //
+ // ParsefromCodedStream() is implemented as Clear() followed by
+ // MergeFromCodedStream().
+ bool MergeFromCodedStream(io::CodedInputStream* input);
+
+ // Like MergeFromCodedStream(), but succeeds even if required fields are
+ // missing in the input.
+ //
+ // MergeFromCodedStream() is just implemented as MergePartialFromCodedStream()
+ // followed by IsInitialized().
+ virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
+
+ // Serialization ---------------------------------------------------
+ // Methods for serializing in protocol buffer format. Most of these
+ // are just simple wrappers around ByteSize() and SerializeWithCachedSizes().
+
+ // Write a protocol buffer of this message to the given output. Returns
+ // false on a write error. If the message is missing required fields,
+ // this may GOOGLE_CHECK-fail.
+ bool SerializeToCodedStream(io::CodedOutputStream* output) const;
+ // Like SerializeToCodedStream(), but allows missing required fields.
+ bool SerializePartialToCodedStream(io::CodedOutputStream* output) const;
+ // Write the message to the given zero-copy output stream. All required
+ // fields must be set.
+ bool SerializeToZeroCopyStream(io::ZeroCopyOutputStream* output) const;
+ // Like SerializeToZeroCopyStream(), but allows missing required fields.
+ bool SerializePartialToZeroCopyStream(io::ZeroCopyOutputStream* output) const;
+ // Serialize the message and store it in the given string. All required
+ // fields must be set.
+ bool SerializeToString(string* output) const;
+ // Like SerializeToString(), but allows missing required fields.
+ bool SerializePartialToString(string* output) const;
+ // Serialize the message and store it in the given byte array. All required
+ // fields must be set.
+ bool SerializeToArray(void* data, int size) const;
+ // Like SerializeToArray(), but allows missing required fields.
+ bool SerializePartialToArray(void* data, int size) const;
+
+ // Serialize the message and write it to the given file descriptor. All
+ // required fields must be set.
+ bool SerializeToFileDescriptor(int file_descriptor) const;
+ // Like SerializeToFileDescriptor(), but allows missing required fields.
+ bool SerializePartialToFileDescriptor(int file_descriptor) const;
+ // Serialize the message and write it to the given C++ ostream. All
+ // required fields must be set.
+ bool SerializeToOstream(ostream* output) const;
+ // Like SerializeToOstream(), but allows missing required fields.
+ bool SerializePartialToOstream(ostream* output) const;
+
+
+ // Like SerializeToString(), but appends to the data to the string's existing
+ // contents. All required fields must be set.
+ bool AppendToString(string* output) const;
+ // Like AppendToString(), but allows missing required fields.
+ bool AppendPartialToString(string* output) const;
+
+ // Computes the serialized size of the message. This recursively calls
+ // ByteSize() on all embedded messages. If a subclass does not override
+ // this, it MUST override SetCachedSize().
+ virtual int ByteSize() const;
+
+ // Serializes the message without recomputing the size. The message must
+ // not have changed since the last call to ByteSize(); if it has, the results
+ // are undefined.
+ virtual bool SerializeWithCachedSizes(io::CodedOutputStream* output) const;
+
+ // Returns the result of the last call to ByteSize(). An embedded message's
+ // size is needed both to serialize it (because embedded messages are
+ // length-delimited) and to compute the outer message's size. Caching
+ // the size avoids computing it multiple times.
+ //
+ // ByteSize() does not automatically use the cached size when available
+ // because this would require invalidating it every time the message was
+ // modified, which would be too hard and expensive. (E.g. if a deeply-nested
+ // sub-message is changed, all of its parents' cached sizes would need to be
+ // invalidated, which is too much work for an otherwise inlined setter
+ // method.)
+ virtual int GetCachedSize() const = 0;
+
+ private:
+ // This is called only by the default implementation of ByteSize(), to
+ // update the cached size. If you override ByteSize(), you do not need
+ // to override this. If you do not override ByteSize(), you MUST override
+ // this; the default implementation will crash.
+ //
+ // The method is private because subclasses should never call it; only
+ // override it. Yes, C++ lets you do that. Crazy, huh?
+ virtual void SetCachedSize(int size) const;
+
+ public:
+
+ // Introspection ---------------------------------------------------
+
+ class Reflection; // Defined below.
+
+ // Get a Descriptor for this message's type. This describes what
+ // fields the message contains, the types of those fields, etc.
+ virtual const Descriptor* GetDescriptor() const = 0;
+
+ // Get the Reflection interface for this Message, which can be used to
+ // read and modify the fields of the Message dynamically (in other words,
+ // without knowing the message type at compile time). This object remains
+ // property of the Message.
+ virtual const Reflection* GetReflection() const = 0;
+
+ // Get the Reflection interface for this Message, which can be used to
+ // read and modify the fields of the Message dynamically (in other words,
+ // without knowing the message type at compile time). This object remains
+ // property of the Message.
+ virtual Reflection* GetReflection() = 0;
+
+ private:
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
+};
+
+// This interface contains methods that can be used to dynamically access
+// and modify the fields of a protocol message. Their semantics are
+// similar to the accessors the protocol compiler generates.
+//
+// To get the Reflection for a given Message, call Message::GetReflection().
+//
+// This interface is separate from Message only for efficiency reasons;
+// the vast majority of implementations of Message will share the same
+// implementation of Reflection (GeneratedMessageReflection,
+// defined in generated_message.h).
+//
+// There are several ways that these methods can be used incorrectly. For
+// example, any of the following conditions will lead to undefined
+// results (probably assertion failures):
+// - The FieldDescriptor is not a field of this message type.
+// - The method called is not appropriate for the field's type. For
+// each field type in FieldDescriptor::TYPE_*, there is only one
+// Get*() method, one Set*() method, and one Add*() method that is
+// valid for that type. It should be obvious which (except maybe
+// for TYPE_BYTES, which are represented using strings in C++).
+// - A Get*() or Set*() method for singular fields is called on a repeated
+// field.
+// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
+// field.
+//
+// You might wonder why there is not any abstract representation for a field
+// of arbitrary type. E.g., why isn't there just a "GetField()" method that
+// returns "const Field&", where "Field" is some class with accessors like
+// "GetInt32Value()". The problem is that someone would have to deal with
+// allocating these Field objects. For generated message classes, having to
+// allocate space for an additional object to wrap every field would at least
+// double the message's memory footprint, probably worse. Allocating the
+// objects on-demand, on the other hand, would be expensive and prone to
+// memory leaks. So, instead we ended up with this flat interface.
+//
+// TODO(kenton): Create a utility class which callers can use to read and
+// write fields from a Reflection without paying attention to the type.
+class LIBPROTOBUF_EXPORT Message::Reflection {
+ public:
+ inline Reflection() {}
+ virtual ~Reflection();
+
+ // Get the UnknownFieldSet for the message. This contains fields which
+ // were seen when the Message was parsed but were not recognized according
+ // to the Message's definition.
+ virtual const UnknownFieldSet& GetUnknownFields() const = 0;
+ // Get a mutable pointer to the UnknownFieldSet for the message. This
+ // contains fields which were seen when the Message was parsed but were not
+ // recognized according to the Message's definition.
+ virtual UnknownFieldSet* MutableUnknownFields() = 0;
+
+ // Check if the given non-repeated field is set.
+ virtual bool HasField(const FieldDescriptor* field) const = 0;
+
+ // Get the number of elements of a repeated field.
+ virtual int FieldSize(const FieldDescriptor* field) const = 0;
+
+ // Clear the value of a field, so that HasField() returns false or
+ // FieldSize() returns zero.
+ virtual void ClearField(const FieldDescriptor* field) = 0;
+
+ // List all fields of the message which are currently set. This includes
+ // extensions. Singular fields will only be listed if HasField(field) would
+ // return true and repeated fields will only be listed if FieldSize(field)
+ // would return non-zero. Fields (both normal fields and extension fields)
+ // will be listed ordered by field number.
+ virtual void ListFields(vector<const FieldDescriptor*>* output) const = 0;
+
+ // Singular field getters ------------------------------------------
+ // These get the value of a non-repeated field. They return the default
+ // value for fields that aren't set.
+
+ virtual int32 GetInt32 (const FieldDescriptor* field) const = 0;
+ virtual int64 GetInt64 (const FieldDescriptor* field) const = 0;
+ virtual uint32 GetUInt32(const FieldDescriptor* field) const = 0;
+ virtual uint64 GetUInt64(const FieldDescriptor* field) const = 0;
+ virtual float GetFloat (const FieldDescriptor* field) const = 0;
+ virtual double GetDouble(const FieldDescriptor* field) const = 0;
+ virtual bool GetBool (const FieldDescriptor* field) const = 0;
+ virtual string GetString(const FieldDescriptor* field) const = 0;
+ virtual const EnumValueDescriptor* GetEnum(
+ const FieldDescriptor* field) const = 0;
+ virtual const Message& GetMessage(const FieldDescriptor* field) const = 0;
+
+ // Get a string value without copying, if possible.
+ //
+ // GetString() necessarily returns a copy of the string. This can be
+ // inefficient when the string is already stored in a string object in the
+ // underlying message. GetStringReference() will return a reference to the
+ // underlying string in this case. Otherwise, it will copy the string into
+ // *scratch and return that.
+ //
+ // Note: It is perfectly reasonable and useful to write code like:
+ // str = reflection->GetStringReference(field, &str);
+ // This line would ensure that only one copy of the string is made
+ // regardless of the field's underlying representation. When initializing
+ // a newly-constructed string, though, it's just as fast and more readable
+ // to use code like:
+ // string str = reflection->GetString(field);
+ virtual const string& GetStringReference(const FieldDescriptor* field,
+ string* scratch) const = 0;
+
+
+ // Singular field mutators -----------------------------------------
+ // These mutate the value of a non-repeated field.
+
+ virtual void SetInt32 (const FieldDescriptor* field, int32 value) = 0;
+ virtual void SetInt64 (const FieldDescriptor* field, int64 value) = 0;
+ virtual void SetUInt32(const FieldDescriptor* field, uint32 value) = 0;
+ virtual void SetUInt64(const FieldDescriptor* field, uint64 value) = 0;
+ virtual void SetFloat (const FieldDescriptor* field, float value) = 0;
+ virtual void SetDouble(const FieldDescriptor* field, double value) = 0;
+ virtual void SetBool (const FieldDescriptor* field, bool value) = 0;
+ virtual void SetString(const FieldDescriptor* field, const string& value) = 0;
+ virtual void SetEnum (const FieldDescriptor* field,
+ const EnumValueDescriptor* value) = 0;
+ // Get a mutable pointer to a field with a message type.
+ virtual Message* MutableMessage(const FieldDescriptor* field) = 0;
+
+
+ // Repeated field getters ------------------------------------------
+ // These get the value of one element of a repeated field.
+
+ virtual int32 GetRepeatedInt32 (const FieldDescriptor* field,
+ int index) const = 0;
+ virtual int64 GetRepeatedInt64 (const FieldDescriptor* field,
+ int index) const = 0;
+ virtual uint32 GetRepeatedUInt32(const FieldDescriptor* field,
+ int index) const = 0;
+ virtual uint64 GetRepeatedUInt64(const FieldDescriptor* field,
+ int index) const = 0;
+ virtual float GetRepeatedFloat (const FieldDescriptor* field,
+ int index) const = 0;
+ virtual double GetRepeatedDouble(const FieldDescriptor* field,
+ int index) const = 0;
+ virtual bool GetRepeatedBool (const FieldDescriptor* field,
+ int index) const = 0;
+ virtual string GetRepeatedString(const FieldDescriptor* field,
+ int index) const = 0;
+ virtual const EnumValueDescriptor* GetRepeatedEnum(
+ const FieldDescriptor* field, int index) const = 0;
+ virtual const Message& GetRepeatedMessage(
+ const FieldDescriptor* field, int index) const = 0;
+
+ // See GetStringReference(), above.
+ virtual const string& GetRepeatedStringReference(
+ const FieldDescriptor* field, int index,
+ string* scratch) const = 0;
+
+
+ // Repeated field mutators -----------------------------------------
+ // These mutate the value of one element of a repeated field.
+
+ virtual void SetRepeatedInt32 (const FieldDescriptor* field,
+ int index, int32 value) = 0;
+ virtual void SetRepeatedInt64 (const FieldDescriptor* field,
+ int index, int64 value) = 0;
+ virtual void SetRepeatedUInt32(const FieldDescriptor* field,
+ int index, uint32 value) = 0;
+ virtual void SetRepeatedUInt64(const FieldDescriptor* field,
+ int index, uint64 value) = 0;
+ virtual void SetRepeatedFloat (const FieldDescriptor* field,
+ int index, float value) = 0;
+ virtual void SetRepeatedDouble(const FieldDescriptor* field,
+ int index, double value) = 0;
+ virtual void SetRepeatedBool (const FieldDescriptor* field,
+ int index, bool value) = 0;
+ virtual void SetRepeatedString(const FieldDescriptor* field,
+ int index, const string& value) = 0;
+ virtual void SetRepeatedEnum(const FieldDescriptor* field,
+ int index, const EnumValueDescriptor* value) = 0;
+ // Get a mutable pointer to an element of a repeated field with a message
+ // type.
+ virtual Message* MutableRepeatedMessage(
+ const FieldDescriptor* field, int index) = 0;
+
+
+ // Repeated field adders -------------------------------------------
+ // These add an element to a repeated field.
+
+ virtual void AddInt32 (const FieldDescriptor* field, int32 value) = 0;
+ virtual void AddInt64 (const FieldDescriptor* field, int64 value) = 0;
+ virtual void AddUInt32(const FieldDescriptor* field, uint32 value) = 0;
+ virtual void AddUInt64(const FieldDescriptor* field, uint64 value) = 0;
+ virtual void AddFloat (const FieldDescriptor* field, float value) = 0;
+ virtual void AddDouble(const FieldDescriptor* field, double value) = 0;
+ virtual void AddBool (const FieldDescriptor* field, bool value) = 0;
+ virtual void AddString(const FieldDescriptor* field, const string& value) = 0;
+ virtual void AddEnum (const FieldDescriptor* field,
+ const EnumValueDescriptor* value) = 0;
+ virtual Message* AddMessage(const FieldDescriptor* field) = 0;
+
+
+ // Extensions ------------------------------------------------------
+
+ // Try to find an extension of this message type by fully-qualified field
+ // name. Returns NULL if no extension is known for this name or number.
+ virtual const FieldDescriptor* FindKnownExtensionByName(
+ const string& name) const = 0;
+
+ // Try to find an extension of this message type by field number.
+ // Returns NULL if no extension is known for this name or number.
+ virtual const FieldDescriptor* FindKnownExtensionByNumber(
+ int number) const = 0;
+
+ private:
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
+};
+
+// Abstract interface for a factory for message objects.
+class LIBPROTOBUF_EXPORT MessageFactory {
+ public:
+ inline MessageFactory() {}
+ virtual ~MessageFactory();
+
+ // Given a Descriptor, gets or constructs the default (prototype) Message
+ // of that type. You can then call that message's New() method to construct
+ // a mutable message of that type.
+ //
+ // Calling this method twice with the same Descriptor returns the same
+ // object. The returned object remains property of the factory. Also, any
+ // objects created by calling the prototype's New() method share some data
+ // with the prototype, so these must be destoyed before the MessageFactory
+ // is destroyed.
+ //
+ // The given descriptor must outlive the returned message, and hence must
+ // outlive the MessageFactory.
+ //
+ // Some implementations do not support all types. GetPrototype() will
+ // return NULL if the descriptor passed in is not supported.
+ //
+ // This method may or may not be thread-safe depending on the implementation.
+ // Each implementation should document its own degree thread-safety.
+ virtual const Message* GetPrototype(const Descriptor* type) = 0;
+
+ // Gets a MessageFactory which supports all generated, compiled-in messages.
+ // In other words, for any compiled-in type FooMessage, the following is true:
+ // MessageFactory::generated_factory()->GetPrototype(
+ // FooMessage::descriptor()) == FooMessage::default_instance()
+ // This factory supports all types which are found in
+ // DescriptorPool::generated_pool(). If given a descriptor from any other
+ // pool, GetPrototype() will return NULL. (You can also check if a
+ // descriptor is for a generated message by checking if
+ // descriptor->file()->pool() == DescriptorPool::generated_pool().)
+ //
+ // This factory is 100% thread-safe; calling GetPrototype() does not modify
+ // any shared data.
+ //
+ // This factory is a singleton. The caller must not delete the object.
+ static MessageFactory* generated_factory();
+
+ // For internal use only: Registers a message type at static initialization
+ // time, to be placed in generated_factory().
+ static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
+ const Message* prototype);
+
+ private:
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
+};
+
+} // namespace protobuf
+
+} // namespace google
+#endif // GOOGLE_PROTOBUF_MESSAGE_H__