aboutsummaryrefslogtreecommitdiffhomepage
path: root/coq/ex/indent.v
blob: f2ba0f9d49b71ca8f9fa278fd73a8420e0015cfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
(* First check that ".." is not considered as a command end. *)
Require Export Coq.Lists.List.
Notation "[ ]" := nil : list_scope.
Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..) : list_scope.

Require Import Arith.

Record a : Type := make_a {
  aa : nat
}.

Lemma toto:nat.
Proof.
  {{
    exact 3.
  }}
Qed.


Lemma L : forall x:nat , nat_iter x (A:=nat) (plus 2) 0 >= x.
Proof.
  induction x;simpl;intros;auto with arith.
Qed.

Function div2 (n : nat) {struct n}: nat :=
  match n with
    | 0 => 0
    | 1 => 0
    | S (S n') => S (div2 n')
  end.


Module M1.
  Module M2.
    Lemma l1: forall n:nat, n = n. 
      auto.
    Qed.
    Lemma l2: forall n:nat, n = n. 
      auto. Qed.
    Lemma l3: forall n:nat, n <= n. auto. Qed.
    (*   Lemma l4: forall n:nat, n <= n. Proof. intro. Qed. *)
    Lemma l5 : forall n:nat, n <= n.
    Proof. auto.
    Qed.
    Lemma l6: forall n:nat, n = n. 
      intros.
      Lemma l7: forall n:nat, n = n. 
        destruct n.
        BeginSubproof.
          auto.
        EndSubproof.
        BeginSubproof.
          destruct n.
          BeginSubproof.
            auto.
          EndSubproof.
          auto.
        EndSubproof.        
      Qed.
      BeginSubproof.
        destruct n.
        BeginSubproof.
          auto. EndSubproof.
        BeginSubproof. auto.
        EndSubproof.
      EndSubproof.
    Qed.
  End M2.
End M1.


Module M1'.
  Module M2'.
    Lemma l6: forall n:nat, n = n. 
      intros.
      Lemma l7: forall n:nat, n = n. 
        destruct n.
        {
          auto.
        }
        { 
          destruct n.
          {
            idtac;[
              auto
            ].
          }
          auto.
        }        
      Qed.
      {destruct n.
        {
          auto. }
        {auto. }
      }
    Qed.
  End M2'.
End M1'.

Record rec:Set := { 
  fld1:nat;
  fld2:nat;
  fld3:bool
}.

Class cla {X:Set}:Set := { 
  cfld1:nat;
  cld2:nat;
  cld3:bool
}.



Module X.
  Lemma l :
    forall r:rec,
      exists r':rec,
        r'.(fld1) = r.(fld2)/\ r'.(fld2) = r.(fld1).
  Proof.
    intros r.  
    { exists 
      {|
        fld1:=r.(fld2);
        fld2:=r.(fld1);
        fld3:=false
      |}.
      split.
      {auto. }
      {auto. }
    }
  Qed.


  Lemma l2 :
    forall r:rec,
      exists r':rec,r'.(fld1) = r.(fld2) /\ r'.(fld2) = r.(fld1).
    intros r.  
    {{
        idtac;
          exists 
            {|
              fld1:=r.(fld2);
              fld2:=r.(fld1);
              fld3:=false
            |}.
    (* ltac *)
        match goal with
          | _:rec |- ?a /\ ?b => split
          | _ => fail    
        end.
        {auto. }
        {auto. }}}
  Qed.
End X.

Require Import Morphisms.
Generalizable All Variables.
Open Local Scope signature_scope.
Require Import RelationClasses.

Module foo.
  Instance: (@RewriteRelation nat) impl.
  (* No goal created *)
  Definition XX := 0.
  
  
  Instance StrictOrder_Asymmetric `(StrictOrder A R) : Asymmetric R.
  (* One goal created. Then the user MUST put "Proof." to help indentation *)
  Proof.
    firstorder.
  Qed.


  Program Fixpoint f (x:nat) {struct x} : nat :=
    match x with
      | 0 => 0
      | S y => S (f y)
    end.

  Program Instance all_iff_morphism {A : Type} :
    Proper (pointwise_relation A iff ==> iff) (@all A).

  Next Obligation.
  Proof.
    unfold pointwise_relation, all in * .
    intro.
    intros y H.    
    intuition ; specialize (H x0) ; intuition.
  Qed.
  
End foo.