aboutsummaryrefslogtreecommitdiffhomepage
path: root/coq/ex/indent.v
blob: 1e9c17d87245f11d9a302c1edc4b671996e7c19f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
(* First check that ".." is not considered as a command end. *)
Require Export Coq.Lists.List.
Notation "[ ]" := nil : list_scope.
Notation "[ a ; .. ; b ]" := (a :: .. (b :: []) ..) : list_scope.

Require Import Arith.

Record a : Type := make_a {
                       aa : nat
                     }.

Module foo.
  Inductive test : nat -> Prop :=
  | C1 : forall n, test n
  | C2 : forall n, test n
  | C3 : forall n, test n
  | C4 : forall n, test n.
  
  Inductive test2 : nat -> Prop
    := C21 : forall n, test2 n
     | C22 : forall n, test2 n
     | C23 : forall n, test2 n
     | C24 : forall n, test2 n.

  Inductive test' : nat -> Prop :=
  | C1' : forall n, test' n
  | C2' : forall n, test' n
  | C3' : forall n, test' n
  | C4' : forall n, test' n
  with
  test2' : nat -> Prop :=
    C21' : forall n, test2' n
  | C22' : forall n, test2' n
  | C23' : forall n, test2' n
  | C24' : forall n, test2' n.
  
  Let x := 1.  Let y := 2.
  
  Let y2 := (1, 2, 3,
             4, 5).
  
  Inductive test3             (* fixindent *)
    : nat -> Prop
    := C31 : forall n, test3 n
     | C32 : forall n, test3 n.
  
End foo.

Lemma toto:nat.
Proof.
  {{
      exact 3.
  }}
Qed.

Let xxx                        (* Precedence of "else" w.r.t "," and "->"!  *)
  : if true then nat * nat else nat ->
                                nat
  := (if true then 1 else 2,
      3).

Module Y.
  Lemma L : forall x:nat , Nat.iter x (A:=nat) (plus 2) 0 >= x.
  Proof with auto with arith.
    intros x.
    induction x;simpl;intros...
  Qed.
  Lemma L2 : forall x:nat , Nat.iter x (A:=nat) (plus 2) 0 >= x.
  Proof with auto with arith.
    idtac.
    (* "as" tactical *)
    induction x
      as
        [ | x IHx]. 
    - cbn.
      apply Nat.le_trans
        with
          (n:=0) (* aligning the different closes of a "with". *)
          (m:=0)
          (p:=0).
      + auto with arith.
      + auto with arith.
    - simpl.
      intros.
      auto with arith.
  Qed.

  Lemma L' : forall x:nat , Nat.iter x (A:=nat) (plus 2) 0 >= x
  with L'' : forall x:nat , Nat.iter x (A:=nat) (plus 2) 0 >= x.
  Proof with auto with arith.
    - induction x;simpl;intros...
    - induction x;simpl;intros...
  Qed.
  Lemma L''' : forall x:nat , Nat.iter x (A:=nat) (plus 2) 0 >= x.
  Proof using Type *.
    intros x.
    induction x;simpl;intros.  
    admit.
  Admitted.

  Lemma L'''' : forall x:nat ,  0 <= x.
  Proof (fun x : nat => Nat.le_0_l x).
  (* no indentation here since the proof above closes the proof. *)
  Definition foo:nat := 0.
End Y.

Function div2 (n : nat) {struct n}: nat :=
  match n with
  | 0 => 0
  | 1 => 0
  | S (S n') => S (div2 n')
  end.


Module M1.
  Module M2.
    Lemma l1: forall n:nat, n = n. 
      auto.
    Qed.
    Lemma l2: forall n:nat, n = n. 
      auto. Qed.
    Lemma l3: forall n:nat, n <= n. auto. Qed.
    (*   Lemma l4: forall n:nat, n <= n. Proof. intro. Qed. *)
    Lemma l5 : forall n:nat, n <= n.
    Proof. auto.
    Qed.
    Lemma l6: forall n:nat, n = n. 
      intros.
      Lemma l7: forall n:nat, n = n.
        destruct n.
        {
          auto.
        }
        {
          destruct n.
          {
            auto.
          }
          auto.
        }
      Qed.
      {
        destruct n.
        {
          auto. }
        { auto.
        }
      }
    Qed.
  End M2.
End M1.


Module M1'.
  Module M2'.
    Lemma l6: forall n:nat, n = n.
    Proof.
      intros.
      Lemma l7: forall n:nat, n = n.
      Proof.
        destruct n.
        {
          auto.
        }
        { 
          destruct n.
          {
            idtac;[
              auto
            ].
          }
          auto.
        } 
      Qed.
      {destruct n.
       {
         auto. }
       {auto. }
      }
    Qed.
  End M2'.
End M1'.

(* TODO: add multichar bullets once coq 8.5 is out *)
Module M4'.
  Module M2'.
    Lemma l6: forall n:nat, n = n. 
    Proof.
      intros.
      Lemma l7: forall n:nat, n = n. 
      Proof.
        destruct n.
        - auto.
        - destruct n.
          + idtac;[
              auto
            ].
          + destruct n.
            * auto.
            * auto.
      Qed.
      {destruct n.
       - auto.
       - auto. 
      }
    Qed.
  End M2'.
End M4'.


Module M1''.
  Module M2''.
    Lemma l7: forall n:nat, n = n. 
      destruct n.
      { auto. }
      { destruct n.
        { idtac; [ auto ]. }
        auto. } 
    Qed.
  End M2''.
End M1''.


Record rec:Set := {
                   fld1:nat;
                   fld2:nat;
                   fld3:bool
                 }.

Class cla {X:Set}:Set := {
                          cfld1:nat;
                          cld2:nat;
                          cld3:bool
                        }.



Module X.
  Lemma l
  :
    forall r:rec,
    exists r':rec,
      r'.(fld1) = r.(fld2)/\ r'.(fld2) = r.(fld1).
  Proof.
    intros r.
    { exists
        {|
          fld1:=r.(fld2);
          fld2:=r.(fld1);
          fld3:=false
        |}.
      split.
      {auto. }
      {auto. }
    }
  Qed.
  
  
  Lemma l2 :
    forall r:rec,
    exists r':rec,
      r.(fld1)
      = r'.(fld2)
      /\ r.(fld2)
         = r'.(fld1).
  Proof.
    intros r.
    {{
        idtac;
          exists
            {|
              fld1:=r.(fld2);
              fld2:=r.(fld1);
              fld3:=false
            |}.
        (* ltac *)
        match goal with
          _:rec |- ?a /\ ?b => split
        | _ => fail
        end.

        Fail
          lazymatch goal with
            _:rec |- ?a /\ ?b => split
          | _ => fail
          end.

        Fail
          multimatch goal with
            _:rec |- ?a /\ ?b => split
          | _ => fail
          end.

        { simpl. auto. }
        { simpl. auto. }}}
  Qed.
End X.

Require Import Morphisms.
Generalizable All Variables.
Local Open Scope signature_scope.
Require Import RelationClasses.

Module TC.
  Instance: (@RewriteRelation nat) impl.
  (* No goal created *)
  Definition XX := 0.
  
  
  Instance StrictOrder_Asymmetric `(StrictOrder A R) : Asymmetric R.
  (* One goal created. Then the user MUST put "Proof." to help indentation *)
  Proof.
    firstorder.
  Qed.
  
  
  Program Fixpoint f (x:nat) {struct x} : nat :=
    match x with
    | 0 => 0
    | S y => S (f y)
    end.
  
  Program Instance all_iff_morphism {A : Type} :
    Proper (pointwise_relation A iff ==> iff) (@all A).
  
  Next Obligation.
  Proof.
    unfold pointwise_relation, all in *.
    intro.
    intros y H.    
    intuition ; specialize (H x0) ; intuition.
  Qed.
  
End TC.

Require Import Sets.Ensembles.
Require Import Bool.Bvector.

Section SET.
  Definition set (T : Type) := Ensemble T.
  
  Require Import Program.
  
  
  Definition eq_n : forall A n (v:Vector.t A n) n', n=n' -> Vector.t A n'.
  Proof.
    intros A n v n' H.
    rewrite <- H.
    assumption.
  Defined.
  
  Fixpoint setVecProd (T : Type) (n : nat) (v1:Vector.t (set T) n) {struct v1}:
    (Vector.t T n) ->  Prop :=
    match v1 with
      Vector.nil _ =>
      fun v2 =>
        match v2 with 
          Vector.nil _ => True
        | _ => False
        end
    | (Vector.cons _ x n' v1') =>
      fun v2 =>
        (* indentation of dependen "match" clause. *)
        match v2
              as
              X
              in
              Vector.t _ n''
              return
              (Vector.t T (pred n'') -> Prop) -> Prop
        with 
        | Vector.nil _ => fun _ => False 
        | (Vector.cons _ y n'' v2') => fun v2'' => (x y) /\ (v2'' v2')
        end (setVecProd T n' v1')
    end.
  
End SET.

Module curlybracesatend.

  Lemma foo: forall n: nat,
    exists m:nat,
      m = n + 1.
  Proof.
    intros n.
    destruct n. {
      exists 1.
      reflexivity. }
    exists (S (S n)).
    simpl.
    rewrite Nat.add_1_r.
    reflexivity.
  Qed.
  
  Lemma foo2: forall n: nat,
      exists m:nat,  (* This is strange compared to the same line in the previous lemma *)
        m = n + 1.
  Proof.
    intros n.
    destruct n. {
      exists 1.
      reflexivity. }
    
    exists (S (S n)).
    simpl.
    rewrite Nat.add_1_r.
    reflexivity.
  Qed.
  
  Lemma foo3: forall n: nat,
      exists m:nat,  (* This is strange compared to the same line in the previous lemma *)
        m = n + 1.
  Proof.
    intros n. cut (n = n). {
      destruct n. {
        exists 1.
        reflexivity. } {
        exists (S (S n)).
        simpl.
        rewrite Nat.add_1_r.
        reflexivity. }
    }
    idtac.
    reflexivity.
  Qed.

  
End curlybracesatend.