aboutsummaryrefslogtreecommitdiffhomepage
path: root/phox/square-root-2.phx
diff options
context:
space:
mode:
Diffstat (limited to 'phox/square-root-2.phx')
-rw-r--r--phox/square-root-2.phx368
1 files changed, 0 insertions, 368 deletions
diff --git a/phox/square-root-2.phx b/phox/square-root-2.phx
deleted file mode 100644
index 92a888b3..00000000
--- a/phox/square-root-2.phx
+++ /dev/null
@@ -1,368 +0,0 @@
-tex
- title = "Proof that square root of 2 is not rational"
- author = "Christophe Raffalli, Paul Rozière"
- institute = "LAMA, Universit\\'e de Savoie, PPS, Universit\\'e Paris VII"
- documents = math
-.
-
-Import nat.
-
-flag auto_lvl 1.
-
-(* Cette preuve est à peu près celle envoyée à F. Wiedijk -- Nijmegen
--- The Fifteen Provers of the World --
- http://www.cs.kun.nl/~freek/comparison/index.html
-Voir une preuve plus simple : sqrt2.phx
-*)
-
-(*! math
-\section{The library:}
-
-The theorem used \underline{explicitely} from the library are
-
-\begin{itemize}
-\item \verb#demorganl# a set of rewrite rules for Demorgan's law.
-\item \verb#calcul.N# a set of rewrite rules for natural numbers.
-\item \verb#well_founded.N#: \[ $$well_founded.N \].
-\item \verb#odd_or_even.N#: \[ $$odd_or_even.N \].
-\item \verb#lesseq.case1.N#: \[ $$lesseq.case1.N \].
-\item \verb#neq.less_or_sup.N#: \[ $$neq.less_or_sup.N \].
-\item \verb#not.lesseq.imply.less.N#: \[ $$not.lesseq.imply.less.N \].
-\item \verb#lesseq.imply.not.greater.N#: \[ $$lesseq.imply.not.greater.N \].
-\end{itemize}
-
-Comments: The first four are natural to use explicitely. The last two
-could probably be removed by adding some \verb#new_intro# or
-\verb#new_elim# in the library. \verb#lesseq.case1.N# and
-\verb#neq.less_or_sup.N# are more problematic, they would require to
-extend the system with some kind of binary elimination rule (with two
-principal premices ?).
-
-\section{Some basic lemmas.}
-
-They should be included in the library ?
-*)
-
-theorem minimal.element /\X (\/n:N X n -> \/n:N (X n & /\p:N (X p -> n <= p))).
-(*! math
-\begin{lemma}\label{minimal.element}
-Every non empty subset \[ X \] of \[ N \] admits a minimal element:
-$$ \[ $0 \] $$
-\end{lemma}
-*)
-intro 2.
-by_absurd.
-rewrite_hyp H0 demorganl.
-(*! math
-\begin{proof}
-We assume \[ $$H \] and \[ $$H0 \] ( \[ H0 \] ).
-*)
-use /\n:N ~ X n.
-(*! math
-We get a contradiction from \[ $$G \] which is proven by well founded induction:
-*)
-trivial.
-intros.
-elim well_founded.N with H1.
-intros.
-(*! math
-we assume \[ $$H3 \] and must prove \[ $0 \].
-*)
-intro.
-apply H0 with H4.
-lefts G $& $\/.
-(*! math
-Assuming \[ $$H4 \] and using ( \[ H0 \] ) we get an integer \[ x \] such that
-\[ $$H6 \] and \[ $$H7 \]. This gives a contradiction with \[ $$H3 \].
-\end{proof}
-*)
-elim H3 with H5.
-elim not.lesseq.imply.less.N.
-save.
-
-theorem not_odd_and_even.N /\x,y,z:N (~ (x = N2 * y & x = N1 + N2 * z)).
-(*! math
-\begin{lemma}\label{not_odd_and_even.N}
-An integer can not be odd and even:
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-By induction over \[ x \].
-\end{proof}
-*)
-intro 2.
-elim H.
-trivial 6.
-intros.
-intro.
-left H4.
-elim H2 with [case].
-trivial =H0 H4 H6.
-elim H1.
-axiom H3.
-axiom H6.
-intro.
-rmh H4.
-left H5.
-rmh H5.
-rewrite_hyp H4 H7 calcul.N.
-left H4.
-axiom H4.
-save.
-
-theorem sum_square.N /\x,y:N (x + y)^N2 = x^N2 + N2*x*y + y^N2.
-(*! math
-\begin{lemma}\label{sum_square.N}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-Easy.
-\end{proof}
-*)
-intros.
-rewrite calcul.N mul.left.distributive.N mul.right.distributive.N add.associative.N.
-intro.
-save.
-
-
-fact less.exp.N /\n,x,y:N( x <= y -> x^n <= y^n).
-(*! math
-\begin{lemma}\label{less.exp.N}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-By induction on \[ n \].
-\end{proof}
-*)
-intros.
-elim H.
-trivial.
-rewrite calcul.N.
-trivial.
-save.
-
-fact less_r.exp.N /\n,x,y:N( x^n < y^n -> x < y).
-(*! math
-\begin{lemma}\label{less_r.exp.N}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-Follows from lemma \ref{less.exp.N}.
-\end{proof}
-*)
-intros.
-elim lesseq.case1.N with y and x.
-apply less.exp.N with n and H3.
-elim lesseq.imply.not.greater.N with y^n and x^n ;; Try intros.
-save.
-
-fact less.ladd.N /\x,y:N (N0 < y -> x < x + y).
-(*! math
-\begin{lemma}\label{less.ladd.N}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-Easy induction over \[ x \].
-\end{proof}
-*)
-intros.
-elim H.
-rewrite calcul.N.
-trivial.
-save.
-
-
-(*! math
-\section{The proof itself}
-*)
-
-theorem n.square.pair /\n:N (\/p:N n^N2=N2*p -> \/q:N n=N2*q).
-(*! math
-\begin{lemma}\label{n.square.pair}
- If the square of \[ n \] is even then \[ n \] is even:
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-*)
-intros.
-lefts H0 $\/ $&.
-apply odd_or_even.N with H.
-lefts G $\/ $& $or.
-(*! math
-We assume \[ $$H1 \] ( \[ H1 \] ).
-We distinguish two cases. If \[ n \] is even we get what we want.
-*)
-trivial.
-(*! math
-If \[ n \] is odd we have \[ $$H3 \]
-*)
-prove n^N2 = N2*(N2*y^N2+N2*y) + N1.
-(*! math
-which implies \[ $0 \]
-*)
-rewrite H3 sum_square.N.
-rewrite add.associative.N mul.associative.N mul.left.distributive.N.
-from N1 + N4 * y + (N2 * y) ^ N2 = N1 + N4 * y + N4 * y ^ N2.
-intro.
-(*! math
-and this gives a contradiction by lemma \ref{not_odd_and_even.N} using ( \[ H1 \] )
-\end{proof}
-*)
-elim not_odd_and_even.N with N (n^N2).
-intros.
-select 3.
-intro.
-axiom H1.
-axiom G.
-axiom H0.
-intros.
-save.
-
-lem decrease /\m,n : N (m^ N2 = N2 * n^ N2 -> N0 < n -> n < m).
-(*! math
-\begin{lemma}\label{decrease}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-Using lemma \ref{less_r.exp.N} and lemma \ref{less.ladd.N}
-\end{proof}
-*)
-intros.
-elim less_r.exp.N with N2 ;; Try intros.
-prove m^N2 = n^N2 + n^N2. axiom H1.
-elim less.ladd.N ;; Try intros.
-trivial.
-trivial.
-trivial =H0 H2.
-save.
-
-lem sup_zero /\m,n : N (m^ N2 = N2 * n^ N2 -> N0 < m -> N0 < n).
-(*! math
-\begin{lemma}\label{sup_zero}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-Using lemma \[ $$ neq.less_or_sup.N \] from the library.
-\end{proof}
-*)
-intros.
-elim neq.less_or_sup.N with N0 and n ;; Try intros.
-rewrite_hyp H1 H3 calcul.N.
-trivial.
-trivial.
-save.
-
-def Q m = m > N0 & \/n:N (m^ N2 = N2 * n^ N2).
-(*! math
-\begin{definition}
-We define \[ Q m = $$Q m \].
-\end{definition}
-*)
-
-lem dec /\m:N (Q m -> \/m':N (Q m' & m' < m)).
-(*! math
-\begin{lemma}\label{dec}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-*)
-intros.
-lefts H0 $Q $\/ $&.
-(*! math
-We assume that \[ $$H0 \] and \[ $$H2 \] (\[ H2 \]) and we must prove \[ $0 \].
-*)
-apply sup_zero with H2 and H0.
-(*! math
-By lemma \ref{sup_zero} we get \[ $$G \]. We show that \[ n \] is the integer we are looking for.
-*)
-intro.
-instance ?1 n.
-intros.
-intros.
-trivial.
-(*! math
-We just need to prove \[ $0 \] and \[1 $0 \].
-*)
-prove \/p:N (m ^ N2 = N2 * p).
-intro.
-instance ?2 n^N2.
-trivial.
-apply n.square.pair with G0.
-lefts G1 $& $\/.
-(*! math
-Using lemma \ref{n.square.pair} we get \[ q \] such that \[ $$H4 \]
-*)
-prove n ^N2 = N2 * q ^N2.
-rewrite_hyp H2 H4.
-prove N2 * (N2 * q ^N2) = N2 * n ^ N2.
-from H2.
-left G1.
-intro.
-(*! math
-and then \[ $$G1 \].
-*)
-trivial =H3 G1.
-(*! math
-Finally \[ $0 \] follows from lemma \ref{decrease}.
-\end{proof}
-*)
-elim decrease.
-save.
-
-lem sq2_irrat /\m:N ~Q m.
-(*! math
-\begin{lemma}\label{sq2_irrat}
-$$ \[ $0 \] $$
-\end{lemma}
-\begin{proof}
-Follows from the previous lemma by selecting the minimal element in \[ Q \] (using lemme \ref{minimal.element}) and getting a contradiction.
-\end{proof}
-*)
-intros.
-intro.
-elim minimal.element with Q.
-intros $\/ $&.
-axiom H.
-axiom H0.
-lefts H1.
-elim dec with H2.
-lefts H4.
-apply H3 with H5.
-elim lesseq.imply.not.greater.N with n and m'.
-save.
-
-theorem square2_irrat /\m,n : N (m^ N2 = N2 * n^ N2 -> m = N0 & n = N0).
-(*! math
-\begin{theorem} The square-root of 2 is irrational. For this we just need to prove the following:
-$$ \[ $0 \] $$
-\end{theorem}
-\begin{proof}
-*)
-intros.
-apply sq2_irrat with H.
-(*! math
-We assume \[ $$H1 \].
-By the previous lemma we have \[ $$G \].
-*)
-elim H with [case].
-intro.
-intro.
-(*! math
-If \[ $$H2 \] we easely get \[ $0 \].
-*)
-elim H0 with [case].
-intro.
-rewrite_hyp H1 H2 H4 calcul.N.
-left H1;; intros.
-prove Q m.
-(*! math
-If \[ m > N0 \] then we have \[ Q m \] and a contradiction.
-\end{proof}
-*)
-intros $Q $\/ $&.
-trivial.
-select 2.
-axiom H1.
-trivial.
-elim G.
-save.