aboutsummaryrefslogtreecommitdiffhomepage
path: root/hol-light/TacticRecording/examples3.ml
diff options
context:
space:
mode:
Diffstat (limited to 'hol-light/TacticRecording/examples3.ml')
-rw-r--r--hol-light/TacticRecording/examples3.ml110
1 files changed, 110 insertions, 0 deletions
diff --git a/hol-light/TacticRecording/examples3.ml b/hol-light/TacticRecording/examples3.ml
new file mode 100644
index 00000000..a8fcdb16
--- /dev/null
+++ b/hol-light/TacticRecording/examples3.ml
@@ -0,0 +1,110 @@
+#use"hol.ml";;
+needs "Library/products.ml";;
+
+#use "TacticRecording/main.ml";;
+
+prioritize_real();;
+
+
+(* ** LEMMA1 from HOL Light's 100/arithmetic_geometric_mean.ml ** *)
+
+let LEMMA_1 = prove
+ (`!x n. x pow (n + 1) - (&n + &1) * x + &n =
+ (x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`,
+ CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEN_TAC THEN INDUCT_TAC THEN
+ REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ADD_CLAUSES] THENL
+ [REAL_ARITH_TAC; REWRITE_TAC[ARITH_RULE `1 <= SUC n`]] THEN
+ SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; SUB_REFL] THEN
+ REWRITE_TAC[real_pow; REAL_MUL_RID] THEN
+ REWRITE_TAC[REAL_ARITH `k * x * x pow n = (k * x pow n) * x`] THEN
+ ASM_REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC; REAL_ADD_LDISTRIB] THEN
+ REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_POW_ADD] THEN REAL_ARITH_TAC);;
+
+let LEMMA_1 = theorem_wrap "LEMMA_1" LEMMA_1;;
+
+top_thm ();;
+print_executed_proof true;;
+print_flat_proof true;;
+print_packaged_proof ();;
+
+g `!x n. x pow (n + 1) - (&n + &1) * x + &n =
+ (x - &1) pow 2 * sum(1..n) (\k. &k * x pow (n - k))`;;
+
+print_executed_proof ();;
+
+(* LEMMA 2 *)
+
+let LEMMA_2 = prove
+ (`!n x. &0 <= x ==> &0 <= x pow (n + 1) - (&n + &1) * x + &n`,
+ REPEAT STRIP_TAC THEN REWRITE_TAC[LEMMA_1] THEN
+ MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN
+ MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN
+ ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_POW_LE]);;
+
+let LEMMA_2 = theorem_wrap "LEMMA_2" LEMMA_2;;
+
+print_executed_proof true;;
+print_flat_proof true;;
+print_packaged_proof ();;
+
+g `!n x. &0 <= x ==> &0 <= x pow (n + 1) - (&n + &1) * x + &n`;;
+
+(* LEMMA 3 *)
+
+let LEMMA_3 = prove
+ (`!n x. 1 <= n /\ (!i. 1 <= i /\ i <= n + 1 ==> &0 <= x i)
+ ==> x(n + 1) * (sum(1..n) x / &n) pow n
+ <= (sum(1..n+1) x / (&n + &1)) pow (n + 1)`,
+ REPEAT STRIP_TAC THEN
+ ABBREV_TAC `a = sum(1..n+1) x / (&n + &1)` THEN
+ ABBREV_TAC `b = sum(1..n) x / &n` THEN
+ SUBGOAL_THEN `x(n + 1) = (&n + &1) * a - &n * b` SUBST1_TAC THENL
+ [MAP_EVERY EXPAND_TAC ["a"; "b"] THEN
+ ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; LE_1;
+ REAL_ARITH `~(&n + &1 = &0)`] THEN
+ SIMP_TAC[SUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; SUM_SING_NUMSEG] THEN
+ REAL_ARITH_TAC;
+ ALL_TAC] THEN
+ SUBGOAL_THEN `&0 <= a /\ &0 <= b` STRIP_ASSUME_TAC THENL
+ [MAP_EVERY EXPAND_TAC ["a"; "b"] THEN CONJ_TAC THEN
+ MATCH_MP_TAC REAL_LE_DIV THEN
+ (CONJ_TAC THENL [MATCH_MP_TAC SUM_POS_LE_NUMSEG; REAL_ARITH_TAC]) THEN
+ ASM_SIMP_TAC[ARITH_RULE `p <= n ==> p <= n + 1`];
+ ALL_TAC] THEN
+ ASM_CASES_TAC `b = &0` THEN
+ ASM_SIMP_TAC[REAL_POW_ZERO; LE_1; REAL_MUL_RZERO; REAL_POW_LE] THEN
+ MP_TAC(ISPECL [`n:num`; `a / b`] LEMMA_2) THEN ASM_SIMP_TAC[REAL_LE_DIV] THEN
+ REWRITE_TAC[REAL_ARITH `&0 <= x - a + b <=> a - b <= x`; REAL_POW_DIV] THEN
+ SUBGOAL_THEN `&0 < b` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
+ ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_POW_LT] THEN
+ MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN
+ REWRITE_TAC[REAL_POW_ADD] THEN UNDISCH_TAC `~(b = &0)` THEN
+ CONV_TAC REAL_FIELD);;
+
+let LEMMA_3 = theorem_wrap "LEMMA_3" LEMMA_3;;
+
+print_executed_proof true;;
+print_flat_proof true;;
+print_thenl_proof ();;
+print_packaged_proof ();;
+
+g `!n x. 1 <= n /\ (!i. 1 <= i /\ i <= n + 1 ==> &0 <= x i)
+ ==> x(n + 1) * (sum(1..n) x / &n) pow n
+ <= (sum(1..n+1) x / (&n + &1)) pow (n + 1)`;;
+
+(* AGM *)
+
+let AGM = prove
+ (`!n a. 1 <= n /\ (!i. 1 <= i /\ i <= n ==> &0 <= a(i))
+ ==> product(1..n) a <= (sum(1..n) a / &n) pow n`,
+ INDUCT_TAC THEN REWRITE_TAC[ARITH; PRODUCT_CLAUSES_NUMSEG] THEN
+ REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN X_GEN_TAC `x:num->real` THEN
+ ASM_CASES_TAC `n = 0` THENL
+ [ASM_REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH; SUM_SING_NUMSEG] THEN
+ REAL_ARITH_TAC;
+ REWRITE_TAC[ADD1] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
+ EXISTS_TAC `x(n + 1) * (sum(1..n) x / &n) pow n` THEN
+ ASM_SIMP_TAC[LEMMA_3; GSYM REAL_OF_NUM_ADD; LE_1;
+ ARITH_RULE `i <= n ==> i <= n + 1`] THEN
+ GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
+ ASM_SIMP_TAC[LE_REFL; LE_1; ARITH_RULE `i <= n ==> i <= n + 1`]]);;