aboutsummaryrefslogtreecommitdiffhomepage
path: root/isar
diff options
context:
space:
mode:
authorGravatar David Aspinall <da@inf.ed.ac.uk>2010-08-18 16:59:02 +0000
committerGravatar David Aspinall <da@inf.ed.ac.uk>2010-08-18 16:59:02 +0000
commit2a2e7bcea8900ef4f90ebf55fd1c82faab131b83 (patch)
tree92e13bd3107d66187981695194e83f6f4d66fb57 /isar
parentf6ce7d245c88c5892facc40e6461e5a2b4a4ee06 (diff)
Another test file
Diffstat (limited to 'isar')
-rw-r--r--isar/ex/PER.thy269
1 files changed, 269 insertions, 0 deletions
diff --git a/isar/ex/PER.thy b/isar/ex/PER.thy
new file mode 100644
index 00000000..7f59c742
--- /dev/null
+++ b/isar/ex/PER.thy
@@ -0,0 +1,269 @@
+(**********
+ This file is copied from Isabelle2009-2.
+ It has been beautified with Tokens \<rightarrow> Replace Shortcuts
+ **********)
+
+(* Title: HOL/ex/PER.thy
+ Author: Oscar Slotosch and Markus Wenzel, TU Muenchen
+*)
+
+header {* Partial equivalence relations *}
+
+theory PER imports Main begin
+
+text {*
+ Higher-order quotients are defined over partial equivalence
+ relations (PERs) instead of total ones. We provide axiomatic type
+ classes @{text "equiv < partial_equiv"} and a type constructor
+ @{text "'a quot"} with basic operations. This development is based
+ on:
+
+ Oscar Slotosch: \emph{Higher Order Quotients and their
+ Implementation in Isabelle HOL.} Elsa L. Gunter and Amy Felty,
+ editors, Theorem Proving in Higher Order Logics: TPHOLs '97,
+ Springer LNCS 1275, 1997.
+*}
+
+
+subsection {* Partial equivalence *}
+
+text {*
+ Type class @{text partial_equiv} models partial equivalence
+ relations (PERs) using the polymorphic @{text "\<sim> :: 'a \<Rightarrow> 'a \<Rightarrow>
+ bool"} relation, which is required to be symmetric and transitive,
+ but not necessarily reflexive.
+*}
+
+class partial_equiv =
+ fixes eqv :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sim>" 50)
+ assumes partial_equiv_sym [elim?]: "x \<sim> y \<Longrightarrow> y \<sim> x"
+ assumes partial_equiv_trans [trans]: "x \<sim> y \<Longrightarrow> y \<sim> z \<Longrightarrow> x \<sim> z"
+
+text {*
+ \medskip The domain of a partial equivalence relation is the set of
+ reflexive elements. Due to symmetry and transitivity this
+ characterizes exactly those elements that are connected with
+ \emph{any} other one.
+*}
+
+definition
+ "domain" :: "'a::partial_equiv set" where
+ "domain = {x. x \<sim> x}"
+
+lemma domainI [intro]: "x \<sim> x \<Longrightarrow> x \<in> domain"
+ unfolding domain_def by blast
+
+lemma domainD [dest]: "x \<in> domain \<Longrightarrow> x \<sim> x"
+ unfolding domain_def by blast
+
+theorem domainI' [elim?]: "x \<sim> y \<Longrightarrow> x \<in> domain"
+proof
+ assume xy: "x \<sim> y"
+ also from xy have "y \<sim> x" ..
+ finally show "x \<sim> x" .
+qed
+
+
+subsection {* Equivalence on function spaces *}
+
+text {*
+ The @{text \<sim>} relation is lifted to function spaces. It is
+ important to note that this is \emph{not} the direct product, but a
+ structural one corresponding to the congruence property.
+*}
+
+instantiation "fun" :: (partial_equiv, partial_equiv) partial_equiv
+begin
+
+definition
+ eqv_fun_def: "f \<sim> g \<equiv> \<forall>x \<in> domain. \<forall>y \<in> domain. x \<sim> y \<longrightarrow> f x \<sim> g y"
+
+lemma partial_equiv_funI [intro?]:
+ "(\<And>x y. x \<in> domain \<Longrightarrow> y \<in> domain \<Longrightarrow> x \<sim> y \<Longrightarrow> f x \<sim> g y) \<Longrightarrow> f \<sim> g"
+ unfolding eqv_fun_def by blast
+
+lemma partial_equiv_funD [dest?]:
+ "f \<sim> g \<Longrightarrow> x \<in> domain \<Longrightarrow> y \<in> domain \<Longrightarrow> x \<sim> y \<Longrightarrow> f x \<sim> g y"
+ unfolding eqv_fun_def by blast
+
+text {*
+ The class of partial equivalence relations is closed under function
+ spaces (in \emph{both} argument positions).
+*}
+
+instance proof
+ fix f g h :: "'a::partial_equiv \<Rightarrow> 'b::partial_equiv"
+ assume fg: "f \<sim> g"
+ show "g \<sim> f"
+ proof
+ fix x y :: 'a
+ assume x: "x \<in> domain" and y: "y \<in> domain"
+ assume "x \<sim> y" then have "y \<sim> x" ..
+ with fg y x have "f y \<sim> g x" ..
+ then show "g x \<sim> f y" ..
+ qed
+ assume gh: "g \<sim> h"
+ show "f \<sim> h"
+ proof
+ fix x y :: 'a
+ assume x: "x \<in> domain" and y: "y \<in> domain" and "x \<sim> y"
+ with fg have "f x \<sim> g y" ..
+ also from y have "y \<sim> y" ..
+ with gh y y have "g y \<sim> h y" ..
+ finally show "f x \<sim> h y" .
+ qed
+qed
+
+end
+
+
+subsection {* Total equivalence *}
+
+text {*
+ The class of total equivalence relations on top of PERs. It
+ coincides with the standard notion of equivalence, i.e.\ @{text "\<sim>
+ :: 'a \<Rightarrow> 'a \<Rightarrow> bool"} is required to be reflexive, transitive and
+ symmetric.
+*}
+
+class equiv =
+ assumes eqv_refl [intro]: "x \<sim> x"
+
+text {*
+ On total equivalences all elements are reflexive, and congruence
+ holds unconditionally.
+*}
+
+theorem equiv_domain [intro]: "(x::'a::equiv) \<in> domain"
+proof
+ show "x \<sim> x" ..
+qed
+
+theorem equiv_cong [dest?]: "f \<sim> g \<Longrightarrow> x \<sim> y \<Longrightarrow> f x \<sim> g (y::'a::equiv)"
+proof -
+ assume "f \<sim> g"
+ moreover have "x \<in> domain" ..
+ moreover have "y \<in> domain" ..
+ moreover assume "x \<sim> y"
+ ultimately show ?thesis ..
+qed
+
+
+subsection {* Quotient types *}
+
+text {*
+ The quotient type @{text "'a quot"} consists of all
+ \emph{equivalence classes} over elements of the base type @{typ 'a}.
+*}
+
+typedef 'a quot = "{{x. a \<sim> x}| a::'a::partial_equiv. True}"
+ by blast
+
+lemma quotI [intro]: "{x. a \<sim> x} \<in> quot"
+ unfolding quot_def by blast
+
+lemma quotE [elim]: "R \<in> quot \<Longrightarrow> (\<And>a. R = {x. a \<sim> x} \<Longrightarrow> C) \<Longrightarrow> C"
+ unfolding quot_def by blast
+
+text {*
+ \medskip Abstracted equivalence classes are the canonical
+ representation of elements of a quotient type.
+*}
+
+definition
+ eqv_class :: "('a::partial_equiv) \<Rightarrow> 'a quot" ("\<lfloor>_\<rfloor>") where
+ "\<lfloor>a\<rfloor> = Abs_quot {x. a \<sim> x}"
+
+theorem quot_rep: "\<exists>a. A = \<lfloor>a\<rfloor>"
+proof (cases A)
+ fix R assume R: "A = Abs_quot R"
+ assume "R \<in> quot" then have "\<exists>a. R = {x. a \<sim> x}" by blast
+ with R have "\<exists>a. A = Abs_quot {x. a \<sim> x}" by blast
+ then show ?thesis by (unfold eqv_class_def)
+qed
+
+lemma quot_cases [cases type: quot]:
+ obtains (rep) a where "A = \<lfloor>a\<rfloor>"
+ using quot_rep by blast
+
+
+subsection {* Equality on quotients *}
+
+text {*
+ Equality of canonical quotient elements corresponds to the original
+ relation as follows.
+*}
+
+theorem eqv_class_eqI [intro]: "a \<sim> b \<Longrightarrow> \<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>"
+proof -
+ assume ab: "a \<sim> b"
+ have "{x. a \<sim> x} = {x. b \<sim> x}"
+ proof (rule Collect_cong)
+ fix x show "(a \<sim> x) = (b \<sim> x)"
+ proof
+ from ab have "b \<sim> a" ..
+ also assume "a \<sim> x"
+ finally show "b \<sim> x" .
+ next
+ note ab
+ also assume "b \<sim> x"
+ finally show "a \<sim> x" .
+ qed
+ qed
+ then show ?thesis by (simp only: eqv_class_def)
+qed
+
+theorem eqv_class_eqD' [dest?]: "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor> \<Longrightarrow> a \<in> domain \<Longrightarrow> a \<sim> b"
+proof (unfold eqv_class_def)
+ assume "Abs_quot {x. a \<sim> x} = Abs_quot {x. b \<sim> x}"
+ then have "{x. a \<sim> x} = {x. b \<sim> x}" by (simp only: Abs_quot_inject quotI)
+ moreover assume "a \<in> domain" then have "a \<sim> a" ..
+ ultimately have "a \<in> {x. b \<sim> x}" by blast
+ then have "b \<sim> a" by blast
+ then show "a \<sim> b" ..
+qed
+
+theorem eqv_class_eqD [dest?]: "\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor> \<Longrightarrow> a \<sim> (b::'a::equiv)"
+proof (rule eqv_class_eqD')
+ show "a \<in> domain" ..
+qed
+
+lemma eqv_class_eq' [simp]: "a \<in> domain \<Longrightarrow> (\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>) = (a \<sim> b)"
+ using eqv_class_eqI eqv_class_eqD' by (blast del: eqv_refl)
+
+lemma eqv_class_eq [simp]: "(\<lfloor>a\<rfloor> = \<lfloor>b\<rfloor>) = (a \<sim> (b::'a::equiv))"
+ using eqv_class_eqI eqv_class_eqD by blast
+
+
+subsection {* Picking representing elements *}
+
+definition
+ pick :: "'a::partial_equiv quot \<Rightarrow> 'a" where
+ "pick A = (SOME a. A = \<lfloor>a\<rfloor>)"
+
+theorem pick_eqv' [intro?, simp]: "a \<in> domain \<Longrightarrow> pick \<lfloor>a\<rfloor> \<sim> a"
+proof (unfold pick_def)
+ assume a: "a \<in> domain"
+ show "(SOME x. \<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>) \<sim> a"
+ proof (rule someI2)
+ show "\<lfloor>a\<rfloor> = \<lfloor>a\<rfloor>" ..
+ fix x assume "\<lfloor>a\<rfloor> = \<lfloor>x\<rfloor>"
+ from this and a have "a \<sim> x" ..
+ then show "x \<sim> a" ..
+ qed
+qed
+
+theorem pick_eqv [intro, simp]: "pick \<lfloor>a\<rfloor> \<sim> (a::'a::equiv)"
+proof (rule pick_eqv')
+ show "a \<in> domain" ..
+qed
+
+theorem pick_inverse: "\<lfloor>pick A\<rfloor> = (A::'a::equiv quot)"
+proof (cases A)
+ fix a assume a: "A = \<lfloor>a\<rfloor>"
+ then have "pick A \<sim> a" by simp
+ then have "\<lfloor>pick A\<rfloor> = \<lfloor>a\<rfloor>" by simp
+ with a show ?thesis by simp
+qed
+
+end