aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
authorGravatar David Aspinall <da@inf.ed.ac.uk>2010-08-03 12:48:09 +0000
committerGravatar David Aspinall <da@inf.ed.ac.uk>2010-08-03 12:48:09 +0000
commit417a4ed168b8982f7f8db417e2deb23693beedc7 (patch)
tree974d75035a7ba28425d4c8e2727c8a3ea22a79ee
parent5903d4c5739d899a6b2fcb7574814ebb9d37d4f0 (diff)
Move distribution examples into subdir
-rw-r--r--isar/ex/KnasterTarski.thy115
-rw-r--r--isar/ex/README7
-rw-r--r--isar/ex/Sqrt.thy90
-rw-r--r--isar/ex/Sqrt_Script.thy70
-rw-r--r--isar/ex/Tarski.thy928
5 files changed, 1210 insertions, 0 deletions
diff --git a/isar/ex/KnasterTarski.thy b/isar/ex/KnasterTarski.thy
new file mode 100644
index 00000000..a0adf653
--- /dev/null
+++ b/isar/ex/KnasterTarski.thy
@@ -0,0 +1,115 @@
+(**********
+ This file is copied from Isabelle2009-2.
+ **********)
+
+(* Title: HOL/Isar_examples/KnasterTarski.thy
+ Author: Markus Wenzel, TU Muenchen
+
+Typical textbook proof example.
+*)
+
+header {* Textbook-style reasoning: the Knaster-Tarski Theorem *}
+
+theory KnasterTarski
+imports Main Lattice_Syntax
+begin
+
+
+subsection {* Prose version *}
+
+text {*
+ According to the textbook \cite[pages 93--94]{davey-priestley}, the
+ Knaster-Tarski fixpoint theorem is as follows.\footnote{We have
+ dualized the argument, and tuned the notation a little bit.}
+
+ \textbf{The Knaster-Tarski Fixpoint Theorem.} Let @{text L} be a
+ complete lattice and @{text "f: L \<rightarrow> L"} an order-preserving map.
+ Then @{text "\<Sqinter>{x \<in> L | f(x) \<le> x}"} is a fixpoint of @{text f}.
+
+ \textbf{Proof.} Let @{text "H = {x \<in> L | f(x) \<le> x}"} and @{text "a =
+ \<Sqinter>H"}. For all @{text "x \<in> H"} we have @{text "a \<le> x"}, so @{text
+ "f(a) \<le> f(x) \<le> x"}. Thus @{text "f(a)"} is a lower bound of @{text
+ H}, whence @{text "f(a) \<le> a"}. We now use this inequality to prove
+ the reverse one (!) and thereby complete the proof that @{text a} is
+ a fixpoint. Since @{text f} is order-preserving, @{text "f(f(a)) \<le>
+ f(a)"}. This says @{text "f(a) \<in> H"}, so @{text "a \<le> f(a)"}.
+*}
+
+
+subsection {* Formal versions *}
+
+text {*
+ The Isar proof below closely follows the original presentation.
+ Virtually all of the prose narration has been rephrased in terms of
+ formal Isar language elements. Just as many textbook-style proofs,
+ there is a strong bias towards forward proof, and several bends in
+ the course of reasoning.
+*}
+
+theorem Knaster_Tarski:
+ fixes f :: "'a::complete_lattice \<Rightarrow> 'a"
+ assumes "mono f"
+ shows "\<exists>a. f a = a"
+proof
+ let ?H = "{u. f u \<le> u}"
+ let ?a = "\<Sqinter>?H"
+ show "f ?a = ?a"
+ proof -
+ {
+ fix x
+ assume "x \<in> ?H"
+ then have "?a \<le> x" by (rule Inf_lower)
+ with `mono f` have "f ?a \<le> f x" ..
+ also from `x \<in> ?H` have "\<dots> \<le> x" ..
+ finally have "f ?a \<le> x" .
+ }
+ then have "f ?a \<le> ?a" by (rule Inf_greatest)
+ {
+ also presume "\<dots> \<le> f ?a"
+ finally (order_antisym) show ?thesis .
+ }
+ from `mono f` and `f ?a \<le> ?a` have "f (f ?a) \<le> f ?a" ..
+ then have "f ?a \<in> ?H" ..
+ then show "?a \<le> f ?a" by (rule Inf_lower)
+ qed
+qed
+
+text {*
+ Above we have used several advanced Isar language elements, such as
+ explicit block structure and weak assumptions. Thus we have
+ mimicked the particular way of reasoning of the original text.
+
+ In the subsequent version the order of reasoning is changed to
+ achieve structured top-down decomposition of the problem at the
+ outer level, while only the inner steps of reasoning are done in a
+ forward manner. We are certainly more at ease here, requiring only
+ the most basic features of the Isar language.
+*}
+
+theorem Knaster_Tarski':
+ fixes f :: "'a::complete_lattice \<Rightarrow> 'a"
+ assumes "mono f"
+ shows "\<exists>a. f a = a"
+proof
+ let ?H = "{u. f u \<le> u}"
+ let ?a = "\<Sqinter>?H"
+ show "f ?a = ?a"
+ proof (rule order_antisym)
+ show "f ?a \<le> ?a"
+ proof (rule Inf_greatest)
+ fix x
+ assume "x \<in> ?H"
+ then have "?a \<le> x" by (rule Inf_lower)
+ with `mono f` have "f ?a \<le> f x" ..
+ also from `x \<in> ?H` have "\<dots> \<le> x" ..
+ finally show "f ?a \<le> x" .
+ qed
+ show "?a \<le> f ?a"
+ proof (rule Inf_lower)
+ from `mono f` and `f ?a \<le> ?a` have "f (f ?a) \<le> f ?a" ..
+ then show "f ?a \<in> ?H" ..
+ qed
+ qed
+qed
+
+end
diff --git a/isar/ex/README b/isar/ex/README
new file mode 100644
index 00000000..efa79fdb
--- /dev/null
+++ b/isar/ex/README
@@ -0,0 +1,7 @@
+This directory contains some example files copied from Isabelle2009-2.
+
+These are re-distributed with Proof General for convenience of trying
+out PG without needing a local installation of Isabelle.
+
+They can also be used as test cases.
+
diff --git a/isar/ex/Sqrt.thy b/isar/ex/Sqrt.thy
new file mode 100644
index 00000000..96164f90
--- /dev/null
+++ b/isar/ex/Sqrt.thy
@@ -0,0 +1,90 @@
+(* Title: HOL/ex/Sqrt.thy
+ Author: Markus Wenzel, TU Muenchen
+*)
+
+header {* Square roots of primes are irrational *}
+
+theory Sqrt
+imports Complex_Main "~~/src/HOL/Number_Theory/Primes"
+begin
+
+text {*
+ The square root of any prime number (including @{text 2}) is
+ irrational.
+*}
+
+theorem sqrt_prime_irrational:
+ assumes "prime (p::nat)"
+ shows "sqrt (real p) \<notin> \<rat>"
+proof
+ from `prime p` have p: "1 < p" by (simp add: prime_nat_def)
+ assume "sqrt (real p) \<in> \<rat>"
+ then obtain m n :: nat where
+ n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt (real p)\<bar> = real m / real n"
+ and gcd: "gcd m n = 1" by (rule Rats_abs_nat_div_natE)
+ have eq: "m\<twosuperior> = p * n\<twosuperior>"
+ proof -
+ from n and sqrt_rat have "real m = \<bar>sqrt (real p)\<bar> * real n" by simp
+ then have "real (m\<twosuperior>) = (sqrt (real p))\<twosuperior> * real (n\<twosuperior>)"
+ by (auto simp add: power2_eq_square)
+ also have "(sqrt (real p))\<twosuperior> = real p" by simp
+ also have "\<dots> * real (n\<twosuperior>) = real (p * n\<twosuperior>)" by simp
+ finally show ?thesis ..
+ qed
+ have "p dvd m \<and> p dvd n"
+ proof
+ from eq have "p dvd m\<twosuperior>" ..
+ with `prime p` pos2 show "p dvd m" by (rule prime_dvd_power_nat)
+ then obtain k where "m = p * k" ..
+ with eq have "p * n\<twosuperior> = p\<twosuperior> * k\<twosuperior>" by (auto simp add: power2_eq_square mult_ac)
+ with p have "n\<twosuperior> = p * k\<twosuperior>" by (simp add: power2_eq_square)
+ then have "p dvd n\<twosuperior>" ..
+ with `prime p` pos2 show "p dvd n" by (rule prime_dvd_power_nat)
+ qed
+ then have "p dvd gcd m n" ..
+ with gcd have "p dvd 1" by simp
+ then have "p \<le> 1" by (simp add: dvd_imp_le)
+ with p show False by simp
+qed
+
+corollary "sqrt (real (2::nat)) \<notin> \<rat>"
+ by (rule sqrt_prime_irrational) (rule two_is_prime_nat)
+
+
+subsection {* Variations *}
+
+text {*
+ Here is an alternative version of the main proof, using mostly
+ linear forward-reasoning. While this results in less top-down
+ structure, it is probably closer to proofs seen in mathematics.
+*}
+
+theorem
+ assumes "prime (p::nat)"
+ shows "sqrt (real p) \<notin> \<rat>"
+proof
+ from `prime p` have p: "1 < p" by (simp add: prime_nat_def)
+ assume "sqrt (real p) \<in> \<rat>"
+ then obtain m n :: nat where
+ n: "n \<noteq> 0" and sqrt_rat: "\<bar>sqrt (real p)\<bar> = real m / real n"
+ and gcd: "gcd m n = 1" by (rule Rats_abs_nat_div_natE)
+ from n and sqrt_rat have "real m = \<bar>sqrt (real p)\<bar> * real n" by simp
+ then have "real (m\<twosuperior>) = (sqrt (real p))\<twosuperior> * real (n\<twosuperior>)"
+ by (auto simp add: power2_eq_square)
+ also have "(sqrt (real p))\<twosuperior> = real p" by simp
+ also have "\<dots> * real (n\<twosuperior>) = real (p * n\<twosuperior>)" by simp
+ finally have eq: "m\<twosuperior> = p * n\<twosuperior>" ..
+ then have "p dvd m\<twosuperior>" ..
+ with `prime p` pos2 have dvd_m: "p dvd m" by (rule prime_dvd_power_nat)
+ then obtain k where "m = p * k" ..
+ with eq have "p * n\<twosuperior> = p\<twosuperior> * k\<twosuperior>" by (auto simp add: power2_eq_square mult_ac)
+ with p have "n\<twosuperior> = p * k\<twosuperior>" by (simp add: power2_eq_square)
+ then have "p dvd n\<twosuperior>" ..
+ with `prime p` pos2 have "p dvd n" by (rule prime_dvd_power_nat)
+ with dvd_m have "p dvd gcd m n" by (rule gcd_greatest_nat)
+ with gcd have "p dvd 1" by simp
+ then have "p \<le> 1" by (simp add: dvd_imp_le)
+ with p show False by simp
+qed
+
+end
diff --git a/isar/ex/Sqrt_Script.thy b/isar/ex/Sqrt_Script.thy
new file mode 100644
index 00000000..08634ea7
--- /dev/null
+++ b/isar/ex/Sqrt_Script.thy
@@ -0,0 +1,70 @@
+(* Title: HOL/ex/Sqrt_Script.thy
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 2001 University of Cambridge
+*)
+
+header {* Square roots of primes are irrational (script version) *}
+
+theory Sqrt_Script
+imports Complex_Main "~~/src/HOL/Number_Theory/Primes"
+begin
+
+text {*
+ \medskip Contrast this linear Isabelle/Isar script with Markus
+ Wenzel's more mathematical version.
+*}
+
+subsection {* Preliminaries *}
+
+lemma prime_nonzero: "prime (p::nat) \<Longrightarrow> p \<noteq> 0"
+ by (force simp add: prime_nat_def)
+
+lemma prime_dvd_other_side:
+ "(n::nat) * n = p * (k * k) \<Longrightarrow> prime p \<Longrightarrow> p dvd n"
+ apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat)
+ apply auto
+ done
+
+lemma reduction: "prime (p::nat) \<Longrightarrow>
+ 0 < k \<Longrightarrow> k * k = p * (j * j) \<Longrightarrow> k < p * j \<and> 0 < j"
+ apply (rule ccontr)
+ apply (simp add: linorder_not_less)
+ apply (erule disjE)
+ apply (frule mult_le_mono, assumption)
+ apply auto
+ apply (force simp add: prime_nat_def)
+ done
+
+lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)"
+ by (simp add: mult_ac)
+
+lemma prime_not_square:
+ "prime (p::nat) \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))"
+ apply (induct m rule: nat_less_induct)
+ apply clarify
+ apply (frule prime_dvd_other_side, assumption)
+ apply (erule dvdE)
+ apply (simp add: nat_mult_eq_cancel_disj prime_nonzero)
+ apply (blast dest: rearrange reduction)
+ done
+
+
+subsection {* Main theorem *}
+
+text {*
+ The square root of any prime number (including @{text 2}) is
+ irrational.
+*}
+
+theorem prime_sqrt_irrational:
+ "prime (p::nat) \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>"
+ apply (rule notI)
+ apply (erule Rats_abs_nat_div_natE)
+ apply (simp del: real_of_nat_mult
+ add: abs_if divide_eq_eq prime_not_square real_of_nat_mult [symmetric])
+ done
+
+lemmas two_sqrt_irrational =
+ prime_sqrt_irrational [OF two_is_prime_nat]
+
+end
diff --git a/isar/ex/Tarski.thy b/isar/ex/Tarski.thy
new file mode 100644
index 00000000..9d4e8c0b
--- /dev/null
+++ b/isar/ex/Tarski.thy
@@ -0,0 +1,928 @@
+(**********
+ This file is copied from Isabelle2009-2.
+ It has been beautified with Tokens \<rightarrow> Replace Shortcuts
+ **********)
+
+(* Title: HOL/ex/Tarski.thy
+ ID: $Id$
+ Author: Florian Kammüller, Cambridge University Computer Laboratory
+*)
+
+header {* The Full Theorem of Tarski *}
+
+theory Tarski
+imports Main FuncSet
+begin
+
+text {*
+ Minimal version of lattice theory plus the full theorem of Tarski:
+ The fixedpoints of a complete lattice themselves form a complete
+ lattice.
+
+ Illustrates first-class theories, using the Sigma representation of
+ structures. Tidied and converted to Isar by lcp.
+*}
+
+record 'a potype =
+ pset :: "'a set"
+ order :: "('a * 'a) set"
+
+definition
+ monotone :: "['a \<Rightarrow> 'a, 'a set, ('a *'a)set] \<Rightarrow> bool" where
+ "monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r \<longrightarrow> ((f x), (f y)) : r)"
+
+definition
+ least :: "['a \<Rightarrow> bool, 'a potype] \<Rightarrow> 'a" where
+ "least P po = (SOME x. x: pset po & P x &
+ (\<forall>y \<in> pset po. P y \<longrightarrow> (x,y): order po))"
+
+definition
+ greatest :: "['a \<Rightarrow> bool, 'a potype] \<Rightarrow> 'a" where
+ "greatest P po = (SOME x. x: pset po & P x &
+ (\<forall>y \<in> pset po. P y \<longrightarrow> (y,x): order po))"
+
+definition
+ lub :: "['a set, 'a potype] \<Rightarrow> 'a" where
+ "lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po"
+
+definition
+ glb :: "['a set, 'a potype] \<Rightarrow> 'a" where
+ "glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
+
+definition
+ isLub :: "['a set, 'a potype, 'a] \<Rightarrow> bool" where
+ "isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
+ (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) \<longrightarrow> (L,z): order po)))"
+
+definition
+ isGlb :: "['a set, 'a potype, 'a] \<Rightarrow> bool" where
+ "isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
+ (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) \<longrightarrow> (z,G): order po)))"
+
+definition
+ "fix" :: "[('a \<Rightarrow> 'a), 'a set] \<Rightarrow> 'a set" where
+ "fix f A = {x. x: A & f x = x}"
+
+definition
+ interval :: "[('a*'a) set,'a, 'a ] \<Rightarrow> 'a set" where
+ "interval r a b = {x. (a,x): r & (x,b): r}"
+
+
+definition
+ Bot :: "'a potype \<Rightarrow> 'a" where
+ "Bot po = least (%x. True) po"
+
+definition
+ Top :: "'a potype \<Rightarrow> 'a" where
+ "Top po = greatest (%x. True) po"
+
+definition
+ PartialOrder :: "('a potype) set" where
+ "PartialOrder = {P. refl_on (pset P) (order P) & antisym (order P) &
+ trans (order P)}"
+
+definition
+ CompleteLattice :: "('a potype) set" where
+ "CompleteLattice = {cl. cl: PartialOrder &
+ (\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>L. isLub S cl L)) &
+ (\<forall>S. S \<subseteq> pset cl \<longrightarrow> (\<exists>G. isGlb S cl G))}"
+
+definition
+ CLF_set :: "('a potype * ('a \<Rightarrow> 'a)) set" where
+ "CLF_set = (SIGMA cl: CompleteLattice.
+ {f. f: pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)})"
+
+definition
+ induced :: "['a set, ('a * 'a) set] \<Rightarrow> ('a *'a)set" where
+ "induced A r = {(a,b). a : A & b: A & (a,b): r}"
+
+
+definition
+ sublattice :: "('a potype * 'a set)set" where
+ "sublattice =
+ (SIGMA cl: CompleteLattice.
+ {S. S \<subseteq> pset cl &
+ \<lparr> pset = S, order = induced S (order cl) \<rparr>: CompleteLattice})"
+
+abbreviation
+ sublat :: "['a set, 'a potype] \<Rightarrow> bool" ("_ \<guillemotleft>= _" [51,50]50) where
+ "S \<guillemotleft>= cl \<equiv> S : sublattice `` {cl}"
+
+definition
+ dual :: "'a potype \<Rightarrow> 'a potype" where
+ "dual po = \<lparr> pset = pset po, order = converse (order po) \<rparr>"
+
+locale S =
+ fixes cl :: "'a potype"
+ and A :: "'a set"
+ and r :: "('a * 'a) set"
+ defines A_def: "A \<equiv> pset cl"
+ and r_def: "r \<equiv> order cl"
+
+locale PO = S +
+ assumes cl_po: "cl : PartialOrder"
+
+locale CL = S +
+ assumes cl_co: "cl : CompleteLattice"
+
+sublocale CL < PO
+apply (simp_all add: A_def r_def)
+apply unfold_locales
+using cl_co unfolding CompleteLattice_def by auto
+
+locale CLF = S +
+ fixes f :: "'a \<Rightarrow> 'a"
+ and P :: "'a set"
+ assumes f_cl: "(cl,f) : CLF_set" (*was the equivalent "f : CLF_set``{cl}"*)
+ defines P_def: "P \<equiv> fix f A"
+
+sublocale CLF < CL
+apply (simp_all add: A_def r_def)
+apply unfold_locales
+using f_cl unfolding CLF_set_def by auto
+
+locale Tarski = CLF +
+ fixes Y :: "'a set"
+ and intY1 :: "'a set"
+ and v :: "'a"
+ assumes
+ Y_ss: "Y \<subseteq> P"
+ defines
+ intY1_def: "intY1 \<equiv> interval r (lub Y cl) (Top cl)"
+ and v_def: "v \<equiv> glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
+ x: intY1}
+ \<lparr> pset=intY1, order=induced intY1 r\<rparr>"
+
+
+subsection {* Partial Order *}
+
+lemma (in PO) dual:
+ "PO (dual cl)"
+apply unfold_locales
+using cl_po
+unfolding PartialOrder_def dual_def
+by auto
+
+lemma (in PO) PO_imp_refl_on [simp]: "refl_on A r"
+apply (insert cl_po)
+apply (simp add: PartialOrder_def A_def r_def)
+done
+
+lemma (in PO) PO_imp_sym [simp]: "antisym r"
+apply (insert cl_po)
+apply (simp add: PartialOrder_def r_def)
+done
+
+lemma (in PO) PO_imp_trans [simp]: "trans r"
+apply (insert cl_po)
+apply (simp add: PartialOrder_def r_def)
+done
+
+lemma (in PO) reflE: "x \<in> A \<Longrightarrow> (x, x) \<in> r"
+apply (insert cl_po)
+apply (simp add: PartialOrder_def refl_on_def A_def r_def)
+done
+
+lemma (in PO) antisymE: "\<lbrakk> (a, b) \<in> r; (b, a) \<in> r \<rbrakk> \<Longrightarrow> a = b"
+apply (insert cl_po)
+apply (simp add: PartialOrder_def antisym_def r_def)
+done
+
+lemma (in PO) transE: "\<lbrakk> (a, b) \<in> r; (b, c) \<in> r\<rbrakk> \<Longrightarrow> (a,c) \<in> r"
+apply (insert cl_po)
+apply (simp add: PartialOrder_def r_def)
+apply (unfold trans_def, fast)
+done
+
+lemma (in PO) monotoneE:
+ "\<lbrakk> monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r \<rbrakk> \<Longrightarrow> (f x, f y) \<in> r"
+by (simp add: monotone_def)
+
+lemma (in PO) po_subset_po:
+ "S \<subseteq> A \<Longrightarrow> \<lparr> pset = S, order = induced S r \<rparr> \<in> PartialOrder"
+apply (simp (no_asm) add: PartialOrder_def)
+apply auto
+-- {* refl *}
+apply (simp add: refl_on_def induced_def)
+apply (blast intro: reflE)
+-- {* antisym *}
+apply (simp add: antisym_def induced_def)
+apply (blast intro: antisymE)
+-- {* trans *}
+apply (simp add: trans_def induced_def)
+apply (blast intro: transE)
+done
+
+lemma (in PO) indE: "\<lbrakk> (x, y) \<in> induced S r; S \<subseteq> A \<rbrakk> \<Longrightarrow> (x, y) \<in> r"
+by (simp add: add: induced_def)
+
+lemma (in PO) indI: "\<lbrakk> (x, y) \<in> r; x \<in> S; y \<in> S \<rbrakk> \<Longrightarrow> (x, y) \<in> induced S r"
+by (simp add: add: induced_def)
+
+lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A \<Longrightarrow> \<exists>L. isLub S cl L"
+apply (insert cl_co)
+apply (simp add: CompleteLattice_def A_def)
+done
+
+declare (in CL) cl_co [simp]
+
+lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"
+by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
+
+lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"
+by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
+
+lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
+by (simp add: isLub_def isGlb_def dual_def converse_def)
+
+lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
+by (simp add: isLub_def isGlb_def dual_def converse_def)
+
+lemma (in PO) dualPO: "dual cl \<in> PartialOrder"
+apply (insert cl_po)
+apply (simp add: PartialOrder_def dual_def refl_on_converse
+ trans_converse antisym_converse)
+done
+
+lemma Rdual:
+ "\<forall>S. (S \<subseteq> A \<longrightarrow>( \<exists>L. isLub S \<lparr> pset = A, order = r\<rparr> L))
+ \<Longrightarrow> \<forall>S. (S \<subseteq> A \<longrightarrow> (\<exists>G. isGlb S \<lparr> pset = A, order = r\<rparr> G))"
+apply safe
+apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
+ \<lparr>pset = A, order = r\<rparr> " in exI)
+apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
+apply (drule mp, fast)
+apply (simp add: isLub_lub isGlb_def)
+apply (simp add: isLub_def, blast)
+done
+
+lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
+by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
+
+lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
+by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
+
+lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"
+by (simp add: PartialOrder_def CompleteLattice_def, fast)
+
+lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
+
+(*declare CL_imp_PO [THEN PO.PO_imp_refl, simp]
+declare CL_imp_PO [THEN PO.PO_imp_sym, simp]
+declare CL_imp_PO [THEN PO.PO_imp_trans, simp]*)
+
+lemma (in CL) CO_refl_on: "refl_on A r"
+by (rule PO_imp_refl_on)
+
+lemma (in CL) CO_antisym: "antisym r"
+by (rule PO_imp_sym)
+
+lemma (in CL) CO_trans: "trans r"
+by (rule PO_imp_trans)
+
+lemma CompleteLatticeI:
+ "\<lbrakk> po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po \<longrightarrow> (\<exists>L. isLub S po L));
+ (\<forall>S. S \<subseteq> pset po \<longrightarrow> (\<exists>G. isGlb S po G))\<rbrakk>
+ \<Longrightarrow> po \<in> CompleteLattice"
+apply (unfold CompleteLattice_def, blast)
+done
+
+lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"
+apply (insert cl_co)
+apply (simp add: CompleteLattice_def dual_def)
+apply (fold dual_def)
+apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]
+ dualPO)
+done
+
+lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"
+by (simp add: dual_def)
+
+lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"
+by (simp add: dual_def)
+
+lemma (in PO) monotone_dual:
+ "monotone f (pset cl) (order cl)
+ \<Longrightarrow> monotone f (pset (dual cl)) (order(dual cl))"
+by (simp add: monotone_def dualA_iff dualr_iff)
+
+lemma (in PO) interval_dual:
+ "\<lbrakk> x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> interval r x y = interval (order(dual cl)) y x"
+apply (simp add: interval_def dualr_iff)
+apply (fold r_def, fast)
+done
+
+lemma (in PO) trans:
+ "(x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r"
+using cl_po apply (auto simp add: PartialOrder_def r_def)
+unfolding trans_def by blast
+
+lemma (in PO) interval_not_empty:
+ "interval r a b \<noteq> {} \<Longrightarrow> (a, b) \<in> r"
+apply (simp add: interval_def)
+using trans by blast
+
+lemma (in PO) interval_imp_mem: "x \<in> interval r a b \<Longrightarrow> (a, x) \<in> r"
+by (simp add: interval_def)
+
+lemma (in PO) left_in_interval:
+ "\<lbrakk> a \<in> A; b \<in> A; interval r a b \<noteq> {} \<rbrakk> \<Longrightarrow> a \<in> interval r a b"
+apply (simp (no_asm_simp) add: interval_def)
+apply (simp add: PO_imp_trans interval_not_empty)
+apply (simp add: reflE)
+done
+
+lemma (in PO) right_in_interval:
+ "\<lbrakk> a \<in> A; b \<in> A; interval r a b \<noteq> {} \<rbrakk> \<Longrightarrow> b \<in> interval r a b"
+apply (simp (no_asm_simp) add: interval_def)
+apply (simp add: PO_imp_trans interval_not_empty)
+apply (simp add: reflE)
+done
+
+
+subsection {* sublattice *}
+
+lemma (in PO) sublattice_imp_CL:
+ "S \<guillemotleft>= cl \<Longrightarrow> \<lparr> pset = S, order = induced S r \<rparr> \<in> CompleteLattice"
+by (simp add: sublattice_def CompleteLattice_def r_def)
+
+lemma (in CL) sublatticeI:
+ "\<lbrakk> S \<subseteq> A; \<lparr> pset = S, order = induced S r \<rparr> \<in> CompleteLattice \<rbrakk>
+ \<Longrightarrow> S \<guillemotleft>= cl"
+by (simp add: sublattice_def A_def r_def)
+
+lemma (in CL) dual:
+ "CL (dual cl)"
+apply unfold_locales
+using cl_co unfolding CompleteLattice_def
+apply (simp add: dualPO isGlb_dual_isLub [symmetric] isLub_dual_isGlb [symmetric] dualA_iff)
+done
+
+
+subsection {* lub *}
+
+lemma (in CL) lub_unique: "\<lbrakk> S \<subseteq> A; isLub S cl x; isLub S cl L\<rbrakk> \<Longrightarrow> x = L"
+apply (rule antisymE)
+apply (auto simp add: isLub_def r_def)
+done
+
+lemma (in CL) lub_upper: "\<lbrakk>S \<subseteq> A; x \<in> S\<rbrakk> \<Longrightarrow> (x, lub S cl) \<in> r"
+apply (rule CL_imp_ex_isLub [THEN exE], assumption)
+apply (unfold lub_def least_def)
+apply (rule some_equality [THEN ssubst])
+ apply (simp add: isLub_def)
+ apply (simp add: lub_unique A_def isLub_def)
+apply (simp add: isLub_def r_def)
+done
+
+lemma (in CL) lub_least:
+ "\<lbrakk> S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r \<rbrakk> \<Longrightarrow> (lub S cl, L) \<in> r"
+apply (rule CL_imp_ex_isLub [THEN exE], assumption)
+apply (unfold lub_def least_def)
+apply (rule_tac s=x in some_equality [THEN ssubst])
+ apply (simp add: isLub_def)
+ apply (simp add: lub_unique A_def isLub_def)
+apply (simp add: isLub_def r_def A_def)
+done
+
+lemma (in CL) lub_in_lattice: "S \<subseteq> A \<Longrightarrow> lub S cl \<in> A"
+apply (rule CL_imp_ex_isLub [THEN exE], assumption)
+apply (unfold lub_def least_def)
+apply (subst some_equality)
+apply (simp add: isLub_def)
+prefer 2 apply (simp add: isLub_def A_def)
+apply (simp add: lub_unique A_def isLub_def)
+done
+
+lemma (in CL) lubI:
+ "\<lbrakk> S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;
+ \<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) \<longrightarrow> (L,z) \<in> r \<rbrakk> \<Longrightarrow> L = lub S cl"
+apply (rule lub_unique, assumption)
+apply (simp add: isLub_def A_def r_def)
+apply (unfold isLub_def)
+apply (rule conjI)
+apply (fold A_def r_def)
+apply (rule lub_in_lattice, assumption)
+apply (simp add: lub_upper lub_least)
+done
+
+lemma (in CL) lubIa: "\<lbrakk> S \<subseteq> A; isLub S cl L \<rbrakk> \<Longrightarrow> L = lub S cl"
+by (simp add: lubI isLub_def A_def r_def)
+
+lemma (in CL) isLub_in_lattice: "isLub S cl L \<Longrightarrow> L \<in> A"
+by (simp add: isLub_def A_def)
+
+lemma (in CL) isLub_upper: "\<lbrakk>isLub S cl L; y \<in> S\<rbrakk> \<Longrightarrow> (y, L) \<in> r"
+by (simp add: isLub_def r_def)
+
+lemma (in CL) isLub_least:
+ "\<lbrakk> isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r\<rbrakk> \<Longrightarrow> (L, z) \<in> r"
+by (simp add: isLub_def A_def r_def)
+
+lemma (in CL) isLubI:
+ "\<lbrakk> L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;
+ (\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) \<longrightarrow> (L, z) \<in> r)\<rbrakk> \<Longrightarrow> isLub S cl L"
+by (simp add: isLub_def A_def r_def)
+
+
+subsection {* glb *}
+
+lemma (in CL) glb_in_lattice: "S \<subseteq> A \<Longrightarrow> glb S cl \<in> A"
+apply (subst glb_dual_lub)
+apply (simp add: A_def)
+apply (rule dualA_iff [THEN subst])
+apply (rule CL.lub_in_lattice)
+apply (rule dual)
+apply (simp add: dualA_iff)
+done
+
+lemma (in CL) glb_lower: "\<lbrakk>S \<subseteq> A; x \<in> S\<rbrakk> \<Longrightarrow> (glb S cl, x) \<in> r"
+apply (subst glb_dual_lub)
+apply (simp add: r_def)
+apply (rule dualr_iff [THEN subst])
+apply (rule CL.lub_upper)
+apply (rule dual)
+apply (simp add: dualA_iff A_def, assumption)
+done
+
+text {*
+ Reduce the sublattice property by using substructural properties;
+ abandoned see @{text "Tarski_4.ML"}.
+*}
+
+lemma (in CLF) [simp]:
+ "f: pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)"
+apply (insert f_cl)
+apply (simp add: CLF_set_def)
+done
+
+declare (in CLF) f_cl [simp]
+
+
+lemma (in CLF) f_in_funcset: "f \<in> A \<rightarrow> A"
+by (simp add: A_def)
+
+lemma (in CLF) monotone_f: "monotone f A r"
+by (simp add: A_def r_def)
+
+lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set"
+apply (simp add: CLF_set_def CL_dualCL monotone_dual)
+apply (simp add: dualA_iff)
+done
+
+lemma (in CLF) dual:
+ "CLF (dual cl) f"
+apply (rule CLF.intro)
+apply (rule CLF_dual)
+done
+
+
+subsection {* fixed points *}
+
+lemma fix_subset: "fix f A \<subseteq> A"
+by (simp add: fix_def, fast)
+
+lemma fix_imp_eq: "x \<in> fix f A \<Longrightarrow> f x = x"
+by (simp add: fix_def)
+
+lemma fixf_subset:
+ "\<lbrakk> A \<subseteq> B; x \<in> fix (%y: A. f y) A \<rbrakk> \<Longrightarrow> x \<in> fix f B"
+by (simp add: fix_def, auto)
+
+
+subsection {* lemmas for Tarski, lub *}
+lemma (in CLF) lubH_le_flubH:
+ "H = {x. (x, f x) \<in> r & x \<in> A} \<Longrightarrow> (lub H cl, f (lub H cl)) \<in> r"
+apply (rule lub_least, fast)
+apply (rule f_in_funcset [THEN funcset_mem])
+apply (rule lub_in_lattice, fast)
+-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
+apply (rule ballI)
+apply (rule transE)
+-- {* instantiates @{text "(x, ???z) \<in> order cl to (x, f x)"}, *}
+-- {* because of the def of @{text H} *}
+apply fast
+-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
+apply (rule_tac f = "f" in monotoneE)
+apply (rule monotone_f, fast)
+apply (rule lub_in_lattice, fast)
+apply (rule lub_upper, fast)
+apply assumption
+done
+
+lemma (in CLF) flubH_le_lubH:
+ "\<lbrakk> H = {x. (x, f x) \<in> r & x \<in> A} \<rbrakk> \<Longrightarrow> (f (lub H cl), lub H cl) \<in> r"
+apply (rule lub_upper, fast)
+apply (rule_tac t = "H" in ssubst, assumption)
+apply (rule CollectI)
+apply (rule conjI)
+apply (rule_tac [2] f_in_funcset [THEN funcset_mem])
+apply (rule_tac [2] lub_in_lattice)
+prefer 2 apply fast
+apply (rule_tac f = "f" in monotoneE)
+apply (rule monotone_f)
+ apply (blast intro: lub_in_lattice)
+ apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem])
+apply (simp add: lubH_le_flubH)
+done
+
+lemma (in CLF) lubH_is_fixp:
+ "H = {x. (x, f x) \<in> r & x \<in> A} \<Longrightarrow> lub H cl \<in> fix f A"
+apply (simp add: fix_def)
+apply (rule conjI)
+apply (rule lub_in_lattice, fast)
+apply (rule antisymE)
+apply (simp add: flubH_le_lubH)
+apply (simp add: lubH_le_flubH)
+done
+
+lemma (in CLF) fix_in_H:
+ "\<lbrakk> H = {x. (x, f x) \<in> r & x \<in> A}; x \<in> P \<rbrakk> \<Longrightarrow> x \<in> H"
+by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on
+ fix_subset [of f A, THEN subsetD])
+
+lemma (in CLF) fixf_le_lubH:
+ "H = {x. (x, f x) \<in> r & x \<in> A} \<Longrightarrow> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
+apply (rule ballI)
+apply (rule lub_upper, fast)
+apply (rule fix_in_H)
+apply (simp_all add: P_def)
+done
+
+lemma (in CLF) lubH_least_fixf:
+ "H = {x. (x, f x) \<in> r & x \<in> A}
+ \<Longrightarrow> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) \<longrightarrow> (lub H cl, L) \<in> r"
+apply (rule allI)
+apply (rule impI)
+apply (erule bspec)
+apply (rule lubH_is_fixp, assumption)
+done
+
+subsection {* Tarski fixpoint theorem 1, first part *}
+lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
+apply (rule sym)
+apply (simp add: P_def)
+apply (rule lubI)
+apply (rule fix_subset)
+apply (rule lub_in_lattice, fast)
+apply (simp add: fixf_le_lubH)
+apply (simp add: lubH_least_fixf)
+done
+
+lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} \<Longrightarrow> glb H cl \<in> P"
+ -- {* Tarski for glb *}
+apply (simp add: glb_dual_lub P_def A_def r_def)
+apply (rule dualA_iff [THEN subst])
+apply (rule CLF.lubH_is_fixp)
+apply (rule dual)
+apply (simp add: dualr_iff dualA_iff)
+done
+
+lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
+apply (simp add: glb_dual_lub P_def A_def r_def)
+apply (rule dualA_iff [THEN subst])
+apply (simp add: CLF.T_thm_1_lub [of _ f, OF dual]
+ dualPO CL_dualCL CLF_dual dualr_iff)
+done
+
+subsection {* interval *}
+
+lemma (in CLF) rel_imp_elem: "(x, y) \<in> r \<Longrightarrow> x \<in> A"
+apply (insert CO_refl_on)
+apply (simp add: refl_on_def, blast)
+done
+
+lemma (in CLF) interval_subset: "\<lbrakk> a \<in> A; b \<in> A \<rbrakk> \<Longrightarrow> interval r a b \<subseteq> A"
+apply (simp add: interval_def)
+apply (blast intro: rel_imp_elem)
+done
+
+lemma (in CLF) intervalI:
+ "\<lbrakk> (a, x) \<in> r; (x, b) \<in> r \<rbrakk> \<Longrightarrow> x \<in> interval r a b"
+by (simp add: interval_def)
+
+lemma (in CLF) interval_lemma1:
+ "\<lbrakk> S \<subseteq> interval r a b; x \<in> S \<rbrakk> \<Longrightarrow> (a, x) \<in> r"
+by (unfold interval_def, fast)
+
+lemma (in CLF) interval_lemma2:
+ "\<lbrakk> S \<subseteq> interval r a b; x \<in> S \<rbrakk> \<Longrightarrow> (x, b) \<in> r"
+by (unfold interval_def, fast)
+
+lemma (in CLF) a_less_lub:
+ "\<lbrakk> S \<subseteq> A; S \<noteq> {};
+ \<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r \<rbrakk> \<Longrightarrow> (a,L) \<in> r"
+by (blast intro: transE)
+
+lemma (in CLF) glb_less_b:
+ "\<lbrakk> S \<subseteq> A; S \<noteq> {};
+ \<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r \<rbrakk> \<Longrightarrow> (G,b) \<in> r"
+by (blast intro: transE)
+
+lemma (in CLF) S_intv_cl:
+ "\<lbrakk> a \<in> A; b \<in> A; S \<subseteq> interval r a b \<rbrakk>\<Longrightarrow> S \<subseteq> A"
+by (simp add: subset_trans [OF _ interval_subset])
+
+lemma (in CLF) L_in_interval:
+ "\<lbrakk> a \<in> A; b \<in> A; S \<subseteq> interval r a b;
+ S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} \<rbrakk> \<Longrightarrow> L \<in> interval r a b"
+apply (rule intervalI)
+apply (rule a_less_lub)
+prefer 2 apply assumption
+apply (simp add: S_intv_cl)
+apply (rule ballI)
+apply (simp add: interval_lemma1)
+apply (simp add: isLub_upper)
+-- {* @{text "(L, b) \<in> r"} *}
+apply (simp add: isLub_least interval_lemma2)
+done
+
+lemma (in CLF) G_in_interval:
+ "\<lbrakk> a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
+ S \<noteq> {} \<rbrakk> \<Longrightarrow> G \<in> interval r a b"
+apply (simp add: interval_dual)
+apply (simp add: CLF.L_in_interval [of _ f, OF dual]
+ dualA_iff A_def isGlb_dual_isLub)
+done
+
+lemma (in CLF) intervalPO:
+ "\<lbrakk> a \<in> A; b \<in> A; interval r a b \<noteq> {} \<rbrakk>
+ \<Longrightarrow> \<lparr> pset = interval r a b, order = induced (interval r a b) r \<rparr>
+ \<in> PartialOrder"
+apply (rule po_subset_po)
+apply (simp add: interval_subset)
+done
+
+lemma (in CLF) intv_CL_lub:
+ "\<lbrakk> a \<in> A; b \<in> A; interval r a b \<noteq> {} \<rbrakk>
+ \<Longrightarrow> \<forall>S. S \<subseteq> interval r a b \<longrightarrow>
+ (\<exists>L. isLub S \<lparr> pset = interval r a b,
+ order = induced (interval r a b) r \<rparr> L)"
+apply (intro strip)
+apply (frule S_intv_cl [THEN CL_imp_ex_isLub])
+prefer 2 apply assumption
+apply assumption
+apply (erule exE)
+-- {* define the lub for the interval as *}
+apply (rule_tac x = "if S = {} then a else L" in exI)
+apply (simp (no_asm_simp) add: isLub_def split del: split_if)
+apply (intro impI conjI)
+-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
+apply (simp add: CL_imp_PO L_in_interval)
+apply (simp add: left_in_interval)
+-- {* lub prop 1 *}
+apply (case_tac "S = {}")
+-- {* @{text "S = {}, y \<in> S = False \<Rightarrow> everything"} *}
+apply fast
+-- {* @{text "S \<noteq> {}"} *}
+apply simp
+-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
+apply (rule ballI)
+apply (simp add: induced_def L_in_interval)
+apply (rule conjI)
+apply (rule subsetD)
+apply (simp add: S_intv_cl, assumption)
+apply (simp add: isLub_upper)
+-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
+apply (rule ballI)
+apply (rule impI)
+apply (case_tac "S = {}")
+-- {* @{text "S = {}"} *}
+apply simp
+apply (simp add: induced_def interval_def)
+apply (rule conjI)
+apply (rule reflE, assumption)
+apply (rule interval_not_empty)
+apply (simp add: interval_def)
+-- {* @{text "S \<noteq> {}"} *}
+apply simp
+apply (simp add: induced_def L_in_interval)
+apply (rule isLub_least, assumption)
+apply (rule subsetD)
+prefer 2 apply assumption
+apply (simp add: S_intv_cl, fast)
+done
+
+lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]
+
+lemma (in CLF) interval_is_sublattice:
+ "\<lbrakk> a \<in> A; b \<in> A; interval r a b \<noteq> {} \<rbrakk>
+ \<Longrightarrow> interval r a b \<guillemotleft>= cl"
+apply (rule sublatticeI)
+apply (simp add: interval_subset)
+apply (rule CompleteLatticeI)
+apply (simp add: intervalPO)
+ apply (simp add: intv_CL_lub)
+apply (simp add: intv_CL_glb)
+done
+
+lemmas (in CLF) interv_is_compl_latt =
+ interval_is_sublattice [THEN sublattice_imp_CL]
+
+
+subsection {* Top and Bottom *}
+lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"
+by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
+
+lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"
+by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
+
+lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"
+apply (simp add: Bot_def least_def)
+apply (rule_tac a="glb A cl" in someI2)
+apply (simp_all add: glb_in_lattice glb_lower
+ r_def [symmetric] A_def [symmetric])
+done
+
+lemma (in CLF) Top_in_lattice: "Top cl \<in> A"
+apply (simp add: Top_dual_Bot A_def)
+apply (rule dualA_iff [THEN subst])
+apply (rule CLF.Bot_in_lattice [OF dual])
+done
+
+lemma (in CLF) Top_prop: "x \<in> A \<Longrightarrow> (x, Top cl) \<in> r"
+apply (simp add: Top_def greatest_def)
+apply (rule_tac a="lub A cl" in someI2)
+apply (rule someI2)
+apply (simp_all add: lub_in_lattice lub_upper
+ r_def [symmetric] A_def [symmetric])
+done
+
+lemma (in CLF) Bot_prop: "x \<in> A \<Longrightarrow> (Bot cl, x) \<in> r"
+apply (simp add: Bot_dual_Top r_def)
+apply (rule dualr_iff [THEN subst])
+apply (rule CLF.Top_prop [OF dual])
+apply (simp add: dualA_iff A_def)
+done
+
+lemma (in CLF) Top_intv_not_empty: "x \<in> A \<Longrightarrow> interval r x (Top cl) \<noteq> {}"
+apply (rule notI)
+apply (drule_tac a = "Top cl" in equals0D)
+apply (simp add: interval_def)
+apply (simp add: refl_on_def Top_in_lattice Top_prop)
+done
+
+lemma (in CLF) Bot_intv_not_empty: "x \<in> A \<Longrightarrow> interval r (Bot cl) x \<noteq> {}"
+apply (simp add: Bot_dual_Top)
+apply (subst interval_dual)
+prefer 2 apply assumption
+apply (simp add: A_def)
+apply (rule dualA_iff [THEN subst])
+apply (rule CLF.Top_in_lattice [OF dual])
+apply (rule CLF.Top_intv_not_empty [OF dual])
+apply (simp add: dualA_iff A_def)
+done
+
+subsection {* fixed points form a partial order *}
+
+lemma (in CLF) fixf_po: "\<lparr> pset = P, order = induced P r\<rparr> \<in> PartialOrder"
+by (simp add: P_def fix_subset po_subset_po)
+
+lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"
+apply (rule subset_trans [OF _ fix_subset])
+apply (rule Y_ss [simplified P_def])
+done
+
+lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"
+ by (rule Y_subset_A [THEN lub_in_lattice])
+
+lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"
+apply (rule lub_least)
+apply (rule Y_subset_A)
+apply (rule f_in_funcset [THEN funcset_mem])
+apply (rule lubY_in_A)
+-- {* @{text "Y \<subseteq> P \<Longrightarrow> f x = x"} *}
+apply (rule ballI)
+apply (rule_tac t = "x" in fix_imp_eq [THEN subst])
+apply (erule Y_ss [simplified P_def, THEN subsetD])
+-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
+apply (rule_tac f = "f" in monotoneE)
+apply (rule monotone_f)
+apply (simp add: Y_subset_A [THEN subsetD])
+apply (rule lubY_in_A)
+apply (simp add: lub_upper Y_subset_A)
+done
+
+lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"
+apply (unfold intY1_def)
+apply (rule interval_subset)
+apply (rule lubY_in_A)
+apply (rule Top_in_lattice)
+done
+
+lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]
+
+lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"
+apply (simp add: intY1_def interval_def)
+apply (rule conjI)
+apply (rule transE)
+apply (rule lubY_le_flubY)
+-- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
+apply (rule_tac f=f in monotoneE)
+apply (rule monotone_f)
+apply (rule lubY_in_A)
+apply (simp add: intY1_def interval_def intY1_elem)
+apply (simp add: intY1_def interval_def)
+-- {* @{text "(f x, Top cl) \<in> r"} *}
+apply (rule Top_prop)
+apply (rule f_in_funcset [THEN funcset_mem])
+apply (simp add: intY1_def interval_def intY1_elem)
+done
+
+lemma (in Tarski) intY1_mono:
+ "monotone (%x: intY1. f x) intY1 (induced intY1 r)"
+apply (auto simp add: monotone_def induced_def intY1_f_closed)
+apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
+done
+
+lemma (in Tarski) intY1_is_cl:
+ "\<lparr> pset = intY1, order = induced intY1 r \<rparr> \<in> CompleteLattice"
+apply (unfold intY1_def)
+apply (rule interv_is_compl_latt)
+apply (rule lubY_in_A)
+apply (rule Top_in_lattice)
+apply (rule Top_intv_not_empty)
+apply (rule lubY_in_A)
+done
+
+lemma (in Tarski) v_in_P: "v \<in> P"
+apply (unfold P_def)
+apply (rule_tac A = "intY1" in fixf_subset)
+apply (rule intY1_subset)
+unfolding v_def
+apply (rule CLF.glbH_is_fixp [OF CLF.intro, unfolded CLF_set_def, of "\<lparr>pset = intY1, order = induced intY1 r\<rparr>", simplified])
+apply auto
+apply (rule intY1_is_cl)
+apply (erule intY1_f_closed)
+apply (rule intY1_mono)
+done
+
+lemma (in Tarski) z_in_interval:
+ "\<lbrakk> z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r \<rbrakk> \<Longrightarrow> z \<in> intY1"
+apply (unfold intY1_def P_def)
+apply (rule intervalI)
+prefer 2
+ apply (erule fix_subset [THEN subsetD, THEN Top_prop])
+apply (rule lub_least)
+apply (rule Y_subset_A)
+apply (fast elim!: fix_subset [THEN subsetD])
+apply (simp add: induced_def)
+done
+
+lemma (in Tarski) f'z_in_int_rel: "\<lbrakk> z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r \<rbrakk>
+ \<Longrightarrow> ((%x: intY1. f x) z, z) \<in> induced intY1 r"
+apply (simp add: induced_def intY1_f_closed z_in_interval P_def)
+apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD]
+ reflE)
+done
+
+lemma (in Tarski) tarski_full_lemma:
+ "\<exists>L. isLub Y \<lparr> pset = P, order = induced P r \<rparr> L"
+apply (rule_tac x = "v" in exI)
+apply (simp add: isLub_def)
+-- {* @{text "v \<in> P"} *}
+apply (simp add: v_in_P)
+apply (rule conjI)
+-- {* @{text v} is lub *}
+-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
+apply (rule ballI)
+apply (simp add: induced_def subsetD v_in_P)
+apply (rule conjI)
+apply (erule Y_ss [THEN subsetD])
+apply (rule_tac b = "lub Y cl" in transE)
+apply (rule lub_upper)
+apply (rule Y_subset_A, assumption)
+apply (rule_tac b = "Top cl" in interval_imp_mem)
+apply (simp add: v_def)
+apply (fold intY1_def)
+apply (rule CL.glb_in_lattice [OF CL.intro [OF intY1_is_cl], simplified])
+apply auto
+apply (rule indI)
+ prefer 3 apply assumption
+ prefer 2 apply (simp add: v_in_P)
+apply (unfold v_def)
+apply (rule indE)
+apply (rule_tac [2] intY1_subset)
+apply (rule CL.glb_lower [OF CL.intro [OF intY1_is_cl], simplified])
+ apply (simp add: CL_imp_PO intY1_is_cl)
+ apply force
+apply (simp add: induced_def intY1_f_closed z_in_interval)
+apply (simp add: P_def fix_imp_eq [of _ f A] reflE
+ fix_subset [of f A, THEN subsetD])
+done
+
+lemma CompleteLatticeI_simp:
+ "\<lbrakk> \<lparr> pset = A, order = r \<rparr> \<in> PartialOrder;
+ \<forall>S. S \<subseteq> A \<longrightarrow> (\<exists>L. isLub S \<lparr> pset = A, order = r \<rparr> L) \<rbrakk>
+ \<Longrightarrow> \<lparr> pset = A, order = r \<rparr> \<in> CompleteLattice"
+by (simp add: CompleteLatticeI Rdual)
+
+theorem (in CLF) Tarski_full:
+ "\<lparr> pset = P, order = induced P r\<rparr> \<in> CompleteLattice"
+apply (rule CompleteLatticeI_simp)
+apply (rule fixf_po, clarify)
+apply (simp add: P_def A_def r_def)
+apply (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]])
+proof - show "CLF cl f" .. qed
+
+end