aboutsummaryrefslogtreecommitdiff
path: root/SrcShared/omnithread/nt.cpp
blob: 8a994bc152ea42fca80a1eeedd25c32d96957777 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
//				Package : omnithread
// omnithread/nt.cc		Created : 6/95 tjr
//
//    Copyright (C) 1995-1999 AT&T Laboratories Cambridge
//
//    This file is part of the omnithread library
//
//    The omnithread library is free software; you can redistribute it and/or
//    modify it under the terms of the GNU Library General Public
//    License as published by the Free Software Foundation; either
//    version 2 of the License, or (at your option) any later version.
//
//    This library is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
//    Library General Public License for more details.
//
//    You should have received a copy of the GNU Library General Public
//    License along with this library; if not, write to the Free
//    Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  
//    02111-1307, USA
//

//
// Implementation of OMNI thread abstraction for NT threads
//

#include <stdlib.h>
#include <errno.h>
#include <omnithread.h>
#include <process.h>

#define DB(x) // x 
//#include <iostream.h> or #include <iostream> if DB is on.

static void get_time_now(unsigned long* abs_sec, unsigned long* abs_nsec);

///////////////////////////////////////////////////////////////////////////
//
// Mutex
//
///////////////////////////////////////////////////////////////////////////


omni_mutex::omni_mutex(void)
{
    InitializeCriticalSection(&crit);
}

omni_mutex::~omni_mutex(void)
{
    DeleteCriticalSection(&crit);
}

void
omni_mutex::lock(void)
{
    EnterCriticalSection(&crit);
}

void
omni_mutex::unlock(void)
{
    LeaveCriticalSection(&crit);
}



///////////////////////////////////////////////////////////////////////////
//
// Condition variable
//
///////////////////////////////////////////////////////////////////////////


//
// Condition variables are tricky to implement using NT synchronisation
// primitives, since none of them have the atomic "release mutex and wait to be
// signalled" which is central to the idea of a condition variable.  To get
// around this the solution is to record which threads are waiting and
// explicitly wake up those threads.
//
// Here we implement a condition variable using a list of waiting threads
// (protected by a critical section), and a per-thread semaphore (which
// actually only needs to be a binary semaphore).
//
// To wait on the cv, a thread puts itself on the list of waiting threads for
// that cv, then releases the mutex and waits on its own personal semaphore.  A
// signalling thread simply takes a thread from the head of the list and kicks
// that thread's semaphore.  Broadcast is simply implemented by kicking the
// semaphore of each waiting thread.
//
// The only other tricky part comes when a thread gets a timeout from a timed
// wait on its semaphore.  Between returning with a timeout from the wait and
// entering the critical section, a signalling thread could get in, kick the
// waiting thread's semaphore and remove it from the list.  If this happens,
// the waiting thread's semaphore is now out of step so it needs resetting, and
// the thread should indicate that it was signalled rather than that it timed
// out.
//
// It is possible that the thread calling wait or timedwait is not a
// omni_thread. In this case we have to provide a temporary data structure,
// i.e. for the duration of the call, for the thread to link itself on the
// list of waiting threads. _internal_omni_thread_dummy provides such
// a data structure and _internal_omni_thread_helper is a helper class to
// deal with this special case for wait() and timedwait(). Once created,
// the _internal_omni_thread_dummy is cached for use by the next wait() or
// timedwait() call from a non-omni_thread. This is probably worth doing
// because creating a Semaphore is quite heavy weight.

class _internal_omni_thread_helper;

class _internal_omni_thread_dummy : public omni_thread {
public:
  inline _internal_omni_thread_dummy() : next(0) { }
  inline ~_internal_omni_thread_dummy() { }
  friend class _internal_omni_thread_helper;
private:
  _internal_omni_thread_dummy* next;
};

class _internal_omni_thread_helper {
public:
  inline _internal_omni_thread_helper()  { 
    d = 0;
    t = omni_thread::self();
    if (!t) {
      omni_mutex_lock sync(cachelock);
      if (cache) {
	d = cache;
	cache = cache->next;
      }
      else {
	d = new _internal_omni_thread_dummy;
      }
      t = d;
    }
  }
  inline ~_internal_omni_thread_helper() { 
    if (d) {
      omni_mutex_lock sync(cachelock);
      d->next = cache;
      cache = d;
    }
  }
  inline operator omni_thread* () { return t; }
  inline omni_thread* operator->() { return t; }

  static _internal_omni_thread_dummy* cache;
  static omni_mutex                   cachelock;

private:
  _internal_omni_thread_dummy* d;
  omni_thread*                 t;
};

_internal_omni_thread_dummy* _internal_omni_thread_helper::cache = 0;
omni_mutex                   _internal_omni_thread_helper::cachelock;


omni_condition::omni_condition(omni_mutex* m) : mutex(m)
{
    InitializeCriticalSection(&crit);
    waiting_head = waiting_tail = NULL;
}


omni_condition::~omni_condition(void)
{
    DeleteCriticalSection(&crit);
    DB( if (waiting_head != NULL) {
	cerr << "omni_condition::~omni_condition: list of waiting threads "
	     << "is not empty\n";
    } )
}


void
omni_condition::wait(void)
{
    _internal_omni_thread_helper me;

    EnterCriticalSection(&crit);

    me->cond_next = NULL;
    me->cond_prev = waiting_tail;
    if (waiting_head == NULL)
	waiting_head = me;
    else
	waiting_tail->cond_next = me;
    waiting_tail = me;
    me->cond_waiting = TRUE;

    LeaveCriticalSection(&crit);

    mutex->unlock();

    DWORD result = WaitForSingleObject(me->cond_semaphore, INFINITE);

    mutex->lock();

    if (result != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());
}


int
omni_condition::timedwait(unsigned long abs_sec, unsigned long abs_nsec)
{
    _internal_omni_thread_helper me;

    EnterCriticalSection(&crit);

    me->cond_next = NULL;
    me->cond_prev = waiting_tail;
    if (waiting_head == NULL)
	waiting_head = me;
    else
	waiting_tail->cond_next = me;
    waiting_tail = me;
    me->cond_waiting = TRUE;

    LeaveCriticalSection(&crit);

    mutex->unlock();

    unsigned long now_sec, now_nsec;

    get_time_now(&now_sec, &now_nsec);

    DWORD timeout;
    if ((abs_sec <= now_sec) && ((abs_sec < now_sec) || (abs_nsec < now_nsec)))
      timeout = 0;
    else {
      timeout = (abs_sec-now_sec) * 1000;

      if( abs_nsec < now_nsec )  timeout -= (now_nsec-abs_nsec) / 1000000;
      else                       timeout += (abs_nsec-now_nsec) / 1000000;
    }

    DWORD result = WaitForSingleObject(me->cond_semaphore, timeout);

    if (result == WAIT_TIMEOUT) {
	EnterCriticalSection(&crit);

	if (me->cond_waiting) {
	    if (me->cond_prev != NULL)
		me->cond_prev->cond_next = me->cond_next;
	    else
		waiting_head = me->cond_next;
	    if (me->cond_next != NULL)
		me->cond_next->cond_prev = me->cond_prev;
	    else
		waiting_tail = me->cond_prev;
	    me->cond_waiting = FALSE;

	    LeaveCriticalSection(&crit);

	    mutex->lock();
	    return 0;
	}

	//
	// We timed out but another thread still signalled us.  Wait for
	// the semaphore (it _must_ have been signalled) to decrement it
	// again.  Return that we were signalled, not that we timed out.
	//

	LeaveCriticalSection(&crit);

	result = WaitForSingleObject(me->cond_semaphore, INFINITE);
    }

    if (result != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());

    mutex->lock();
    return 1;
}


void
omni_condition::signal(void)
{
    EnterCriticalSection(&crit);

    if (waiting_head != NULL) {
	omni_thread* t = waiting_head;
	waiting_head = t->cond_next;
	if (waiting_head == NULL)
	    waiting_tail = NULL;
	else
	    waiting_head->cond_prev = NULL;
	t->cond_waiting = FALSE;

	if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) {
	    int rc = GetLastError();
	    LeaveCriticalSection(&crit);
	    throw omni_thread_fatal(rc);
	}
    }

    LeaveCriticalSection(&crit);
}


void
omni_condition::broadcast(void)
{
    EnterCriticalSection(&crit);

    while (waiting_head != NULL) {
	omni_thread* t = waiting_head;
	waiting_head = t->cond_next;
	if (waiting_head == NULL)
	    waiting_tail = NULL;
	else
	    waiting_head->cond_prev = NULL;
	t->cond_waiting = FALSE;

	if (!ReleaseSemaphore(t->cond_semaphore, 1, NULL)) {
	    int rc = GetLastError();
	    LeaveCriticalSection(&crit);
	    throw omni_thread_fatal(rc);
	}
    }

    LeaveCriticalSection(&crit);
}



///////////////////////////////////////////////////////////////////////////
//
// Counting semaphore
//
///////////////////////////////////////////////////////////////////////////


#define SEMAPHORE_MAX 0x7fffffff


omni_semaphore::omni_semaphore(unsigned int initial)
{
    nt_sem = CreateSemaphore(NULL, initial, SEMAPHORE_MAX, NULL);

    if (nt_sem == NULL) {
      DB( cerr << "omni_semaphore::omni_semaphore: CreateSemaphore error "
	     << GetLastError() << endl );
      throw omni_thread_fatal(GetLastError());
    }
}


omni_semaphore::~omni_semaphore(void)
{
  if (!CloseHandle(nt_sem)) {
    DB( cerr << "omni_semaphore::~omni_semaphore: CloseHandle error "
	     << GetLastError() << endl );
    throw omni_thread_fatal(GetLastError());
  }
}


void
omni_semaphore::wait(void)
{
    if (WaitForSingleObject(nt_sem, INFINITE) != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());
}


int
omni_semaphore::trywait(void)
{
    switch (WaitForSingleObject(nt_sem, 0)) {

    case WAIT_OBJECT_0:
	return 1;
    case WAIT_TIMEOUT:
	return 0;
    }

    throw omni_thread_fatal(GetLastError());
    return 0; /* keep msvc++ happy */
}


void
omni_semaphore::post(void)
{
    if (!ReleaseSemaphore(nt_sem, 1, NULL))
	throw omni_thread_fatal(GetLastError());
}



///////////////////////////////////////////////////////////////////////////
//
// Thread
//
///////////////////////////////////////////////////////////////////////////


//
// Static variables
//

int omni_thread::init_t::count = 0;

omni_thread* omni_thread::root_thread;
omni_mutex* omni_thread::next_id_mutex;
int omni_thread::next_id = 0;
static DWORD self_tls_index;

//
// Initialisation function (gets called before any user code).
//

omni_thread::init_t::init_t(void)
{
    if (count++ != 0)	// only do it once however many objects get created.
	return;

    DB(cerr << "omni_thread::init: NT implementation initialising\n");

    self_tls_index = TlsAlloc();

    if (self_tls_index == 0xffffffff)
	throw omni_thread_fatal(GetLastError());

    next_id_mutex = new omni_mutex;

    //
    // Create object for this (i.e. initial) thread.
    //

    root_thread = new omni_thread;

    root_thread->_state = STATE_RUNNING;

    if (!DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
			 GetCurrentProcess(), &root_thread->handle,
			 0, FALSE, DUPLICATE_SAME_ACCESS))
	throw omni_thread_fatal(GetLastError());

    root_thread->nt_id = GetCurrentThreadId();

    DB(cerr << "initial thread " << root_thread->id() << " NT thread id " << root_thread->nt_id
       << endl);

    if (!TlsSetValue(self_tls_index, (LPVOID) root_thread))
	throw omni_thread_fatal(GetLastError());

    if (!SetThreadPriority(root_thread->handle, nt_priority(PRIORITY_NORMAL)))
	throw omni_thread_fatal(GetLastError());
}

omni_thread::init_t::~init_t (void)
{
    if (--count != 0)	// only do it once however many objects get created.
	return;

	delete root_thread;
	delete next_id_mutex;
}

//
// Wrapper for thread creation.
//

extern "C" 
#ifndef __BCPLUSPLUS__
unsigned __stdcall
#else
void _USERENTRY
#endif
omni_thread_wrapper(void* ptr)
{
    omni_thread* me = (omni_thread*)ptr;

    DB(cerr << "omni_thread_wrapper: thread " << me->id()
       << " started\n");

    if (!TlsSetValue(self_tls_index, (LPVOID)me))
	throw omni_thread_fatal(GetLastError());

    //
    // Now invoke the thread function with the given argument.
    //

    if (me->fn_void != NULL) {
	(*me->fn_void)(me->thread_arg);
	omni_thread::exit();
    }

    if (me->fn_ret != NULL) {
	void* return_value = (*me->fn_ret)(me->thread_arg);
	omni_thread::exit(return_value);
    }

    if (me->detached) {
	me->run(me->thread_arg);
	omni_thread::exit();
    } else {
	void* return_value = me->run_undetached(me->thread_arg);
	omni_thread::exit(return_value);
    }

    // should never get here.
#ifndef __BCPLUSPLUS__
    return 0;
#endif
}


//
// Constructors for omni_thread - set up the thread object but don't
// start it running.
//

// construct a detached thread running a given function.

omni_thread::omni_thread(void (*fn)(void*), void* arg, priority_t pri)
{
    common_constructor(arg, pri, 1);
    fn_void = fn;
    fn_ret = NULL;
}

// construct an undetached thread running a given function.

omni_thread::omni_thread(void* (*fn)(void*), void* arg, priority_t pri)
{
    common_constructor(arg, pri, 0);
    fn_void = NULL;
    fn_ret = fn;
}

// construct a thread which will run either run() or run_undetached().

omni_thread::omni_thread(void* arg, priority_t pri)
{
    common_constructor(arg, pri, 1);
    fn_void = NULL;
    fn_ret = NULL;
}

// common part of all constructors.

void
omni_thread::common_constructor(void* arg, priority_t pri, int det)
{
    _state = STATE_NEW;
    _priority = pri;

    next_id_mutex->lock();
    _id = next_id++;
    next_id_mutex->unlock();

    thread_arg = arg;
    detached = det;	// may be altered in start_undetached()

    cond_semaphore = CreateSemaphore(NULL, 0, SEMAPHORE_MAX, NULL);

    if (cond_semaphore == NULL)
	throw omni_thread_fatal(GetLastError());

    cond_next = cond_prev = NULL;
    cond_waiting = FALSE;

    handle = NULL;
}


//
// Destructor for omni_thread.
//

omni_thread::~omni_thread(void)
{
    DB(cerr << "destructor called for thread " << id() << endl);
    if (handle && !CloseHandle(handle))
	throw omni_thread_fatal(GetLastError());
    if (cond_semaphore && !CloseHandle(cond_semaphore))
	throw omni_thread_fatal(GetLastError());
}


//
// Start the thread
//

void
omni_thread::start(void)
{
    omni_mutex_lock l(mutex);

    if (_state != STATE_NEW)
	throw omni_thread_invalid();

#ifndef __BCPLUSPLUS__
    // MSVC++ or compatiable
    unsigned int t;
    handle = (HANDLE)_beginthreadex(
                        NULL,
			0,
			omni_thread_wrapper,
			(LPVOID)this,
			CREATE_SUSPENDED, 
			&t);
    nt_id = t;
    if (handle == NULL)
      throw omni_thread_fatal(GetLastError());
#else
    // Borland C++
    handle = (HANDLE)_beginthreadNT(omni_thread_wrapper,
				    0,
				    (void*)this,
				    NULL,
				    CREATE_SUSPENDED,
				    &nt_id);
    if (handle == INVALID_HANDLE_VALUE)
      throw omni_thread_fatal(errno);
#endif

    if (!SetThreadPriority(handle, this->nt_priority (_priority)))
      throw omni_thread_fatal(GetLastError());

    if (ResumeThread(handle) == 0xffffffff)
	throw omni_thread_fatal(GetLastError());

    _state = STATE_RUNNING;
}


//
// Start a thread which will run the member function run_undetached().
//

void
omni_thread::start_undetached(void)
{
    if ((fn_void != NULL) || (fn_ret != NULL))
	throw omni_thread_invalid();

    detached = 0;
    start();
}


//
// join - simply check error conditions & call WaitForSingleObject.
//

void
omni_thread::join(void** status)
{
    mutex.lock();

    if ((_state != STATE_RUNNING) && (_state != STATE_TERMINATED)) {
	mutex.unlock();
	throw omni_thread_invalid();
    }

    mutex.unlock();

    if (this == self())
	throw omni_thread_invalid();

    if (detached)
	throw omni_thread_invalid();

    DB(cerr << "omni_thread::join: doing WaitForSingleObject\n");

    if (WaitForSingleObject(handle, INFINITE) != WAIT_OBJECT_0)
	throw omni_thread_fatal(GetLastError());

    DB(cerr << "omni_thread::join: WaitForSingleObject succeeded\n");

    if (status)
      *status = return_val;

    delete this;
}


//
// Change this thread's priority.
//

void
omni_thread::set_priority(priority_t pri)
{
    omni_mutex_lock l(mutex);

    if (_state != STATE_RUNNING)
	throw omni_thread_invalid();

    _priority = pri;

    if (!SetThreadPriority(handle, nt_priority(pri)))
	throw omni_thread_fatal(GetLastError());
}


//
// create - construct a new thread object and start it running.  Returns thread
// object if successful, null pointer if not.
//

// detached version

omni_thread*
omni_thread::create(void (*fn)(void*), void* arg, priority_t pri)
{
    omni_thread* t = new omni_thread(fn, arg, pri);
    t->start();
    return t;
}

// undetached version

omni_thread*
omni_thread::create(void* (*fn)(void*), void* arg, priority_t pri)
{
    omni_thread* t = new omni_thread(fn, arg, pri);
    t->start();
    return t;
}


//
// exit() _must_ lock the mutex even in the case of a detached thread.  This is
// because a thread may run to completion before the thread that created it has
// had a chance to get out of start().  By locking the mutex we ensure that the
// creating thread must have reached the end of start() before we delete the
// thread object.  Of course, once the call to start() returns, the user can
// still incorrectly refer to the thread object, but that's their problem.
//

void
omni_thread::exit(void* return_value)
{
    omni_thread* me = self();

    if (me)
      {
	me->mutex.lock();

	me->_state = STATE_TERMINATED;

	me->mutex.unlock();

	DB(cerr << "omni_thread::exit: thread " << me->id() << " detached "
	   << me->detached << " return value " << return_value << endl);

	if (me->detached) {
	  delete me;
	} else {
	  me->return_val = return_value;
	}
      }
    else
      {
	DB(cerr << "omni_thread::exit: called with a non-omnithread. Exit quietly." << endl);
      }
#ifndef __BCPLUSPLUS__
    // MSVC++ or compatiable
    //   _endthreadex() does not automatically closes the thread handle.
    //   The omni_thread dtor closes the thread handle.
    _endthreadex(0);
#else
    // Borland C++
    //   _endthread() does not automatically closes the thread handle.
    //   _endthreadex() is only available if __MFC_COMPAT__ is defined and
    //   all it does is to call _endthread().
    _endthread();
#endif
}


omni_thread*
omni_thread::self(void)
{
    LPVOID me;

    me = TlsGetValue(self_tls_index);

    if (me == NULL) {
      DB(cerr << "omni_thread::self: called with a non-ominthread. NULL is returned." << endl);
    }
    return (omni_thread*)me;
}


void
omni_thread::yield(void)
{
    Sleep(0);
}


#define MAX_SLEEP_SECONDS (DWORD)4294966	// (2**32-2)/1000

void
omni_thread::sleep(unsigned long secs, unsigned long nanosecs)
{
    if (secs <= MAX_SLEEP_SECONDS) {
	Sleep(secs * 1000 + nanosecs / 1000000);
	return;
    }

    DWORD no_of_max_sleeps = secs / MAX_SLEEP_SECONDS;

    for (DWORD i = 0; i < no_of_max_sleeps; i++)
	Sleep(MAX_SLEEP_SECONDS * 1000);

    Sleep((secs % MAX_SLEEP_SECONDS) * 1000 + nanosecs / 1000000);
}


void
omni_thread::get_time(unsigned long* abs_sec, unsigned long* abs_nsec,
		      unsigned long rel_sec, unsigned long rel_nsec)
{
    get_time_now(abs_sec, abs_nsec);
    *abs_nsec += rel_nsec;
    *abs_sec += rel_sec + *abs_nsec / 1000000000;
    *abs_nsec = *abs_nsec % 1000000000;
}


int
omni_thread::nt_priority(priority_t pri)
{
    switch (pri) {

    case PRIORITY_LOW:
	return THREAD_PRIORITY_LOWEST;

    case PRIORITY_NORMAL:
	return THREAD_PRIORITY_NORMAL;

    case PRIORITY_HIGH:
	return THREAD_PRIORITY_HIGHEST;
    }

    throw omni_thread_invalid();
    return 0; /* keep msvc++ happy */
}


static void
get_time_now(unsigned long* abs_sec, unsigned long* abs_nsec)
{
    static int days_in_preceding_months[12]
	= { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
    static int days_in_preceding_months_leap[12]
	= { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };

    SYSTEMTIME st;

    GetSystemTime(&st);
    *abs_nsec = st.wMilliseconds * 1000000;

    // this formula should work until 1st March 2100

    DWORD days = ((st.wYear - 1970) * 365 + (st.wYear - 1969) / 4
		  + ((st.wYear % 4)
		     ? days_in_preceding_months[st.wMonth - 1]
		     : days_in_preceding_months_leap[st.wMonth - 1])
		  + st.wDay - 1);

    *abs_sec = st.wSecond + 60 * (st.wMinute + 60 * (st.wHour + 24 * days));
}