aboutsummaryrefslogtreecommitdiff
path: root/SrcShared/Hardware/EmRegsEZ.cpp
blob: f56144db217a537c22570d0a312ae4b6c2d1cd37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
/* -*- mode: C++; tab-width: 4 -*- */
/* ===================================================================== *\
	Copyright (c) 2000-2001 Palm, Inc. or its subsidiaries.
	All rights reserved.

	This file is part of the Palm OS Emulator.

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.
\* ===================================================================== */

#include "EmCommon.h"
#include "EmRegsEZ.h"
#include "EmRegsEZPrv.h"

#include "Byteswapping.h"		// Canonical
#include "EmHAL.h"				// EmHAL
#include "EmMemory.h"			// gMemAccessFlags, EmMem_memcpy
#include "EmPixMap.h"			// SetSize, SetRowBytes, etc.
#include "EmScreen.h"			// EmScreenUpdateInfo
#include "EmSession.h"			// GetDevice
#include "EmSPISlave.h"			// DoExchange
#include "Hordes.h"				// Hordes::IsOn
#include "Logging.h"			// LogAppendMsg
#include "Miscellaneous.h"		// GetHostTime
#include "PreferenceMgr.h"		// Preference
#include "SessionFile.h"		// WriteHwrDBallEZType, etc.
#include "UAE.h"				// regs, SPCFLAG_INT

#include "PalmPack.h"
#define NON_PORTABLE
	#include "HwrMiscFlags.h"	// hwrMiscFlagID1

	#define hwrEZ328maskID1J83G	0x05

	// Some platform-specific -- yet fairly portable -- defines.
	#define hwrEZPortGIDDetect			0x04	// (L) ID select (drives kbd)
	#define hwrEZPortDKbdCol0			0x01	// (H) Keyboard Column 0	(aka INT0)
	#define hwrEZPortDKbdCol1			0x02	// (H) Keyboard Column 1	(aka INT1)
	#define hwrEZPortDKbdCol2			0x04	// (H) Keyboard Column 2	(aka INT2)
	#define hwrEZPortDKbdCol3			0x08	// (H) Keyboard Column 3	(aka INT3)
	#define hwrEZPortDKeyBits			0x0F	// (H) All Keyboard Columns

#undef NON_PORTABLE
#include "PalmPackPop.h"

static const uint16	UPSIZ		= 0x1800;	// Mask to get the unprotected memory size from csDSelect.
static const uint16	SIZ			= 0x000E;	// Mask to get the memory size from csASelect.
static const uint16	EN			= 0x0001;	// Mask to get the enable bit from csASelect.

static const uint16 gBaseAddressShift = 13;	// Shift to get base address from CSGBx register value

#define PRINTF	if (1) ; else LogAppendMsg

// Values used to initialize the DragonBallEZ registers.

static const HwrM68EZ328Type	kInitial68EZ328RegisterValues =
{
	0x1C,		// Byte		scr;							// $000: System Control Register
	{ 0 },		// Byte											___filler0[0x004-0x001];
	hwrEZ328chipIDEZ,		// Byte		chipID;							// $004: Chip ID Register
	hwrEZ328maskID1J83G,	// Byte		maskID;							// $005: Mask ID Register
	0x00,		// Word		swID;							// $006: Software ID Register
	{ 0 },		// Byte											___filler1[0x100-0x008];				 

	0x0000,		// Word		csAGroupBase;					// $100: Chip Select Group A Base Register
	0x0000,		// Word		csBGroupBase;					// $102: Chip Select Group B Base Register
	0x0000,		// Word		csCGroupBase;					// $104: Chip Select Group C Base Register
	0x0000,		// Word		csDGroupBase;					// $106: Chip Select Group D Base Register

	{ 0 },		// Byte											___filler6[0x110-0x108];

	0x00E0,		// Word		csASelect;						// $110: Group A Chip Select Register
	0x0000,		// Word		csBSelect;						// $112: Group B Chip Select Register
	0x0000,		// Word		csCSelect;						// $114: Group C Chip Select Register
	0x0000,		// Word		csDSelect;						// $116: Group D Chip Select Register

	0x0060,		// Word		emuCS;							// $118: EMU Chip Select Register

	{ 0 },		// Byte											___filler2[0x200-0x11A];		

	0x2430,		// Word		pllControl;						// $200: PLL Control Register
	0x0123,		// Word		pllFreqSel;						// $202: PLL Frequency Select Register
	0,		// !!! ---> Marked as reserved in 1.4 Word		pllTest;						// $204: PLL Test Register (do not access)
	{ 0 },		// Byte											___filler44;
	0x1F,		// Byte		pwrControl;						// $207: Power Control Register

	{ 0 },		// Byte											___filler3[0x300-0x208];

	0x00,		// Byte		intVector;						// $300: Interrupt Vector Register
	{ 0 },		// Byte											___filler4;
	0x0000,		// Word		intControl;						// $302: Interrupt Control Register
	0x00FF,		// Word		intMaskHi;						// $304: Interrupt Mask Register/HIGH word
	0xFFFF,		// Word		intMaskLo;						// $306: Interrupt Mask Register/LOW word
	{ 0 },		// Byte											___filler7[0x30c-0x308];
	0x0000,		// Word		intStatusHi;					// $30C: Interrupt Status Register/HIGH word
	0x0000,		// Word		intStatusLo;					// $30E: Interrupt Status Register/LOW word
	0x0000,		// Word		intPendingHi;					// $310: Interrupt Pending Register
	0x0000,		// Word		intPendingLo;					// $312: Interrupt Pending Register

	{ 0 },		// Byte 										___filler4a[0x400-0x314];

	0x00,		// Byte		portADir;						// $400: Port A Direction Register
	0x00,		// Byte		portAData;						// $401: Port A Data Register
	0xFF,		// Byte		portAPullupEn;					// $402: Port A Pullup Enable (similar to Select on DB)
	{ 0 },		// Byte											___filler8[5];	

	0x00,		// Byte		portBDir;						// $408: Port B Direction Register
	0x00,		// Byte		portBData;						// $409: Port B Data Register
	0xFF,		// Byte		portBPullupEn;					// $40A: Port B Pullup Enable
	0xFF,		// Byte		portBSelect;					// $40B: Port B Select Register	

	{ 0 },		// Byte											___filler9[4];

	0x00,		// Byte		portCDir;						// $410: Port C Direction Register
	0x00,		// Byte		portCData;						// $411: Port C Data Register
	0xFF,		// Byte		portCPulldnEn;					// $412: Port C Pulldown Enable
	0xFF,		// Byte		portCSelect;					// $413: Port C Select Register	

	{ 0 },		// Byte											___filler10[4];

	0x00,		// Byte		portDDir;						// $418: Port D Direction Register
	0x00,		// Byte		portDData;						// $419: Port D Data Register
	0xFF,		// Byte		portDPullupEn;					// $41A: Port D Pull-up Enable
	0xF0,		// Byte		portDSelect;					// $41B: Port D Select Register
	0x00,		// Byte		portDPolarity;					// $41C: Port D Polarity Register
	0x00,		// Byte		portDIntReqEn;					// $41D: Port D Interrupt Request Enable
	0x00,		// Byte		portDKbdIntEn;					// $41E: Port D Keyboard Interrupt Enable
	0x00,		// Byte		portDIntEdge;					// $41F: Port D IRQ Edge Register

	0x00,		// Byte		portEDir;						// $420: Port E Direction Register
	0x00,		// Byte		portEData;						// $421: Port E Data Register
	0xFF,		// Byte		portEPullupEn;					// $422: Port E Pull-up Enable
	0xFF,		// Byte		portESelect;					// $423: Port E Select Register

	{ 0 },		// Byte											___filler14[4];

	0x00,		// Byte		portFDir;						// $428: Port F Direction Register
	0x00,		// Byte		portFData;						// $429: Port F Data Register
	0xFF,		// Byte		portFPullupdnEn;				// $42A: Port F Pull-up/down Enable
	0x00,		// Byte		portFSelect;					// $42B: Port F Select Register

	{ 0 },		// Byte											___filler16[4];

	0x00,		// Byte		portGDir;						// $430: Port G Direction Register
	0x00,		// Byte		portGData;						// $431: Port G Data Register
	0x3D,		// Byte		portGPullupEn;					// $432: Port G Pull-up Enable
	0x08,		// Byte		portGSelect;					// $433: Port G Select Register

	{ 0 },		// Byte											___filler2000[0x500-0x434];

	0x0020,		// Word		pwmControl;						// $500: PWM Control Register
	0x00,		// Byte		pwmSampleHi;					// $502: PWM Sample - high byte
	0x00,		// Byte		pwmSampleLo;					// $503: PWM Sample - low byte
	0xFE,		// Byte		pwmPeriod;						// $504: PWM Period
	0x00,		// Byte		pwmCounter;						// $505: PWM Counter
	
	{ 0 },		// Byte											___filler24[0x600-0x506];

	0x0000,		// Word		tmr1Control;					// $600: Timer 1 Control Register
	0x0000,		// Word		tmr1Prescaler;					// $602: Timer 1 Prescaler Register
	0xFFFF,		// Word		tmr1Compare;					// $604: Timer 1 Compare Register
	0x0000,		// Word		tmr1Capture;					// $606: Timer 1 Capture Register
	0x0000,		// Word		tmr1Counter;					// $608: Timer 1 Counter Register
	0x0000,		// Word		tmr1Status;						// $60A: Timer 1 Status Register

	{ 0 },		// Byte											___filler25[0x800-0x61E];

	0x0000,		// Word		spiMasterData;					// $800: SPI Master Data Register
	0x0000,		// Word		spiMasterControl;				// $802: SPI Master Control Register

	{ 0 },		// Byte											___filler27[0x900-0x804];

	0x0000,		// Word		uControl;						// $900: Uart Control Register
	0x003F,		// Word		uBaud;							// $902: Uart Baud Control Register
	0x0000,		// Word		uReceive;						// $904: Uart Receive Register
	0x0000,		// Word		uTransmit;						// $906: Uart Transmit Register
	0x0000,		// Word		uMisc;							// $908: Uart Miscellaneous Register
	0x0000,		// Word		uNonIntPresc;					// $90A: Uart IRDA Non-Integer Prescaler

	{ 0 },		// Byte											___filler28[0xA00-0x90C];

	0x00000000,	// DWord	lcdStartAddr;					// $A00: Screen Starting Address Register
	{ 0 },		// Byte											___filler29;
	0xFF,		// Byte		lcdPageWidth;					// $A05: Virtual Page Width Register
	{ 0 },		// Byte											___filler30[2];
	0x03FF,		// Word		lcdScreenWidth;					// $A08: Screen Width Register
	0x01FF,		// Word		lcdScreenHeight;				// $A0A: Screen Height Register
	{ 0 },		// Byte											___filler31[0xA18-0xA0C];
	0x0000,		// Word		lcdCursorXPos;					// $A18: Cursor X Position
	0x0000,		// Word		lcdCursorYPos;					// $A1A:	Cursor Y Position
	0x0101,		// Word		lcdCursorWidthHeight;			// $A1C: Cursor Width and Height
	{ 0 },		// Byte											___filler32;
	0x7F,		// Byte		lcdBlinkControl;				// $A1F: Blink Control Register
	0x00,		// Byte		lcdPanelControl;				// $A20: Panel Interface Control Register
	0x00,		// Byte		lcdPolarity;					// $A21: Polarity Config Register
	{ 0 },		// Byte											___filler33;						
	0x00,		// Byte		lcdACDRate;						// $A23: ACD (M) Rate Control Register
	{ 0 },		// Byte											___filler34;
	0x00,		// Byte		lcdPixelClock;					// $A25: Pixel Clock Divider Register
	{ 0 },		// Byte											___filler35;
	0x40,		// Byte		lcdClockControl;				// $A27: Clocking Control Register
	{ 0 },		// Byte											___filler36;
	0xFF,		// Byte		lcdRefreshRateAdj;				// $A29: Refresh Rate Adjustment Register
	{ 0 },		// Byte											___filler2003[0xA2D-0xA2A];
	0x00,		// Byte		lcdPanningOffset;				// $A2D: Panning Offset Register

	{ 0 },		// Byte											___filler37[0xA31-0xA2E];

	0xB9,		// Byte		lcdFrameRate;					// $A31: Frame Rate Control Modulation Register
	{ 0 },		// Byte											___filler2004;
	0x84,		// Byte		lcdGrayPalette;					// $A33: Gray Palette Mapping Register
	0x00,		// Byte		lcdReserved;					// $A34: Reserved
	{ 0 },		// Byte											___filler2005;
	0x0000,		// Word		lcdContrastControlPWM;			// $A36: Contrast Control

	{ 0 },		// Byte											___filler40[0xB00-0xA38];

	0x00000000,	// DWord	rtcHourMinSec;					// $B00: RTC Hours, Minutes, Seconds Register
	0x00000000,	// DWord	rtcAlarm;						// $B04: RTC Alarm Register
	{ 0 },		// Byte											___filler2001[0xB0A-0xB08];
	0x0001,		// Word		rtcWatchDog;					// $B0A: RTC Watchdog Timer
	0x00,		// Word		rtcControl;						// $B0C: RTC Control Register
	0x00,		// Word		rtcIntStatus;					// $B0E: RTC Interrupt Status Register
	0x00,		// Word		rtcIntEnable;					// $B10: RTC Interrupt Enable Register
	0x00,		// Word		stopWatch;						// $B12: Stopwatch Minutes
	{ 0 },		// Byte											___filler2002[0xB1A-0xB14];
	0x0000,		// Word		rtcDay;							// $B1A: RTC Day
	0x0000,		// Word		rtcDayAlarm;					// $B1C: RTC Day Alarm

	{ 0 },		// Byte											___filler41[0xC00-0xB1E];

	0x0000,		// Word		dramConfig;						// $C00: DRAM Memory Config Register
	0x0000,		// Word		dramControl;					// $C02: DRAM Control Register

	{ 0 },		// Byte											___filler42[0xD00-0xC04];

	0x00000000,	// DWord	emuAddrCompare;					// $D00: Emulation Address Compare Register   
	0x00000000,	// DWord	emuAddrMask;					// $D04: Emulation Address Mask Register
	0x0000,		// Word		emuControlCompare;				// $D08: Emulation Control Compare Register
	0x0000,		// Word		emuControlMask;					// $D0A: Emulation Control Mask Register
	0x0000,		// Word		emuControl;						// $DOC: Emulation Control Register
	0x0000		// Word		emuStatus;						// $D0E: Emulation Status Register
};


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::EmRegsEZ
// ---------------------------------------------------------------------------

EmRegsEZ::EmRegsEZ (void) :
	EmRegs (),
	f68EZ328Regs (),
	fHotSyncButtonDown (0),
	fKeyBits (0),
	fLastTmr1Status (0),
	fPortDEdge (0),
	fPortDDataCount (0),
	fHour (0),
	fMin (0),
	fSec (0),
	fTick (0),
	fCycle (0),
	fUART (NULL)
{
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::~EmRegsEZ
// ---------------------------------------------------------------------------

EmRegsEZ::~EmRegsEZ (void)
{
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::Initialize
// ---------------------------------------------------------------------------

void EmRegsEZ::Initialize (void)
{
	EmRegs::Initialize ();

	fUART = new EmUARTDragonball (EmUARTDragonball::kUART_DragonballEZ, 0);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::Reset
// ---------------------------------------------------------------------------

void EmRegsEZ::Reset (Bool hardwareReset)
{
	EmRegs::Reset (hardwareReset);

	if (hardwareReset)
	{
		f68EZ328Regs = kInitial68EZ328RegisterValues;

		// Byteswap all the words in the DragonballEZ registers (if necessary).

		Canonical (f68EZ328Regs);
		ByteswapWords (&f68EZ328Regs, sizeof(f68EZ328Regs));

		fKeyBits		= 0;
		fLastTmr1Status	= 0;
		fPortDEdge		= 0;
		fPortDDataCount	= 0;

		// React to the new data in the UART registers.

		Bool	sendTxData = false;
		EmRegsEZ::UARTStateChanged (sendTxData);
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::Save
// ---------------------------------------------------------------------------

void EmRegsEZ::Save (SessionFile& f)
{
	EmRegs::Save (f);

	StWordSwapper				swapper1 (&f68EZ328Regs, sizeof(f68EZ328Regs));
//	StCanonical<HwrM68EZ328Type>	swapper2 (f68EZ328Regs);
	f.WriteHwrDBallEZType (f68EZ328Regs);
	f.FixBug (SessionFile::kBugByteswappedStructs);

	const long	kCurrentVersion = 3;

	Chunk			chunk;
	EmStreamChunk	s (chunk);

	s << kCurrentVersion;

	s << fHotSyncButtonDown;
	s << fKeyBits;
	s << fLastTmr1Status;
	s << fPortDEdge;


	// Added in version 2.

	s << fHour;
	s << fMin;
	s << fSec;
	s << fTick;
	s << fCycle;

	// Added in version 3.

	s << fPortDDataCount;

	f.WriteDBallEZState (chunk);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::Load
// ---------------------------------------------------------------------------

void EmRegsEZ::Load (SessionFile& f)
{
	EmRegs::Load (f);

	if (f.ReadHwrDBallEZType (f68EZ328Regs))
	{
		// The Windows version of Poser 2.1d29 and earlier did not write
		// out structs in the correct format.  The fields of the struct
		// were written out in Little-Endian format, not Big-Endian.  To
		// address this problem, the bug has been fixed, and a new field
		// is added to the file format indicating that the bug has been
		// fixed.  With the new field (the "bug bit"), Poser can identify
		// old files from new files and read them in accordingly.
		// 
		// With the bug fixed, the .psf files should now be interchangeable
		// across platforms (modulo other bugs...).

		if (!f.IncludesBugFix (SessionFile::kBugByteswappedStructs))
		{
			Canonical (f68EZ328Regs);
		}
		ByteswapWords (&f68EZ328Regs, sizeof(f68EZ328Regs));

		// React to the new data in the UART registers.

		Bool	sendTxData = false;
		EmRegsEZ::UARTStateChanged (sendTxData);

		// Reset gMemAccessFlags.fProtect_SRAMSet

		gMemAccessFlags.fProtect_SRAMSet = (READ_REGISTER (csDSelect) & 0x2000) != 0;
	}
	else
	{
		f.SetCanReload (false);
	}

	Chunk		chunk;
	if (f.ReadDBallEZState (chunk))
	{
		long			version;
		EmStreamChunk	s (chunk);

		s >> version;

		if (version >= 1)
		{
			s >> fHotSyncButtonDown;
			s >> fKeyBits;
			s >> fLastTmr1Status;
			s >> fPortDEdge;
		}

		if (version >= 2)
		{
			s >> fHour;
			s >> fMin;
			s >> fSec;
			s >> fTick;
			s >> fCycle;
		}

		if (version >= 3)
		{
			s >> fPortDDataCount;
		}
	}
	else
	{
		f.SetCanReload (false);
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::Dispose
// ---------------------------------------------------------------------------

void EmRegsEZ::Dispose (void)
{
	delete fUART;
	fUART = NULL;

	EmRegs::Dispose ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::SetSubBankHandlers
// ---------------------------------------------------------------------------

void EmRegsEZ::SetSubBankHandlers (void)
{
	// Install base handlers.

	EmRegs::SetSubBankHandlers ();

	// Now add standard/specialized handers for the defined registers.

	INSTALL_HANDLER (StdRead,			StdWrite,				scr);

	INSTALL_HANDLER (StdRead,			NullWrite,				chipID);
	INSTALL_HANDLER (StdRead,			NullWrite,				maskID);
	INSTALL_HANDLER (StdRead,			NullWrite,				swID);

	INSTALL_HANDLER (StdRead,			StdWrite,				csAGroupBase);
	INSTALL_HANDLER (StdRead,			StdWrite,				csBGroupBase);
	INSTALL_HANDLER (StdRead,			StdWrite,				csCGroupBase);
	INSTALL_HANDLER (StdRead,			StdWrite,				csDGroupBase);

	INSTALL_HANDLER (StdRead,			csASelectWrite,			csASelect);
	INSTALL_HANDLER (StdRead,			StdWrite,				csBSelect);
	INSTALL_HANDLER (StdRead,			StdWrite,				csCSelect);
	INSTALL_HANDLER (StdRead,			csDSelectWrite,			csDSelect);

	INSTALL_HANDLER (StdRead,			StdWrite,				emuCS);

	INSTALL_HANDLER (StdRead,			StdWrite,				pllControl);
	INSTALL_HANDLER (pllFreqSelRead,	StdWrite,				pllFreqSel);
	INSTALL_HANDLER (StdRead,			StdWrite,				pllTest);
	INSTALL_HANDLER (StdRead,			StdWrite,				pwrControl);

	INSTALL_HANDLER (StdRead,			StdWrite,				intVector);
	INSTALL_HANDLER (StdRead,			StdWrite,				intControl);
	INSTALL_HANDLER (StdRead,			intMaskHiWrite,			intMaskHi);
	INSTALL_HANDLER (StdRead,			intMaskLoWrite,			intMaskLo);
	INSTALL_HANDLER (StdRead,			intStatusHiWrite,		intStatusHi);
	INSTALL_HANDLER (StdRead,			NullWrite,				intStatusLo);
	INSTALL_HANDLER (StdRead,			NullWrite,				intPendingHi);
	INSTALL_HANDLER (StdRead,			NullWrite,				intPendingLo);

	INSTALL_HANDLER (StdRead,			StdWrite,				portADir);
	INSTALL_HANDLER (portXDataRead,		portXDataWrite,			portAData);
	INSTALL_HANDLER (StdRead,			StdWrite,				portAPullupEn);

	INSTALL_HANDLER (StdRead,			StdWrite,				portBDir);
	INSTALL_HANDLER (portXDataRead,		portXDataWrite,			portBData);
	INSTALL_HANDLER (StdRead,			StdWrite,				portBPullupEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portBSelect);

	INSTALL_HANDLER (StdRead,			StdWrite,				portCDir);
	INSTALL_HANDLER (portXDataRead,		portXDataWrite,			portCData);
	INSTALL_HANDLER (StdRead,			StdWrite,				portCPulldnEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portCSelect);

	INSTALL_HANDLER (StdRead,			StdWrite,				portDDir);
	INSTALL_HANDLER (portXDataRead,		portXDataWrite,			portDData);
	INSTALL_HANDLER (StdRead,			StdWrite,				portDPullupEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portDSelect);
	INSTALL_HANDLER (StdRead,			StdWrite,				portDPolarity);
	INSTALL_HANDLER (StdRead,			portDIntReqEnWrite,		portDIntReqEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portDKbdIntEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portDIntEdge);

	INSTALL_HANDLER (StdRead,			StdWrite,				portEDir);
	INSTALL_HANDLER (portXDataRead,		portXDataWrite,			portEData);
	INSTALL_HANDLER (StdRead,			StdWrite,				portEPullupEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portESelect);

	INSTALL_HANDLER (StdRead,			StdWrite,				portFDir);
	INSTALL_HANDLER (portXDataRead,		portXDataWrite,			portFData);
	INSTALL_HANDLER (StdRead,			StdWrite,				portFPullupdnEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portFSelect);

	INSTALL_HANDLER (StdRead,			StdWrite,				portGDir);
	INSTALL_HANDLER (portXDataRead,		portXDataWrite,			portGData);
	INSTALL_HANDLER (StdRead,			StdWrite,				portGPullupEn);
	INSTALL_HANDLER (StdRead,			StdWrite,				portGSelect);

	INSTALL_HANDLER (StdRead,			StdWrite,				pwmControl);
	INSTALL_HANDLER (StdRead,			StdWrite,				pwmSampleHi);
	INSTALL_HANDLER (StdRead,			StdWrite,				pwmSampleLo);
	INSTALL_HANDLER (StdRead,			StdWrite,				pwmPeriod);
	INSTALL_HANDLER (StdRead,			NullWrite,				pwmCounter);

	INSTALL_HANDLER (StdRead,			StdWrite,				tmr1Control);
	INSTALL_HANDLER (StdRead,			StdWrite,				tmr1Prescaler);
	INSTALL_HANDLER (StdRead,			StdWrite,				tmr1Compare);
	INSTALL_HANDLER (StdRead,			StdWrite,				tmr1Capture);
	INSTALL_HANDLER (StdRead,			NullWrite,				tmr1Counter);
	INSTALL_HANDLER (tmr1StatusRead,	tmr1StatusWrite,		tmr1Status);

	INSTALL_HANDLER (StdRead,			StdWrite,				spiMasterData);
	INSTALL_HANDLER (StdRead,			spiMasterControlWrite,	spiMasterControl);

	INSTALL_HANDLER (uartRead,			uartWrite,				uControl);
	INSTALL_HANDLER (uartRead,			uartWrite,				uBaud);
	INSTALL_HANDLER (uartRead,			uartWrite,				uReceive);
	INSTALL_HANDLER (uartRead,			uartWrite,				uTransmit);
	INSTALL_HANDLER (uartRead,			uartWrite,				uMisc);
	INSTALL_HANDLER (uartRead,			uartWrite,				uNonIntPresc);

	INSTALL_HANDLER (StdRead,			lcdRegisterWrite,		lcdStartAddr);
	INSTALL_HANDLER (StdRead,			lcdRegisterWrite,		lcdPageWidth);
	INSTALL_HANDLER (StdRead,			lcdRegisterWrite,		lcdScreenWidth);
	INSTALL_HANDLER (StdRead,			lcdRegisterWrite,		lcdScreenHeight);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdCursorXPos);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdCursorYPos);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdCursorWidthHeight);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdBlinkControl);
	INSTALL_HANDLER (StdRead,			lcdRegisterWrite,		lcdPanelControl);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdPolarity);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdACDRate);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdPixelClock);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdClockControl);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdRefreshRateAdj);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdPanningOffset);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdFrameRate);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdGrayPalette);
	INSTALL_HANDLER (StdRead,			StdWrite,				lcdContrastControlPWM);
	INSTALL_HANDLER (rtcHourMinSecRead,	StdWrite,				rtcHourMinSec);

	INSTALL_HANDLER (StdRead,			StdWrite,				rtcAlarm);
	INSTALL_HANDLER (StdRead,			StdWrite,				rtcWatchDog);
	INSTALL_HANDLER (StdRead,			rtcControlWrite,		rtcControl);
	INSTALL_HANDLER (StdRead,			rtcIntStatusWrite,		rtcIntStatus);
	INSTALL_HANDLER (StdRead,			rtcIntEnableWrite,		rtcIntEnable);
	INSTALL_HANDLER (StdRead,			StdWrite,				stopWatch);
	INSTALL_HANDLER (StdRead,			StdWrite,				rtcDay);
	INSTALL_HANDLER (StdRead,			StdWrite,				rtcDayAlarm);

	INSTALL_HANDLER (StdRead,			StdWrite,				dramConfig);
	INSTALL_HANDLER (StdRead,			StdWrite,				dramControl);

	INSTALL_HANDLER (StdRead,			StdWrite,				emuAddrCompare);
	INSTALL_HANDLER (StdRead,			StdWrite,				emuAddrMask);
	INSTALL_HANDLER (StdRead,			StdWrite,				emuControlCompare);
	INSTALL_HANDLER (StdRead,			StdWrite,				emuControlMask);
	INSTALL_HANDLER (StdRead,			StdWrite,				emuControl);
	INSTALL_HANDLER (StdRead,			StdWrite,				emuStatus);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetRealAddress
// ---------------------------------------------------------------------------

uint8* EmRegsEZ::GetRealAddress (emuptr address)
{
	uint8*	loc = ((uint8*) &f68EZ328Regs) + (address - kMemoryStart);

	return loc;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetAddressStart
// ---------------------------------------------------------------------------

emuptr EmRegsEZ::GetAddressStart (void)
{
	return kMemoryStart;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetAddressRange
// ---------------------------------------------------------------------------

uint32 EmRegsEZ::GetAddressRange (void)
{
	return kMemorySize;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::Cycle
// ---------------------------------------------------------------------------
// Handles periodic events that need to occur when the processor cycles (like
// updating timer registers).  This function is called in two places from
// Emulator::Execute.  Interestingly, the loop runs 3% FASTER if this function
// is in its own separate function instead of being inline.

void EmRegsEZ::Cycle (Bool sleeping)
{
#if _DEBUG
	#define increment	20
#else
	#define increment	4
#endif

	// Determine whether timer is enabled.

	if ((READ_REGISTER (tmr1Control) & hwrEZ328TmrControlEnable) != 0)
	{
		// If so, increment the timer.

		WRITE_REGISTER (tmr1Counter, READ_REGISTER (tmr1Counter) + (sleeping ? 1 : increment));

		// Determine whether the timer has reached the specified count.

		if (sleeping || READ_REGISTER (tmr1Counter) > READ_REGISTER (tmr1Compare))
		{
			// Flag the occurrence of the successful comparison.

			WRITE_REGISTER (tmr1Status, READ_REGISTER (tmr1Status) | hwrEZ328TmrStatusCompare);

			// If the Free Run/Restart flag is not set, clear the counter.

			if ((READ_REGISTER (tmr1Control) & hwrEZ328TmrControlFreeRun) == 0)
			{
				WRITE_REGISTER (tmr1Counter, 0);
			}

			// If the timer interrupt is enabled, post an interrupt.

			if ((READ_REGISTER (tmr1Control) & hwrEZ328TmrControlEnInterrupt) != 0)
			{
				WRITE_REGISTER (intPendingLo, READ_REGISTER (intPendingLo) | hwrEZ328IntLoTimer);
				EmRegsEZ::UpdateInterrupts ();
			}
		}
	}

	if ((fCycle += increment) > READ_REGISTER (tmr1Compare))
	{
		fCycle = 0;

		if (++fTick >= 100)
		{
			fTick = 0;

			if (++fSec >= 60)
			{
				fSec = 0;

				if (++fMin >= 60)
				{
					fMin = 0;

					if (++fHour >= 24)
					{
						fHour = 0;
					}
				}
			}
		}
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::CycleSlowly
// ---------------------------------------------------------------------------
// Handles periodic events that need to occur when the processor cycles (like
// updating timer registers).  This function is called in two places from
// Emulator::Execute.  Interestingly, the loop runs 3% FASTER if this function
// is in its own separate function instead of being inline.

void EmRegsEZ::CycleSlowly (Bool sleeping)
{
	UNUSED_PARAM(sleeping)

	// See if a hard button is pressed.


	EmAssert (gSession);
	if (gSession->HasButtonEvent ())
	{
		EmButtonEvent	event = gSession->GetButtonEvent ();
		if (event.fButton == kElement_CradleButton)
		{
			EmRegsEZ::HotSyncEvent (event.fButtonIsDown);
		}
		else
		{
			EmRegsEZ::ButtonEvent (event.fButton, event.fButtonIsDown);
		}
	}

	// See if there's anything new ("Put the data on the bus")

	EmRegsEZ::UpdateUARTState (false);

	// Check to see if the RTC alarm is ready to go off.  First see
	// if the RTC is enabled, and that the alarm event isn't already
	// registered (the latter check is just an optimization).

	if ((READ_REGISTER (rtcIntEnable) & hwrEZ328RTCIntEnableAlarm) != 0 &&
		(READ_REGISTER (rtcIntStatus) & hwrEZ328RTCIntStatusAlarm) == 0)
	{
		uint32	rtcAlarm = READ_REGISTER (rtcAlarm);

		long	almHour	 = (rtcAlarm & hwrEZ328RTCAlarmHoursMask) >> hwrEZ328RTCAlarmHoursOffset;
		long	almMin	 = (rtcAlarm & hwrEZ328RTCAlarmMinutesMask) >> hwrEZ328RTCAlarmMinutesOffset;
		long	almSec	 = (rtcAlarm & hwrEZ328RTCAlarmSecondsMask) >> hwrEZ328RTCAlarmSecondsOffset;
		long	almInSeconds = (almHour * 60 * 60) + (almMin * 60) + almSec;

		long	nowHour;
		long	nowMin;
		long	nowSec;
		::GetHostTime (&nowHour, &nowMin, &nowSec);
		long	nowInSeconds = (nowHour * 60 * 60) + (nowMin * 60) + nowSec;

		if (almInSeconds <= nowInSeconds)
		{
			WRITE_REGISTER (rtcIntStatus, READ_REGISTER (rtcIntStatus) | hwrEZ328RTCIntStatusAlarm);
			EmRegsEZ::UpdateRTCInterrupts ();
		}
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::TurnSoundOff
// ---------------------------------------------------------------------------

void EmRegsEZ::TurnSoundOff (void)
{
	uint16	pwmControl = READ_REGISTER (pwmControl);
	WRITE_REGISTER (pwmControl, pwmControl & ~hwrEZ328PWMControlEnable);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::ResetTimer
// ---------------------------------------------------------------------------

void EmRegsEZ::ResetTimer (void)
{
	WRITE_REGISTER (tmr1Counter, 0);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::ResetRTC
// ---------------------------------------------------------------------------

void EmRegsEZ::ResetRTC (void)
{
	fHour = 15;
	fMin = 0;
	fSec = 0;
	fTick = 0;
	fCycle = 0;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetInterruptLevel
// ---------------------------------------------------------------------------

int32 EmRegsEZ::GetInterruptLevel (void)
{
	uint16	intStatusHi = READ_REGISTER (intStatusHi);
	uint16	intStatusLo = READ_REGISTER (intStatusLo);

	// Level 7 = EMUIRQ.

	if ((intStatusHi & hwrEZ328IntHiEMU) != 0)
		return 7;

	// Level 6 = IRQ6, TMR, PWM.

	if ((intStatusHi & (hwrEZ328IntHiIRQ6)) != 0)
		return 6;

	if ((intStatusLo & (hwrEZ328IntLoTimer | hwrEZ328IntLoPWM)) != 0)
		return 6;

	// Level 5 = PEN.

	if ((intStatusHi & hwrEZ328IntHiPen) != 0)
		return 5;

	// Level 4 = SPIM, UART, WDT, RTC, RTC Sample, KB, INT0 - INT3.

	if ((intStatusLo & (	hwrEZ328IntLoSPIM |
							hwrEZ328IntLoUART |
							hwrEZ328IntLoWDT |
							hwrEZ328IntLoRTC |
							hwrEZ328IntLoKbd |
							hwrEZ328IntLoInt3 |
							hwrEZ328IntLoInt2 |
							hwrEZ328IntLoInt1 |
							hwrEZ328IntLoInt0)) != 0)
		return 4;

	if ((intStatusHi & hwrEZ328IntHiSampleTimer) != 0)
		return 4;

	// Level 3 = IRQ3.

	if ((intStatusHi & hwrEZ328IntHiIRQ3) != 0)
		return 3;

	// Level 2 = IRQ2.

	if ((intStatusHi & hwrEZ328IntHiIRQ2) != 0)
		return 2;

	// Level 1 = IRQ1.

	if ((intStatusHi & hwrEZ328IntHiIRQ1) != 0)
		return 1;

	// Level 0.

	return -1;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetInterruptBase
// ---------------------------------------------------------------------------

int32 EmRegsEZ::GetInterruptBase (void)
{
	return READ_REGISTER (intVector) & 0xF8;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetLCDHasFrame
// ---------------------------------------------------------------------------

Bool EmRegsEZ::GetLCDHasFrame (void)
{
	return false;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetLCDBeginEnd
// ---------------------------------------------------------------------------

void EmRegsEZ::GetLCDBeginEnd (emuptr& begin, emuptr& end)
{
	emuptr	baseAddr	= READ_REGISTER (lcdStartAddr);
	int		rowBytes	= READ_REGISTER (lcdPageWidth) * 2;
	int		height		= READ_REGISTER (lcdScreenHeight) + 1;

	begin = baseAddr;
	end = baseAddr + rowBytes * height;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetLCDScanlines
// ---------------------------------------------------------------------------

void EmRegsEZ::GetLCDScanlines (EmScreenUpdateInfo& info)
{
	// Get the screen metrics.

	int32	bpp			= 1 << (READ_REGISTER (lcdPanelControl) & 0x03);
	int32	width		= READ_REGISTER (lcdScreenWidth);
	int32	height		= READ_REGISTER (lcdScreenHeight) + 1;
	int32	rowBytes	= READ_REGISTER (lcdPageWidth) * 2;
	emuptr	baseAddr	= READ_REGISTER (lcdStartAddr);

	info.fLeftMargin	= READ_REGISTER (lcdPanningOffset) & 0x0F;

	EmPixMapFormat	format	=	bpp == 1 ? kPixMapFormat1 :
								bpp == 2 ? kPixMapFormat2 :
								bpp == 4 ? kPixMapFormat4 :
								kPixMapFormat8;

	RGBList	colorTable;
	this->PrvGetPalette (colorTable);

	// Set format, size, and color table of EmPixMap.

	info.fImage.SetSize			(EmPoint (width, height));
	info.fImage.SetFormat		(format);
	info.fImage.SetRowBytes		(rowBytes);
	info.fImage.SetColorTable	(colorTable);

	// Determine first and last scanlines to fetch, and fetch them.

	info.fFirstLine		= (info.fScreenLow - baseAddr) / rowBytes;
	info.fLastLine		= (info.fScreenHigh - baseAddr - 1) / rowBytes + 1;

	emuptr firstLineAddr = baseAddr + (info.fFirstLine * rowBytes);
	emuptr lastLineAddr  = baseAddr + (info.fLastLine  * rowBytes);

	// TODO: probably move to <M68EZ328Hwr.h>
	const long hwrEZ328LcdPageSize = 0x00020000; // 128K
	const long hwrEZ328LcdPageMask = 0xFFFE0000;

	uint8* dst = ((uint8*) info.fImage.GetBits () + firstLineAddr - baseAddr);
	emuptr boundaryAddr = ((baseAddr & hwrEZ328LcdPageMask) + hwrEZ328LcdPageSize);

	if (lastLineAddr <= boundaryAddr)
	{
		// Bits don't cross the 128K boundary
	}
	else if (firstLineAddr >= boundaryAddr)
	{
		// Bits are all beyond the 128K boundary

		firstLineAddr -= hwrEZ328LcdPageSize; // wrap around
		lastLineAddr  -= hwrEZ328LcdPageSize;
	}
	else
	{
		// Bits straddle the 128K boundary;
		// copy the first part here, the wrapped part below

		EmMem_memcpy ((void*) dst, firstLineAddr, boundaryAddr - firstLineAddr);
		dst += (boundaryAddr - firstLineAddr);

		firstLineAddr = boundaryAddr - hwrEZ328LcdPageSize;
		lastLineAddr -= hwrEZ328LcdPageSize; // wrap around
	}

	EmMem_memcpy ((void*) dst, firstLineAddr, lastLineAddr - firstLineAddr);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetUARTDevice
// ---------------------------------------------------------------------------
// Return what sort of device is hooked up to the given UART.

EmUARTDeviceType EmRegsEZ::GetUARTDevice (int /*uartNum*/)
{
	Bool	serEnabled	= this->GetLineDriverState (kUARTSerial);
	Bool	irEnabled	= this->GetLineDriverState (kUARTIR);

	// It's probably an error to have them both enabled at the same
	// time.  !!! TBD: make this an error message.

	EmAssert (!(serEnabled && irEnabled));

	if (serEnabled)
		return kUARTSerial;

	if (irEnabled)
		return kUARTIR;

	return kUARTNone;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetDynamicHeapSize
// ---------------------------------------------------------------------------

int32 EmRegsEZ::GetDynamicHeapSize (void)
{
	int32	result = 0;

	uint16	csDSelect = READ_REGISTER (csDSelect);

	switch (csDSelect & UPSIZ)
	{
		case 0x0000:		
			result = 32 * 1024L;
			break;

		case 0x0800:		
			result = 64 * 1024L;
			break;

		case 0x1000:		
			result = 128 * 1024L;
			break;

		case 0x1800:		
			result = 256 * 1024L;
			break;

		default:
			EmAssert (false);
			break;
	}

	return result;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetROMSize
// ---------------------------------------------------------------------------

int32 EmRegsEZ::GetROMSize (void)
{
	/*
		SIZ	Chip-Select Size

		This field determines the memory range of the chip-select. For CSA
		and CSB, chip-select size is between 128K and 16M. For CSC and CSD,
		chip-select size is between 32K and 4M.

		000 = 128K (32K for CSC and CSD).
		001 = 256K (64K for CSC and CSD).
		010 = 512K (128K for CSC and CSD).
		011 = 1M (256K for CSC and CSD).
		100 = 2M (512K for CSC and CSD).
		101 = 4M (1M for CSC and CSD).
		110 = 8M (2M for CSC and CSD).
		111 = 16M (4M for CSC and CSD).
	*/

	uint16	csASelect	= READ_REGISTER (csASelect);
	uint32	result		= (128 * 1024L) << ((csASelect & SIZ) >> 1);

	if ((csASelect & EN) == 0)
	{
		result = 16 * 1024L * 1024L;
	}

	return result;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetROMBaseAddress
// ---------------------------------------------------------------------------

uint32 EmRegsEZ::GetROMBaseAddress (void)
{
	/*
		csAGroupBase: Chip-select Group Base Address register

		The csAGroupBase register stores the base address (bits 14-28 of 
		the address) in the top 15 bits.  The low bit is always zero.  
		Shifting this value by 13 gives the ROM base address.

		E.g:  If the base address is 0x10C00000, then csAGroupBase will 
		contain 0x10C00000 >> 13 (base 10) = 0x8600.

		If the enable bit of the CSA register is low, the chip selects
		have not yet been set up.  In this case, return an invalid value.
	*/

	if (!this->ChipSelectsConfigured())
	{
		return 0xFFFFFFFF;
	}
	
	uint16	csAGroupBase	= READ_REGISTER (csAGroupBase);
	uint32	result			= csAGroupBase << gBaseAddressShift;

	return result;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::ChipSelectsConfigured
// ---------------------------------------------------------------------------

Bool EmRegsEZ::ChipSelectsConfigured (void)
{
	return READ_REGISTER (csASelect) & EN;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetSystemClockFrequency
// ---------------------------------------------------------------------------

int32 EmRegsEZ::GetSystemClockFrequency (void)
{
	uint16	pllControl	= READ_REGISTER (pllControl);
	uint16	pllFreqSel	= READ_REGISTER (pllFreqSel);

	// Convert the 32.768KHz clock (CLK32) into the PLLCLK frequency.

	uint16	PC			= (pllFreqSel & 0x00FF);
	uint16	QC			= (pllFreqSel & 0x0F00) >> 8;

	uint32	result = 32768L * (14 * (PC + 1) + QC + 1);

	// Divide by the prescaler, if needed.

	if ((pllControl & 0x0020) != 0)
	{
		result /= 2;
	}

	// Divide by the system clock scaler, if needed.

	switch (pllControl & 0x0F00)
	{
		case hwrEZ328PLLControlSysDMADiv2:
			result /= 2;
			break;

		case hwrEZ328PLLControlSysDMADiv4:
			result /= 4;
			break;

		case hwrEZ328PLLControlSysDMADiv8:
			result /= 8;
			break;

		case hwrEZ328PLLControlSysDMADiv16:
			result /= 16;
			break;
	}

	return result;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetCanStop
// ---------------------------------------------------------------------------

Bool EmRegsEZ::GetCanStop (void)
{
	// Make sure Timer is enabled or the RTC interrupt is enabled.

	if ((READ_REGISTER (tmr1Control) & hwrEZ328TmrControlEnable) != 0)
		return true;

	if ((READ_REGISTER (rtcIntEnable) & hwrEZ328RTCIntEnableAlarm) != 0)
		return true;

	return false;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetAsleep
// ---------------------------------------------------------------------------

Bool EmRegsEZ::GetAsleep (void)
{
	return ((READ_REGISTER (pllControl) & hwrEZ328PLLControlDisable) != 0);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetPortInputValue
// ---------------------------------------------------------------------------
// Return the GPIO values for the pins on the port.  These values are used
// if the select pins are high.

uint8 EmRegsEZ::GetPortInputValue (int port)
{
	uint8	result = 0;

	if (port == 'D')
	{
		result = this->GetPortInternalValue (port);
	}

	return result;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetPortInternalValue
// ---------------------------------------------------------------------------
// Return the dedicated values for the pins on the port.  These values are
// used if the select pins are low.

uint8 EmRegsEZ::GetPortInternalValue (int port)
{
	uint8	result = 0;

	if (port == 'D')
	{
		// If the ID_DETECT pin is asserted, load the data lines with the
		// hardware ID.

		if (EmRegsEZ::IDDetectAsserted ())
		{
			result = EmRegsEZ::GetHardwareID ();
		}

		// Otherwise, load the lines with keyboard information.

		else
		{
			// Get the INT bits that need to be set.

			result = this->GetKeyBits ();
		}
	}

	return result;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::PortDataChanged
// ---------------------------------------------------------------------------

void EmRegsEZ::PortDataChanged (int port, uint8, uint8 newValue)
{
	if (port == 'D')
	{
		// Clear the interrupt bits that are having a 1 written to them.
		// Only clear them if they're configured as edge-senstive.

		uint8	portDIntEdge = READ_REGISTER (portDIntEdge);

		PRINTF ("EmRegsEZ::PortDataChanged (D): fPortDEdge  = 0x%02lX", (uint32) (uint8) fPortDEdge);
		PRINTF ("EmRegsEZ::PortDataChanged (D): portDIntEdge = 0x%02lX", (uint32) (uint8) portDIntEdge);
		PRINTF ("EmRegsEZ::PortDataChanged (D): newValue     = 0x%02lX", (uint32) (uint8) newValue);

		fPortDEdge &= ~(newValue & portDIntEdge);

		PRINTF ("EmRegsEZ::PortDataChanged (D): fPortDEdge  = 0x%02lX", (uint32) (uint8) fPortDEdge);

		// Set the new interrupt state.

		EmRegsEZ::UpdatePortDInterrupts ();
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::pllFreqSelRead
// ---------------------------------------------------------------------------

uint32 EmRegsEZ::pllFreqSelRead (emuptr address, int size)
{
	// Simulate the rising and falling of the CLK32 signal so that functions
	// like HwrPreRAMInit, HwrShutDownPLL, PrvSetPLL, and PrvShutDownPLL
	// won't hang.

	uint16	pllFreqSel = READ_REGISTER (pllFreqSel) ^ 0x8000;
	WRITE_REGISTER (pllFreqSel, pllFreqSel);

	// Finish up by doing a standard read.

	return EmRegsEZ::StdRead (address, size);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::portXDataRead
// ---------------------------------------------------------------------------

uint32 EmRegsEZ::portXDataRead (emuptr address, int)
{
	// The value read can come from three different places:
	//
	//	- the value what was written to the data register
	//	- any dedicated inputs
	//	- any GPIO inputs
	//
	// The value returned depends on the settings of the SEL and DIR
	// registers.  So let's get those settings, the values from the three
	// input sources, and build up a return value based on those.

	int		port	= GetPort (address);

	uint8	sel		= StdRead (address + 2, 1);
	uint8	dir		= StdRead (address - 1, 1);
	uint8	output	= StdRead (address + 0, 1);
	uint8	input	= EmHAL::GetPortInputValue (port);
	uint8	intFn	= EmHAL::GetPortInternalValue (port);

	if (port == 'D')
	{
		sel |= 0x0F;		// No "select" bit in low nybble, so set for IO values.

		// The system will poll portD 18 times in KeyBootKeys to see
		// if any keys are down.  Wait at least that long before
		// letting up any boot keys maintained by the session.  When we
		// do call ReleaseBootKeys, set our counter to -1 as a flag not
		// to call it any more.

		if (fPortDDataCount != 0xFFFFFFFF && ++fPortDDataCount >= 18 * 2)
		{
			fPortDDataCount = 0xFFFFFFFF;
			gSession->ReleaseBootKeys ();
		}
	}

	// Use the internal chip function bits if the "sel" bits are zero.

	intFn &= ~sel;

	// Otherwise, use the I/O bits.

	output &= sel & dir;	// Use the output bits if the "dir" is one.
	input &= sel & ~dir;	// Use the input bits if the "dir" is zero.

	// Assert that there are no overlaps.

	EmAssert ((output & input) == 0);
	EmAssert ((output & intFn) == 0);
	EmAssert ((input & intFn) == 0);

	// Mush everything together.

	uint8	result = output | input | intFn;

	// If this is port D, flip the bits if the POLARITY register says to.
	// (!!! Does this inversion apply only to input bits?  That is, the
	// bits where the "dir" register has 0 bits?)

	if (0 && port == 'D')
	{
		uint8	polarity = READ_REGISTER (portDPolarity);
		PRINTF ("EmRegsEZ::portXDataRead: polarity = 0x%02lX", (uint32) polarity);
		result ^= polarity;
	}

	PRINTF ("EmRegsEZ::port%cDataRead: sel    dir    output input  intFn  result", (char) port);
	PRINTF ("EmRegsEZ::port%cDataRead: 0x%02lX   0x%02lX   0x%02lX   0x%02lX   0x%02lX   0x%02lX",
		(char) port, (uint32) sel, (uint32) dir, (uint32) output, (uint32) input, (uint32) intFn, (uint32) result);

	return result;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::tmr1StatusRead
// ---------------------------------------------------------------------------

uint32 EmRegsEZ::tmr1StatusRead (emuptr address, int size)
{
	uint16	tmr1Counter = READ_REGISTER (tmr1Counter) + 16;
	uint16	tmr1Compare = READ_REGISTER (tmr1Compare);
	uint16	tmr1Control = READ_REGISTER (tmr1Control);

	// Increment the timer.

	WRITE_REGISTER (tmr1Counter, tmr1Counter);

	// If the timer has passed the specified value...

	if ((tmr1Counter - tmr1Compare) < 16)
	{
		// Set the flag saying the timer timed out.

		uint16	tmr1Status = READ_REGISTER (tmr1Status) | hwrEZ328TmrStatusCompare;
		WRITE_REGISTER (tmr1Status, tmr1Status);

		// If it's not a free-running timer, reset it to zero.

		if ((tmr1Control & hwrEZ328TmrControlFreeRun) == 0)
		{
			WRITE_REGISTER (tmr1Counter, 0);
		}
	}

	// Remember this guy for later (see EmRegsEZ::tmr1StatusWrite())

	fLastTmr1Status |= READ_REGISTER (tmr1Status);

	// Finish up by doing a standard read.

	return EmRegsEZ::StdRead (address, size);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::uartRead
// ---------------------------------------------------------------------------

uint32 EmRegsEZ::uartRead (emuptr address, int size)
{
	// If this is a full read, get the next byte from the FIFO.

	Bool	refreshRxData = (address == addressof (uReceive)) && (size == 2);

	// See if there's anything new ("Put the data on the bus")

	EmRegsEZ::UpdateUARTState (refreshRxData);

	// Finish up by doing a standard read.

	return EmRegsEZ::StdRead (address, size);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::rtcHourMinSecRead
// ---------------------------------------------------------------------------

uint32 EmRegsEZ::rtcHourMinSecRead (emuptr address, int size)
{
	// Get the desktop machine's time.

	long	hour, min, sec;

	if (Hordes::IsOn ())
	{
		hour = fHour;
		min = fMin;
		sec = fSec;
	}
	else
	{
		::GetHostTime (&hour, &min, &sec);
	}

	// Update the register.

	WRITE_REGISTER (rtcHourMinSec, (hour << hwrEZ328RTCHourMinSecHoursOffset)
								| (min << hwrEZ328RTCHourMinSecMinutesOffset)
								| (sec << hwrEZ328RTCHourMinSecSecondsOffset));

	// Finish up by doing a standard read.

	return EmRegsEZ::StdRead (address, size);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::csASelectWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::csASelectWrite (emuptr address, int size, uint32 value)
{
	// Get the current value.

	uint16	csASelect = READ_REGISTER (csASelect);

	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Check to see if the unprotected memory range changed.

	if ((csASelect & SIZ) != (READ_REGISTER (csASelect) & SIZ))
	{
		EmAssert (gSession);
		gSession->ScheduleResetBanks ();
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::csDSelectWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::csDSelectWrite (emuptr address, int size, uint32 value)
{
	// Get the current value.

	uint16	csDSelect = READ_REGISTER (csDSelect);

	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Check its new state and update our ram-protect flag.

	gMemAccessFlags.fProtect_SRAMSet = (READ_REGISTER (csDSelect) & 0x2000) != 0;

	// Check to see if the unprotected memory range changed.

	if ((csDSelect & UPSIZ) != (READ_REGISTER (csDSelect) & UPSIZ))
	{
		EmAssert (gSession);
		gSession->ScheduleResetBanks ();
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::intMaskHiWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::intMaskHiWrite (emuptr address, int size, uint32 value)
{
	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Respond to the new interrupt state.

	EmRegsEZ::UpdateInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::intMaskLoWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::intMaskLoWrite (emuptr address, int size, uint32 value)
{
	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Respond to the new interrupt state.

	EmRegsEZ::UpdateInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::intStatusHiWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::intStatusHiWrite (emuptr address, int size, uint32 value)
{
	// IRQ1, IRQ2, IRQ3, IRQ6 and IRQ7 are cleared by writing to their
	// respective status bits.  We handle those there.  Since there are
	// no interrupt status bits like this in intStatusLo, we don't need
	// a handler for that register; we only handle intStatusHi.

	// Even though this is a 16-bit register as defined by the Palm headers,
	// it's a 32-bit register according to DragonballEZ docs, and is in fact
	// accessed that way in the kernal files (cf. HwrIRQ4Handler). In those
	// cases, we're still only interested in access to the IRQ# bits, so we
	// can turn 4-byte accesses into 2-byte accesses.

	if (size == 4)
		value >>= 16;

	// Take into account the possibility of 1-byte accesses, too. If we're
	// accessing the upper byte, just return. If we're accessing the lower
	// byte, we can treat it as a 2-byte access.

	else if (size == 1 && address == addressof (intStatusHi))
		return;

	// Now we can treat the rest of this function as a word-write to intStatusHi.

	uint16	intPendingHi = READ_REGISTER (intPendingHi);

	//	For each interrupt:
	//		If we're writing to that interrupt's status bit and its edge bit is set:
	//			- clear the interrupt's pending bit
	//			- respond to the new interrupt state.

	#undef CLEAR_PENDING_INTERRUPT
	#define CLEAR_PENDING_INTERRUPT(edge, irq)						\
		if ((READ_REGISTER (intControl) & edge) && (value & (irq)))	\
		{															\
			intPendingHi &= ~(irq);									\
		}

	CLEAR_PENDING_INTERRUPT (hwrEZ328IntCtlEdge1, hwrEZ328IntHiIRQ1);
	CLEAR_PENDING_INTERRUPT (hwrEZ328IntCtlEdge2, hwrEZ328IntHiIRQ2);
	CLEAR_PENDING_INTERRUPT (hwrEZ328IntCtlEdge3, hwrEZ328IntHiIRQ3);
	CLEAR_PENDING_INTERRUPT (hwrEZ328IntCtlEdge6, hwrEZ328IntHiIRQ6);

	// IRQ7 is not edge-programmable, so clear it if we're merely writing to it.
	// !!! Double check this for EZ!

	if (value & hwrEZ328IntHiEMU)
	{
		intPendingHi &= ~(hwrEZ328IntHiEMU);
	}

	// If we're emulating the user pressing the hotsync button, make sure the
	// interrupt stays asserted.  (!!! Should we use the same technique for
	// other buttons, too?  It doesn't seem to be needed right now, but doing
	// that may more closely mirror the hardware.)

	if (fHotSyncButtonDown)
	{
		intPendingHi |= hwrEZ328IntHiIRQ1;
	}
	else
	{
		intPendingHi &= ~hwrEZ328IntHiIRQ1;
	}

	// This makes the power on key work. If the signal is asserted, the
	// unit will not transition between asleep and awake (cf. HwrSleep, HwrWake).

	intPendingHi &= ~hwrEZ328IntHiIRQ6;

	WRITE_REGISTER (intPendingHi, intPendingHi);
	EmRegsEZ::UpdateInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::portXDataWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::portXDataWrite (emuptr address, int size, uint32 value)
{
	// Get the old value before updating it.

	uint8	oldValue = StdRead (address, size);

	// Take a snapshot of the line driver states.

	Bool	driverStates[kUARTEnd];
	EmHAL::GetLineDriverStates (driverStates);

	// Now update the value with a standard write.

	StdWrite (address, size, value);

	// Let anyone know that it's changed.

	int		port = GetPort (address);
	PRINTF ("EmRegsEZ::port%cDataWrite: oldValue = 0x%02lX", (char) port, (uint32) (uint8) oldValue);
	PRINTF ("EmRegsEZ::port%cDataWrite: newValue = 0x%02lX", (char) port, (uint32) (uint8) value);

	EmHAL::PortDataChanged (port, oldValue, value);

	// Respond to any changes in the line driver states.

	EmHAL::CompareLineDriverStates (driverStates);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::portDIntReqEnWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::portDIntReqEnWrite (emuptr address, int size, uint32 value)
{
	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Set the new interrupt state.

	EmRegsEZ::UpdatePortDInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::tmr1StatusWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::tmr1StatusWrite (emuptr address, int size, uint32 value)
{
	UNUSED_PARAM(address)
	UNUSED_PARAM(size)

	EmAssert (size == 2);	// This function's a hell of a lot easier to write if
						// we assume only full-register access.

	// Get the current value.

	uint16	tmr1Status = READ_REGISTER (tmr1Status);

	// If the user had previously read the status bits while they
	// were set, then it's OK for them to be clear now.  Otherwise,
	// we have to merge any set status bits back in.

	tmr1Status &= value | ~fLastTmr1Status;	// fLastTmr1Status was set in EmRegsEZ::tmr1StatusRead()

	WRITE_REGISTER (tmr1Status, tmr1Status);

	fLastTmr1Status = 0;
	if ((tmr1Status & hwrEZ328TmrStatusCompare) == 0)
	{
		uint16	intPendingLo = READ_REGISTER (intPendingLo) & ~hwrEZ328IntLoTimer;
		WRITE_REGISTER (intPendingLo, intPendingLo);

		// Respond to the new interrupt state.

		EmRegsEZ::UpdateInterrupts ();
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::spiMasterControlWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::spiMasterControlWrite (emuptr address, int size, uint32 value)
{
	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Get the current value.

	uint16	spiMasterData		= READ_REGISTER (spiMasterData);
	uint16	spiMasterControl	= READ_REGISTER (spiMasterControl);

	// Check to see if data exchange and interrupts are enabled.

	#define BIT_MASK (hwrEZ328SPIMControlExchange | hwrEZ328SPIMControlEnable)
	if ((spiMasterControl & BIT_MASK) == BIT_MASK)
	{
		// If the SPI is hooked up to something, talk with it.

		EmSPISlave*	spiSlave = this->GetSPISlave ();
		if (spiSlave)
		{
			// Write out the old data, read in the new data.

			uint16	newData = spiSlave->DoExchange (spiMasterControl, spiMasterData);

			// Shift in the new data.

			uint16	numBits = (spiMasterControl & hwrEZ328SPIMControlBitsMask) + 1;

			uint16	oldBitsMask = ~0 << numBits;
			uint16	newBitsMask = ~oldBitsMask;

			spiMasterData = /*((spiMasterData << numBits) & oldBitsMask) | */
				(newData & newBitsMask);

			WRITE_REGISTER (spiMasterData, spiMasterData);
		}

		// Assert the interrupt and clear the exchange bit.

		spiMasterControl |= hwrEZ328SPIMControlIntStatus;
		spiMasterControl &= ~hwrEZ328SPIMControlExchange;

		WRITE_REGISTER (spiMasterControl, spiMasterControl);

		// If hwrEZ328SPIMControlIntEnable is set, trigger an interrupt.

		if ((spiMasterControl & hwrEZ328SPIMControlIntEnable) != 0)
		{
			uint16	intPendingLo	= READ_REGISTER (intPendingLo);
			intPendingLo |= hwrEZ328IntLoSPIM;
			WRITE_REGISTER (intPendingLo, intPendingLo);
			this->UpdateInterrupts ();
		}
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::uartWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::uartWrite(emuptr address, int size, uint32 value)
{
	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// If this write included the TX_DATA field, signal that it needs to
	// be transmitted.

	Bool	sendTxData =
				((address == addressof (uTransmit)) && (size == 2)) ||
				((address == addressof (uTransmit) + 1) && (size == 1));

	// React to any changes.

	EmRegsEZ::UARTStateChanged (sendTxData);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::lcdRegisterWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::lcdRegisterWrite (emuptr address, int size, uint32 value)
{
	// First, get the old value in case we need to see what changed.

	uint32	oldValue = EmRegsEZ::StdRead (address, size);

	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Note what changed.

	if (address == addressof (lcdScreenWidth))
	{
		EmScreen::InvalidateAll ();
	}
	else if (address == addressof (lcdScreenHeight))
	{
		EmScreen::InvalidateAll ();
	}
	else if (address == addressof (lcdPanelControl))
	{
		// hwrEZ328LcdPanelControlGrayScale is incorrectly defined as 0x01,
		// so use the hard-coded value of 0x03 here.

//		if (((value ^ oldValue) & hwrEZ328LcdPanelControlGrayScale) != 0)
		if (((value ^ oldValue) & 0x03) != 0)
		{
			EmScreen::InvalidateAll ();
		}
	}
	else if (address == addressof (lcdStartAddr))
	{
		// Make sure the low-bit is always zero.
		// Make sure bits 31-29 are always zero.

		uint32	lcdStartAddr = READ_REGISTER (lcdStartAddr) & 0x1FFFFFFE;
		WRITE_REGISTER (lcdStartAddr, lcdStartAddr);

		EmScreen::InvalidateAll ();
	}
	else if (address == addressof (lcdPageWidth))
	{
		if (value != oldValue)
		{
			EmScreen::InvalidateAll ();
		}
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::rtcControlWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::rtcControlWrite (emuptr address, int size, uint32 value)
{
	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Respond to the new interrupt state.

	EmRegsEZ::UpdateRTCInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::rtcIntStatusWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::rtcIntStatusWrite (emuptr address, int size, uint32 value)
{
	// Status bits are cleared by writing ones to them.

	// If we're doing a byte-write to the upper byte, shift the byte
	// so that we can treat the operation as a word write.  If we're
	// doing a byte-write to the lower byte, this extension will happen
	// automatically.

	if (address == addressof (rtcIntStatus) && size == 1)
		value <<= 8;

	// Get the current value.

	uint16	rtcIntStatus = READ_REGISTER (rtcIntStatus);

	// Clear the requested bits.

	rtcIntStatus &= ~value;

	// Update the register.

	WRITE_REGISTER (rtcIntStatus, rtcIntStatus);

	// Respond to the new interrupt state.

	EmRegsEZ::UpdateRTCInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::rtcIntEnableWrite
// ---------------------------------------------------------------------------

void EmRegsEZ::rtcIntEnableWrite (emuptr address, int size, uint32 value)
{
	// Do a standard update of the register.

	EmRegsEZ::StdWrite (address, size, value);

	// Respond to the new interrupt state.

	EmRegsEZ::UpdateRTCInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::ButtonEvent
// ---------------------------------------------------------------------------
// Handles a Palm device button event by updating the appropriate registers.

void EmRegsEZ::ButtonEvent (SkinElementType button, Bool buttonIsDown)
{
	uint16	bitNumber = this->ButtonToBits (button);

	// Get the bits that should have been set with the previous set
	// of pressed keys.  We use this old value to update the port D interrupts.

	uint8	oldBits = this->GetKeyBits ();

	// Update the set of keys that are currently pressed.

	if (buttonIsDown)
	{
		fKeyBits |= bitNumber;	// Remember the key bit
	}
	else
	{
		fKeyBits &= ~bitNumber;	// Forget the key bit
	}

	// Now get the new set of bits that should be set.

	uint8	newBits = this->GetKeyBits ();

	PRINTF ("EmRegsEZ::ButtonEvent: fKeyBits = 0x%04lX", (uint32) fKeyBits);
	PRINTF ("EmRegsEZ::ButtonEvent: oldBits   = 0x%02lX", (uint32) oldBits);
	PRINTF ("EmRegsEZ::ButtonEvent: newBits   = 0x%02lX", (uint32) newBits);

	// Set the interrupt bits for the bits that went from off to on.
	// These get cleared when portDData is written to.

	fPortDEdge |= newBits & ~oldBits;

	PRINTF ("EmRegsEZ::ButtonEvent: fPortDEdge = 0x%02lX", (uint32) fPortDEdge);

	// Set the new interrupt state.

	EmRegsEZ::UpdatePortDInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::HotSyncEvent
// ---------------------------------------------------------------------------
// Handles a HotSync button event by updating the appropriate registers.

void EmRegsEZ::HotSyncEvent (Bool buttonIsDown)
{
	// If the button changes state, set or clear the HotSync interrupt.

	uint16	intPendingHi = READ_REGISTER (intPendingHi);

	if (buttonIsDown)
	{
		intPendingHi |= hwrEZ328IntHiIRQ1;
		fHotSyncButtonDown = true;
	}
	else
	{
		intPendingHi &= ~hwrEZ328IntHiIRQ1;
		fHotSyncButtonDown = false;
	}

	WRITE_REGISTER (intPendingHi, intPendingHi);

	EmRegsEZ::UpdateInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetKeyBits
// ---------------------------------------------------------------------------

uint8 EmRegsEZ::GetKeyBits (void)
{
	// "Keys" (that is, buttons) are read from the Port D Data register.
	// There are 7 or 8 keys that can be pressed, but only 4 bits are
	// available in the Port D Data register for reporting pressed keys.
	// Therefore, the keys are organized into a matrix, one row or which
	// can be requested and reported at a time.  This function determines
	// what row is being requested, and sets the appropriate Port D Data
	// bits for the keys are are currently pressed.

	int		numRows;
	int		numCols;
	uint16	keyMap[16];
	Bool	rows[4];

	this->GetKeyInfo (&numRows, &numCols, keyMap, rows);

	uint8	keyData = 0;

	// Walk the rows, looking for one that is requested.

	for (int row = 0; row < numRows; ++row)
	{
		if (rows[row])
		{
			// Walk the columns, looking for ones that have a pressed key.

			for (int col = 0; col < numCols; ++col)
			{
				// Get the key corresponding to this row and column.
				// If we've recorded (in fKeyBits) that this key is
				// pressed, then set its column bit.

				uint16	key = keyMap[row * numCols + col];
				if ((key & fKeyBits) != 0)
				{
					keyData |= (1 << col);
				}
			}
		}
	}

	UInt8	portFDir	= READ_REGISTER (portFDir);
	UInt8	portFData	= READ_REGISTER (portFData);

	PRINTF ("EmRegsEZ::GetKeyBits: numRows = %d, numCols = %d", numRows, numCols);
	PRINTF ("EmRegsEZ::GetKeyBits: portFDir = 0x%02lX, portFData = 0x%02lX", (uint32) portFDir, (uint32) portFData);
	PRINTF ("EmRegsEZ::GetKeyBits: rows[0] = %d, [1] = %d, [2] = %d, [3] = %d", rows[0], rows[1], rows[2], rows[3]);
//	PRINTF ("EmRegsEZ::GetKeyBits: keyMap[0] = %2d, [1] = %2d, [2] = %2d, [3] = %2d", keyMap[0], keyMap[1], keyMap[2], keyMap[3]);
//	PRINTF ("EmRegsEZ::GetKeyBits: keyMap[4] = %2d, [5] = %2d, [6] = %2d, [7] = %2d", keyMap[4], keyMap[5], keyMap[6], keyMap[7]);
//	PRINTF ("EmRegsEZ::GetKeyBits: keyMap[8] = %2d, [9] = %2d, [A] = %2d, [B] = %2d", keyMap[8], keyMap[9], keyMap[10], keyMap[11]);
//	PRINTF ("EmRegsEZ::GetKeyBits: keyMap[C] = %2d, [D] = %2d, [E] = %2d, [F] = %2d", keyMap[12], keyMap[13], keyMap[14], keyMap[15]);
	PRINTF ("EmRegsEZ::GetKeyBits: fKeyBits = 0x%04lX", (uint32) fKeyBits);
	PRINTF ("EmRegsEZ::GetKeyBits: keyData = 0x%02lX", (uint32) keyData);

	return keyData;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::ButtonToBits
// ---------------------------------------------------------------------------

uint16 EmRegsEZ::ButtonToBits (SkinElementType button)
{
	uint16 bitNumber = 0;
	switch (button)
	{
		case kElement_None:				break;

		case kElement_PowerButton:		bitNumber = keyBitPower;	break;
		case kElement_UpButton: 		bitNumber = keyBitPageUp;	break;
		case kElement_DownButton:		bitNumber = keyBitPageDown; break;
		case kElement_App1Button:		bitNumber = keyBitHard1;	break;
		case kElement_App2Button:		bitNumber = keyBitHard2;	break;
		case kElement_App3Button:		bitNumber = keyBitHard3;	break;
		case kElement_App4Button:		bitNumber = keyBitHard4;	break;
		case kElement_CradleButton: 	bitNumber = keyBitCradle;	break;
		case kElement_Antenna:			bitNumber = keyBitAntenna;	break;
		case kElement_ContrastButton:	bitNumber = keyBitContrast; break;

		default:						EmAssert (false);
	}

	return bitNumber;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetSPISlave
// ---------------------------------------------------------------------------

EmSPISlave* EmRegsEZ::GetSPISlave (void)
{
	return NULL;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::UpdateInterrupts
// ---------------------------------------------------------------------------
// Determines whether an interrupt has occurred by copying the Interrupt
// Pending Register to the Interrupt Status Register.

void EmRegsEZ::UpdateInterrupts (void)
{
	// Copy the Interrupt Pending Register to the Interrupt Status
	// Register, but ignore interrupts that are being masked.

	// Note: this function is not sensitive to the byte ordering of the registers,
	// so their contents don't need to be accessed via READ_REGISTER or WRITE_REGISTER.

	f68EZ328Regs.intStatusHi = f68EZ328Regs.intPendingHi & ~f68EZ328Regs.intMaskHi;
	f68EZ328Regs.intStatusLo = f68EZ328Regs.intPendingLo & ~f68EZ328Regs.intMaskLo;

	PRINTF ("EmRegsEZ::UpdateInterrupts: intMask    = 0x%04lX %04lX",
		(uint32) f68EZ328Regs.intMaskHi, (uint32) f68EZ328Regs.intMaskLo);

	PRINTF ("EmRegsEZ::UpdateInterrupts: intPending = 0x%04lX %04lX",
		(uint32) f68EZ328Regs.intPendingHi, (uint32) f68EZ328Regs.intPendingLo);

	// If the Interrupt Status Register isn't clear, flag an interrupt.

	if (f68EZ328Regs.intStatusHi || f68EZ328Regs.intStatusLo)
	{
		regs.spcflags |= SPCFLAG_INT;

		PRINTF ("EmRegsEZ::UpdateInterrupts: intStatus  = 0x%04lX %04lX",
			(uint32) f68EZ328Regs.intStatusHi, (uint32) f68EZ328Regs.intStatusLo);
	}
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::UpdatePortDInterrupts
// ---------------------------------------------------------------------------
// Determine what interrupts need to be generated based on the current
// settings in portDData and fPortDEdge.

void EmRegsEZ::UpdatePortDInterrupts (void)
{
	// Update INT0-INT3 of the Interrupt-Pending register (bits 8-11 of the low word).

	PRINTF ("EmRegsEZ::UpdatePortDInterrupts:");

	// First, get those bits and clear them out.

	uint16	intPendingLo	= READ_REGISTER (intPendingLo) & ~hwrEZ328IntLoAllKeys;


	// Initialize the variable to hold the new interrupt settings.

	uint8	newBits			= 0;


	// Get some other values we're going to need:

	uint8	portDDir		= READ_REGISTER (portDDir);	// Interrupt on inputs only (when pin is low)
	uint8	portDData		= EmHAL::GetPortInputValue ('D');
	uint8	portDPolarity	= READ_REGISTER (portDPolarity);
	uint8	portDIntReqEn	= READ_REGISTER (portDIntReqEn);
	uint8	portDKbdIntEn	= READ_REGISTER (portDKbdIntEn);
	uint8	portDIntEdge	= READ_REGISTER (portDIntEdge);

	// We have a line-level interrupt if:
	//
	//	- line-level interrupts are requested
	//	- the GPIO bit matches the polarity bit

	newBits |= ~portDIntEdge & portDData & portDPolarity;
	newBits |= ~portDIntEdge & ~portDData & ~portDPolarity;


	// We have an edge interrupt if:
	//
	//	- edge interrupts are requested
	//	- an edge has been recorded
	//
	// Note that we should distinguish between rising and falling edges.
	// For historical reasons, that's not done, and the Palm OS doesn't
	// look for them, so it's OK for now.
	//
	// Edge interrupts on INT[3:0] should not wake up a sleeping device.

	uint16	pllControl	= READ_REGISTER (pllControl);

	if (pllControl & hwrEZ328PLLControlDisable)
	{
		newBits |= portDIntEdge & fPortDEdge & portDPolarity & 0xF0;
		newBits |= portDIntEdge & 0 & ~portDPolarity & 0xF0;
	}
	else
	{
		newBits |= portDIntEdge & fPortDEdge & portDPolarity;
		newBits |= portDIntEdge & 0 & ~portDPolarity;
	}


	// Only have interrupts if they're enabled and the pin is configured for input.

	newBits &= portDIntReqEn & ~portDDir;

	PRINTF ("EmRegsEZ::UpdatePortDInterrupts: Dir  Data Pol  Req  Edg  PDE  bits");
	PRINTF ("EmRegsEZ::UpdatePortDInterrupts: 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX 0x%02lX",
		(uint32) portDDir, (uint32) portDData, (uint32) portDPolarity, (uint32) portDIntReqEn, (uint32) portDIntEdge,
		(uint32) fPortDEdge, (uint32) newBits);


	// Determine if the KB interrupt needs to be asserted.  It is if:
	//
	//	A Port D Data bit is on.
	//	The bit is configured for input (?)
	//	The bit is configured to be OR'd into the interrupt.

	uint8	KB = portDData & ~portDDir & portDKbdIntEn;

	if (KB)
		intPendingLo |= hwrEZ328IntLoKbd;
	else
		intPendingLo &= ~hwrEZ328IntLoKbd;


	// Merge in the new values and write out the result.

	intPendingLo |=	(((uint16) newBits) << hwrEZ328IntLoInt0Bit) & hwrEZ328IntLoAllKeys;
	WRITE_REGISTER (intPendingLo, intPendingLo);


	// Respond to the new interrupt state.

	EmRegsEZ::UpdateInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::UpdateRTCInterrupts
// ---------------------------------------------------------------------------
// Determine whether to set or clear the RTC bit in the interrupt pending
// register based on the current RTC register values.

void EmRegsEZ::UpdateRTCInterrupts (void)
{
	// See if the RTC is enabled.

	Bool	rtcEnabled = (READ_REGISTER (rtcControl) & hwrEZ328RTCControlRTCEnable) != 0;

	// See if there are any RTC events that need to trigger an interrupt.

#define BITS_TO_CHECK				( \
	hwrEZ328RTCIntEnableSec			| \
	hwrEZ328RTCIntEnable24Hr		| \
	hwrEZ328RTCIntEnableAlarm		| \
	hwrEZ328RTCIntEnableMinute		| \
	hwrEZ328RTCIntEnableStopWatch	)

	uint16	rtcIntStatus = READ_REGISTER (rtcIntStatus);
	uint16	rtcIntEnable = READ_REGISTER (rtcIntEnable);
	uint16	rtcIntPending = rtcIntStatus & rtcIntEnable & BITS_TO_CHECK;

	Bool	havePendingEvents = rtcIntPending != 0;

	// If the RTC is enabled and there are pending events, set the interrupt.
	// Otherwise, clear the interrupt.

	uint16	intPendingLo = READ_REGISTER (intPendingLo);

	if (rtcEnabled && havePendingEvents)
	{
		intPendingLo |= hwrEZ328IntLoRTC;	// have events, so set interrupt
	}
	else
	{
		intPendingLo &= ~hwrEZ328IntLoRTC;	// no events, so clear interrupt
	}

	// Update the interrupt pending register.

	WRITE_REGISTER (intPendingLo, intPendingLo);

	// Respond to the new interrupt state.

	EmRegsEZ::UpdateInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::IDDetectAsserted
// ---------------------------------------------------------------------------
// cf. HwrIdentifyFeatures and HwrPreRAMInit.

Bool EmRegsEZ::IDDetectAsserted (void)
{
			uint8	portGDir		= READ_REGISTER(portGDir);
			uint8	portGData		= READ_REGISTER(portGData);
			uint8	portGPullupEn	= READ_REGISTER(portGPullupEn);
			uint8	portGSelect		= READ_REGISTER(portGSelect);
	const	uint8	kMask			= hwrEZPortGIDDetect;

	return (portGDir & kMask) == kMask &&
			(portGData & kMask) == 0 &&
			(portGPullupEn & kMask) == 0 &&
			(portGSelect & kMask) == kMask;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetHardwareID
// ---------------------------------------------------------------------------

UInt8 EmRegsEZ::GetHardwareID (void)
{
	// Determine the hardware ID.

	EmAssert (gSession);

	EmDevice	device		= gSession->GetDevice ();
	long		miscFlags	= device.HardwareID ();

	// Reverse map the following:

//	GHwrMiscFlags = 0;
//	if ((keyState & hwrEZPortDKbdCol0) == 0) GHwrMiscFlags |= hwrMiscFlagID1;
//	if ((keyState & hwrEZPortDKbdCol1) == 0) GHwrMiscFlags |= hwrMiscFlagID2;
//	if ((keyState & hwrEZPortDKbdCol2) == 0) GHwrMiscFlags |= hwrMiscFlagID3;
//	if ((keyState & hwrEZPortDKbdCol3) == 0) GHwrMiscFlags |= hwrMiscFlagID4;

	UInt8	keyState = ~0;

	if ((miscFlags & hwrMiscFlagID1) != 0)	keyState &= ~hwrEZPortDKbdCol0;
	if ((miscFlags & hwrMiscFlagID2) != 0)	keyState &= ~hwrEZPortDKbdCol1;
	if ((miscFlags & hwrMiscFlagID3) != 0)	keyState &= ~hwrEZPortDKbdCol2;
	if ((miscFlags & hwrMiscFlagID4) != 0)	keyState &= ~hwrEZPortDKbdCol3;

	return keyState;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::UARTStateChanged
// ---------------------------------------------------------------------------

void EmRegsEZ::UARTStateChanged (Bool sendTxData)
{
	EmUARTDragonball::State	state (EmUARTDragonball::kUART_DragonballEZ);

	EmRegsEZ::MarshalUARTState (state);
	fUART->StateChanged (state, sendTxData);
	EmRegsEZ::UnmarshalUARTState (state);

	EmRegsEZ::UpdateUARTInterrupts (state);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::UpdateUARTState
// ---------------------------------------------------------------------------

void EmRegsEZ::UpdateUARTState (Bool refreshRxData)
{
	EmUARTDragonball::State	state (EmUARTDragonball::kUART_DragonballEZ);

	EmRegsEZ::MarshalUARTState (state);
	fUART->UpdateState (state, refreshRxData);
	EmRegsEZ::UnmarshalUARTState (state);

	EmRegsEZ::UpdateUARTInterrupts (state);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::UpdateUARTInterrupts
// ---------------------------------------------------------------------------

void EmRegsEZ::UpdateUARTInterrupts (const EmUARTDragonball::State& state)
{
	// Generate the appropriate interrupts.

	if (state.RX_FULL_ENABLE	&& state.RX_FIFO_FULL	||
		state.RX_HALF_ENABLE	&& state.RX_FIFO_HALF	||
		state.RX_RDY_ENABLE		&& state.DATA_READY		||
		state.TX_EMPTY_ENABLE	&& state.TX_FIFO_EMPTY	||
		state.TX_HALF_ENABLE	&& state.TX_FIFO_HALF	||
		state.TX_AVAIL_ENABLE	&& state.TX_AVAIL)
	{
		// Set the UART interrupt.

		WRITE_REGISTER (intPendingLo, READ_REGISTER (intPendingLo) | hwrEZ328IntLoUART);
	}
	else
	{
		// Clear the UART interrupt.

		WRITE_REGISTER (intPendingLo, READ_REGISTER (intPendingLo) & ~hwrEZ328IntLoUART);
	}

	// Respond to the new interrupt state.

	EmRegsEZ::UpdateInterrupts ();
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::MarshalUARTState
// ---------------------------------------------------------------------------

void EmRegsEZ::MarshalUARTState (EmUARTDragonball::State& state)
{
	uint16	uControl		= READ_REGISTER (uControl);
	uint16	uBaud			= READ_REGISTER (uBaud);
	uint16	uReceive		= READ_REGISTER (uReceive);
	uint16	uTransmit		= READ_REGISTER (uTransmit);
	uint16	uMisc			= READ_REGISTER (uMisc);

	state.UART_ENABLE		= (uControl & hwrEZ328UControlUARTEnable) != 0;
	state.RX_ENABLE			= (uControl & hwrEZ328UControlRxEnable) != 0;
	state.TX_ENABLE			= (uControl & hwrEZ328UControlTxEnable) != 0;
	state.RX_CLK_CONT		= (uControl & hwrEZ328UControlRxClock1xSync) != 0;
	state.PARITY_EN			= (uControl & hwrEZ328UControlParityEn) != 0;
	state.ODD_EVEN			= (uControl & hwrEZ328UControlParityOdd) != 0;
	state.STOP_BITS			= (uControl & hwrEZ328UControlStopBits2) != 0;
	state.CHAR8_7			= (uControl & hwrEZ328UControlDataBits8) != 0;
//	state.GPIO_DELTA_ENABLE	= (uControl & hwr328UControlGPIODeltaEn) != 0;	// 68328 only
	state.OLD_ENABLE		= (uControl & hwrEZ328UControlOldDataEn) != 0;	// 68EZ328 only
	state.CTS_DELTA_ENABLE	= (uControl & hwrEZ328UControlCTSDeltaEn) != 0;
	state.RX_FULL_ENABLE	= (uControl & hwrEZ328UControlRxFullEn) != 0;
	state.RX_HALF_ENABLE	= (uControl & hwrEZ328UControlRxHalfEn) != 0;
	state.RX_RDY_ENABLE		= (uControl & hwrEZ328UControlRxRdyEn) != 0;
	state.TX_EMPTY_ENABLE	= (uControl & hwrEZ328UControlTxEmptyEn) != 0;
	state.TX_HALF_ENABLE	= (uControl & hwrEZ328UControlTxHalfEn) != 0;
	state.TX_AVAIL_ENABLE	= (uControl & hwrEZ328UControlTxAvailEn) != 0;

	// Baud control register bits
	// These are all values the user sets; we just look at them.

//	state.GPIO_DELTA		= (uBaud & hwr328UBaudGPIODelta) != 0;			// 68328 only
//	state.GPIO				= (uBaud & hwr328UBaudGPIOData) != 0;			// 68328 only
//	state.GPIO_DIR			= (uBaud & hwr328UBaudGPIODirOut) != 0;			// 68328 only
//	state.GPIO_SRC			= (uBaud & hwrEZ328UBaudGPIOSrcBaudGen) != 0;	// 68328 only
	state.UCLK_DIR			= (uBaud & hwrEZ328UBaudUCLKDirOut) != 0;		// 68EZ328 only
	state.BAUD_SRC			= (uBaud & hwrEZ328UBaudBaudSrcUCLK) != 0;
	state.DIVIDE			= (uBaud & hwrEZ328UBaudDivider) >> hwrEZ328UBaudDivideBitOffset;
	state.PRESCALER			= (uBaud & hwrEZ328UBaudPrescaler);

	// Receive register bits
	// These are all input bits; we set them, not the user.

	state.RX_FIFO_FULL		= (uReceive & hwrEZ328UReceiveFIFOFull) != 0;
	state.RX_FIFO_HALF		= (uReceive & hwrEZ328UReceiveFIFOHalf) != 0;
	state.DATA_READY		= (uReceive & hwrEZ328UReceiveDataRdy) != 0;
	state.OLD_DATA			= (uReceive & hwrEZ328UReceiveOldData) != 0;	// 68EZ328 only
	state.OVRUN				= (uReceive & hwrEZ328UReceiveOverrunErr) != 0;
	state.FRAME_ERROR		= (uReceive & hwrEZ328UReceiveFrameErr) != 0;
	state.BREAK				= (uReceive & hwrEZ328UReceiveBreakErr) != 0;
	state.PARITY_ERROR		= (uReceive & hwrEZ328UReceiveParityErr) != 0;
	state.RX_DATA			= (uReceive & hwrEZ328UReceiveData);

	// Transmitter register bits
	// We set everything except TX_DATA; the user sets that
	// value and ONLY that value.

	state.TX_FIFO_EMPTY		= (uTransmit & hwrEZ328UTransmitFIFOEmpty) != 0;
	state.TX_FIFO_HALF		= (uTransmit & hwrEZ328UTransmitFIFOHalf) != 0;
	state.TX_AVAIL			= (uTransmit & hwrEZ328UTransmitTxAvail) != 0;
	state.SEND_BREAK		= (uTransmit & hwrEZ328UTransmitSendBreak) != 0;
	state.IGNORE_CTS		= (uTransmit & hwrEZ328UTransmitIgnoreCTS) != 0;
	state.BUSY				= (uTransmit & hwrEZ328UTransmitBusy) != 0;		// 68EZ328 only
	state.CTS_STATUS		= (uTransmit & hwrEZ328UTransmitCTSStatus) != 0;
	state.CTS_DELTA			= (uTransmit & hwrEZ328UTransmitCTSDelta) != 0;
	state.TX_DATA			= (uTransmit & hwrEZ328UTransmitData);

	// Misc register bits
	// These are all values the user sets; we just look at them.

	state.BAUD_TEST			= (uMisc & hwrEZ328UMiscBaudTest) != 0;			// 68EZ328 only
	state.CLK_SRC			= (uMisc & hwrEZ328UMiscClkSrcUCLK) != 0;
	state.FORCE_PERR		= (uMisc & hwrEZ328UMiscForceParityErr) != 0;
	state.LOOP				= (uMisc & hwrEZ328UMiscLoopback) != 0;
	state.BAUD_RESET		= (uMisc & hwrEZ328UMiscBaudReset) != 0;		// 68EZ328 only
	state.IR_TEST			= (uMisc & hwrEZ328UMiscIRTestEn) != 0;			// 68EZ328 only
	state.RTS_CONT			= (uMisc & hwrEZ328UMiscRTSThruFIFO) != 0;
	state.RTS				= (uMisc & hwrEZ328UMiscRTSOut) != 0;
	state.IRDA_ENABLE		= (uMisc & hwrEZ328UMiscIRDAEn) != 0;
	state.IRDA_LOOP			= (uMisc & hwrEZ328UMiscLoopIRDA) != 0;
	state.RX_POL			= (uMisc & hwrEZ328UMiscRXPolarityInv) != 0;	// 68EZ328 only
	state.TX_POL			= (uMisc & hwrEZ328UMiscTXPolarityInv) != 0;	// 68EZ328 only
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::UnmarshalUARTState
// ---------------------------------------------------------------------------

void EmRegsEZ::UnmarshalUARTState (const EmUARTDragonball::State& state)
{
	uint16	uControl	= 0;
	uint16	uBaud		= 0;
	uint16	uReceive	= 0;
	uint16	uTransmit	= 0;
	uint16	uMisc		= 0;

	if (state.UART_ENABLE)		uControl |= hwrEZ328UControlUARTEnable;
	if (state.RX_ENABLE)		uControl |= hwrEZ328UControlRxEnable;
	if (state.TX_ENABLE)		uControl |= hwrEZ328UControlTxEnable;
	if (state.RX_CLK_CONT)		uControl |= hwrEZ328UControlRxClock1xSync;
	if (state.PARITY_EN)		uControl |= hwrEZ328UControlParityEn;
	if (state.ODD_EVEN)			uControl |= hwrEZ328UControlParityOdd;
	if (state.STOP_BITS)		uControl |= hwrEZ328UControlStopBits2;
	if (state.CHAR8_7)			uControl |= hwrEZ328UControlDataBits8;
//	if (state.GPIO_DELTA_ENABLE)uControl |= hwr328UControlGPIODeltaEn;	// 68328 only
	if (state.OLD_ENABLE)		uControl |= hwrEZ328UControlOldDataEn;	// 68EZ328 only
	if (state.CTS_DELTA_ENABLE)	uControl |= hwrEZ328UControlCTSDeltaEn;
	if (state.RX_FULL_ENABLE)	uControl |= hwrEZ328UControlRxFullEn;
	if (state.RX_HALF_ENABLE)	uControl |= hwrEZ328UControlRxHalfEn;
	if (state.RX_RDY_ENABLE)	uControl |= hwrEZ328UControlRxRdyEn;
	if (state.TX_EMPTY_ENABLE)	uControl |= hwrEZ328UControlTxEmptyEn;
	if (state.TX_HALF_ENABLE)	uControl |= hwrEZ328UControlTxHalfEn;
	if (state.TX_AVAIL_ENABLE)	uControl |= hwrEZ328UControlTxAvailEn;

	// Baud control register bits
	// These are all values the user sets; we just look at them.

//	if (state.GPIO_DELTA)		uBaud |= hwr328UBaudGPIODelta;		// 68328 only
//	if (state.GPIO)				uBaud |= hwr328UBaudGPIOData;		// 68328 only
//	if (state.GPIO_DIR)			uBaud |= hwr328UBaudGPIODirOut;		// 68328 only
//	if (state.GPIO_SRC)			uBaud |= hwr328UBaudGPIOSrcBaudGen;	// 68328 only
	if (state.UCLK_DIR)			uBaud |= hwrEZ328UBaudUCLKDirOut;	// 68EZ328 only
	if (state.BAUD_SRC)			uBaud |= hwrEZ328UBaudBaudSrcUCLK;

	uBaud |= (state.DIVIDE << hwrEZ328UBaudDivideBitOffset) & hwrEZ328UBaudDivider;
	uBaud |= (state.PRESCALER) & hwrEZ328UBaudPrescaler;

	// Receive register bits
	// These are all input bits; we set them, not the user.

	if (state.RX_FIFO_FULL)		uReceive |= hwrEZ328UReceiveFIFOFull;
	if (state.RX_FIFO_HALF)		uReceive |= hwrEZ328UReceiveFIFOHalf;
	if (state.DATA_READY)		uReceive |= hwrEZ328UReceiveDataRdy;
	if (state.OLD_DATA)			uReceive |= hwrEZ328UReceiveOldData;	// 68EZ328 only
	if (state.OVRUN)			uReceive |= hwrEZ328UReceiveOverrunErr;
	if (state.FRAME_ERROR)		uReceive |= hwrEZ328UReceiveFrameErr;
	if (state.BREAK)			uReceive |= hwrEZ328UReceiveBreakErr;
	if (state.PARITY_ERROR)		uReceive |= hwrEZ328UReceiveParityErr;

	uReceive |= (state.RX_DATA) & hwrEZ328UReceiveData;

	// Transmitter register bits
	// We set everything except TX_DATA; the user sets that
	// value and ONLY that value.

	if (state.TX_FIFO_EMPTY)	uTransmit |= hwrEZ328UTransmitFIFOEmpty;
	if (state.TX_FIFO_HALF)		uTransmit |= hwrEZ328UTransmitFIFOHalf;
	if (state.TX_AVAIL)			uTransmit |= hwrEZ328UTransmitTxAvail;
	if (state.SEND_BREAK)		uTransmit |= hwrEZ328UTransmitSendBreak;
	if (state.IGNORE_CTS)		uTransmit |= hwrEZ328UTransmitIgnoreCTS;
	if (state.BUSY)				uTransmit |= hwrEZ328UTransmitBusy;		// 68EZ328 only
	if (state.CTS_STATUS)		uTransmit |= hwrEZ328UTransmitCTSStatus;
	if (state.CTS_DELTA)		uTransmit |= hwrEZ328UTransmitCTSDelta;

	uTransmit |= (state.TX_DATA) & hwrEZ328UTransmitData;

	// Misc register bits
	// These are all values the user sets; we just look at them.

	if (state.BAUD_TEST)		uMisc |= hwrEZ328UMiscBaudTest;			// 68EZ328 only
	if (state.CLK_SRC)			uMisc |= hwrEZ328UMiscClkSrcUCLK;
	if (state.FORCE_PERR)		uMisc |= hwrEZ328UMiscForceParityErr;
	if (state.LOOP)				uMisc |= hwrEZ328UMiscLoopback;
	if (state.BAUD_RESET)		uMisc |= hwrEZ328UMiscBaudReset;		// 68EZ328 only
	if (state.IR_TEST)			uMisc |= hwrEZ328UMiscIRTestEn;			// 68EZ328 only
	if (state.RTS_CONT)			uMisc |= hwrEZ328UMiscRTSThruFIFO;
	if (state.RTS)				uMisc |= hwrEZ328UMiscRTSOut;
	if (state.IRDA_ENABLE)		uMisc |= hwrEZ328UMiscIRDAEn;
	if (state.IRDA_LOOP)		uMisc |= hwrEZ328UMiscLoopIRDA;
	if (state.RX_POL)			uMisc |= hwrEZ328UMiscRXPolarityInv;	// 68EZ328 only
	if (state.TX_POL)			uMisc |= hwrEZ328UMiscTXPolarityInv;	// 68EZ328 only

	WRITE_REGISTER (uControl, uControl);
	WRITE_REGISTER (uBaud, uBaud);
	WRITE_REGISTER (uReceive, uReceive);
	WRITE_REGISTER (uTransmit, uTransmit);
	WRITE_REGISTER (uMisc, uMisc);
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::GetPort
// ---------------------------------------------------------------------------
// Given an address, return a value indicating what port it is associated with.

int EmRegsEZ::GetPort (emuptr address)
{
	const long	MASK = 0x00000FF8;

	switch (address & MASK)
	{
		case 0x0400:	return 'A';
		case 0x0408:	return 'B';
		case 0x0410:	return 'C';
		case 0x0418:	return 'D';
		case 0x0420:	return 'E';
		case 0x0428:	return 'F';
		case 0x0430:	return 'G';
	}

	EmAssert (false);
	return 0;
}


// ---------------------------------------------------------------------------
//		¥ EmRegsEZ::PrvGetPalette
// ---------------------------------------------------------------------------

void EmRegsEZ::PrvGetPalette (RGBList& thePalette)
{
	// !!! TBD
	Preference<RGBType> pref1 (kPrefKeyBackgroundColor);
	Preference<RGBType> pref2 (kPrefKeyHighlightColor);

	RGBType foreground (0, 0, 0);
	RGBType background;

	if (this->GetLCDBacklightOn ())
	{
		if (pref2.Loaded ())
			background = *pref2;
		else
			background = ::SkinGetHighlightColor ();
	}
	else
	{
		if (pref1.Loaded ())
			background = *pref1;
		else
			background = ::SkinGetBackgroundColor ();
	}

	long	br = ((long) background.fRed);
	long	bg = ((long) background.fGreen);
	long	bb = ((long) background.fBlue);

	long	dr = ((long) foreground.fRed) - ((long) background.fRed);
	long	dg = ((long) foreground.fGreen) - ((long) background.fGreen);
	long	db = ((long) foreground.fBlue) - ((long) background.fBlue);

	int32	bpp			= 1 << (READ_REGISTER (lcdPanelControl) & 0x03);
	int32	numColors	= 1 << bpp;
	thePalette.resize (numColors);

	for (int color = 0; color < numColors; ++color)
	{
		thePalette[color].fRed		= (UInt8) (br + dr * color / (numColors - 1));
		thePalette[color].fGreen	= (UInt8) (bg + dg * color / (numColors - 1));
		thePalette[color].fBlue 	= (UInt8) (bb + db * color / (numColors - 1));
	}
}