1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
/*
* Some of the filter code was taken from Glumpy:
* # Copyright (c) 2009-2016 Nicolas P. Rougier. All rights reserved.
* # Distributed under the (new) BSD License.
* (https://github.com/glumpy/glumpy/blob/master/glumpy/library/build-spatial-filters.py)
*
* Also see:
* - http://vector-agg.cvs.sourceforge.net/viewvc/vector-agg/agg-2.5/include/agg_image_filters.h
* - Vapoursynth plugin fmtconv (WTFPL Licensed), which is based on
* dither plugin for avisynth from the same author:
* https://github.com/vapoursynth/fmtconv/tree/master/src/fmtc
* - Paul Heckbert's "zoom"
* - XBMC: ConvolutionKernels.cpp etc.
*
* This file is part of mpv.
*
* This file can be distributed under the 3-clause license ("New BSD License").
*
* You can alternatively redistribute the non-Glumpy parts of this file and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include <stddef.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include "filter_kernels.h"
#include "common/common.h"
// NOTE: all filters are designed for discrete convolution
const struct filter_window *mp_find_filter_window(const char *name)
{
if (!name)
return NULL;
for (const struct filter_window *w = mp_filter_windows; w->name; w++) {
if (strcmp(w->name, name) == 0)
return w;
}
return NULL;
}
const struct filter_kernel *mp_find_filter_kernel(const char *name)
{
if (!name)
return NULL;
for (const struct filter_kernel *k = mp_filter_kernels; k->f.name; k++) {
if (strcmp(k->f.name, name) == 0)
return k;
}
return NULL;
}
// sizes = sorted list of available filter sizes, terminated with size 0
// inv_scale = source_size / dest_size
bool mp_init_filter(struct filter_kernel *filter, const int *sizes,
double inv_scale)
{
assert(filter->f.radius > 0);
// Only downscaling requires widening the filter
filter->filter_scale = MPMAX(1.0, inv_scale);
double src_radius = filter->f.radius * filter->filter_scale;
// Polar filters are dependent solely on the radius
if (filter->polar) {
filter->size = 1; // Not meaningful for EWA/polar scalers.
// Safety precaution to avoid generating a gigantic shader
if (src_radius > 16.0) {
src_radius = 16.0;
filter->filter_scale = src_radius / filter->f.radius;
return false;
}
return true;
}
int size = ceil(2.0 * src_radius);
// round up to smallest available size that's still large enough
if (size < sizes[0])
size = sizes[0];
const int *cursize = sizes;
while (size > *cursize && *cursize)
cursize++;
if (*cursize) {
filter->size = *cursize;
return true;
} else {
// The filter doesn't fit - instead of failing completely, use the
// largest filter available. This is incorrect, but better than refusing
// to do anything.
filter->size = cursize[-1];
filter->filter_scale = (filter->size/2.0) / filter->f.radius;
return false;
}
}
// Sample from a blurred and tapered window
static double sample_window(struct filter_window *kernel, double x)
{
if (!kernel->weight)
return 1.0;
// All windows are symmetric, this makes life easier
x = fabs(x);
// Stretch and taper the window size as needed
x = kernel->blur > 0.0 ? x / kernel->blur : x;
x = x <= kernel->taper ? 0.0 : (x - kernel->taper) / (1 - kernel->taper);
if (x < kernel->radius)
return kernel->weight(kernel, x);
return 0.0;
}
// Evaluate a filter's kernel and window at a given absolute position
static double sample_filter(struct filter_kernel *filter, double x)
{
// The window is always stretched to the entire kernel
double w = sample_window(&filter->w, x / filter->f.radius * filter->w.radius);
double k = w * sample_window(&filter->f, x);
return k < 0 ? (1 - filter->clamp) * k : k;
}
// Calculate the 1D filtering kernel for N sample points.
// N = number of samples, which is filter->size
// The weights will be stored in out_w[0] to out_w[N - 1]
// f = x0 - abs(x0), subpixel position in the range [0,1) or [0,1].
static void mp_compute_weights(struct filter_kernel *filter, double f,
float *out_w)
{
assert(filter->size > 0);
double sum = 0;
for (int n = 0; n < filter->size; n++) {
double x = f - (n - filter->size / 2 + 1);
double w = sample_filter(filter, x / filter->filter_scale);
out_w[n] = w;
sum += w;
}
// Normalize to preserve energy
for (int n = 0; n < filter->size; n++)
out_w[n] /= sum;
}
// Fill the given array with weights for the range [0.0, 1.0]. The array is
// interpreted as rectangular array of count * filter->size items, with a
// stride of `stride` floats in between each array element. (For polar filters,
// the `count` indicates the row size and filter->size/stride are ignored)
//
// There will be slight sampling error if these weights are used in a OpenGL
// texture as LUT directly. The sampling point of a texel is located at its
// center, so out_array[0] will end up at 0.5 / count instead of 0.0.
// Correct lookup requires a linear coordinate mapping from [0.0, 1.0] to
// [0.5 / count, 1.0 - 0.5 / count].
void mp_compute_lut(struct filter_kernel *filter, int count, int stride,
float *out_array)
{
if (filter->polar) {
filter->radius_cutoff = 0.0;
// Compute a 1D array indexed by radius
for (int x = 0; x < count; x++) {
double r = x * filter->f.radius / (count - 1);
out_array[x] = sample_filter(filter, r);
if (fabs(out_array[x]) > filter->value_cutoff)
filter->radius_cutoff = r;
}
} else {
// Compute a 2D array indexed by subpixel position
for (int n = 0; n < count; n++) {
mp_compute_weights(filter, n / (double)(count - 1),
out_array + stride * n);
}
}
}
typedef struct filter_window params;
static double box(params *p, double x)
{
// This is mathematically 1.0 everywhere, the clipping is done implicitly
// based on the radius.
return 1.0;
}
static double triangle(params *p, double x)
{
return fmax(0.0, 1.0 - fabs(x / p->radius));
}
static double hanning(params *p, double x)
{
return 0.5 + 0.5 * cos(M_PI * x);
}
static double hamming(params *p, double x)
{
return 0.54 + 0.46 * cos(M_PI * x);
}
static double quadric(params *p, double x)
{
if (x < 0.75) {
return 0.75 - x * x;
} else if (x < 1.5) {
double t = x - 1.5;
return 0.5 * t * t;
}
return 0.0;
}
#define POW3(x) ((x) <= 0 ? 0 : (x) * (x) * (x))
static double bicubic(params *p, double x)
{
return (1.0/6.0) * ( POW3(x + 2)
- 4 * POW3(x + 1)
+ 6 * POW3(x)
- 4 * POW3(x - 1));
}
static double bessel_i0(double x)
{
double s = 1.0;
double y = x * x / 4.0;
double t = y;
int i = 2;
while (t > 1e-12) {
s += t;
t *= y / (i * i);
i += 1;
}
return s;
}
static double kaiser(params *p, double x)
{
if (x > 1)
return 0;
double i0a = 1.0 / bessel_i0(p->params[1]);
return bessel_i0(p->params[0] * sqrt(1.0 - x * x)) * i0a;
}
static double blackman(params *p, double x)
{
double a = p->params[0];
double a0 = (1-a)/2.0, a1 = 1/2.0, a2 = a/2.0;
double pix = M_PI * x;
return a0 + a1*cos(pix) + a2*cos(2 * pix);
}
static double welch(params *p, double x)
{
return 1.0 - x*x;
}
// Family of cubic B/C splines
static double cubic_bc(params *p, double x)
{
double b = p->params[0],
c = p->params[1];
double p0 = (6.0 - 2.0 * b) / 6.0,
p2 = (-18.0 + 12.0 * b + 6.0 * c) / 6.0,
p3 = (12.0 - 9.0 * b - 6.0 * c) / 6.0,
q0 = (8.0 * b + 24.0 * c) / 6.0,
q1 = (-12.0 * b - 48.0 * c) / 6.0,
q2 = (6.0 * b + 30.0 * c) / 6.0,
q3 = (-b - 6.0 * c) / 6.0;
if (x < 1.0) {
return p0 + x * x * (p2 + x * p3);
} else if (x < 2.0) {
return q0 + x * (q1 + x * (q2 + x * q3));
}
return 0.0;
}
static double spline16(params *p, double x)
{
if (x < 1.0) {
return ((x - 9.0/5.0 ) * x - 1.0/5.0 ) * x + 1.0;
} else {
return ((-1.0/3.0 * (x-1) + 4.0/5.0) * (x-1) - 7.0/15.0 ) * (x-1);
}
}
static double spline36(params *p, double x)
{
if (x < 1.0) {
return ((13.0/11.0 * x - 453.0/209.0) * x - 3.0/209.0) * x + 1.0;
} else if (x < 2.0) {
return ((-6.0/11.0 * (x-1) + 270.0/209.0) * (x-1) - 156.0/ 209.0) * (x-1);
} else {
return ((1.0/11.0 * (x-2) - 45.0/209.0) * (x-2) + 26.0/209.0) * (x-2);
}
}
static double spline64(params *p, double x)
{
if (x < 1.0) {
return ((49.0/41.0 * x - 6387.0/2911.0) * x - 3.0/2911.0) * x + 1.0;
} else if (x < 2.0) {
return ((-24.0/41.0 * (x-1) + 4032.0/2911.0) * (x-1) - 2328.0/2911.0) * (x-1);
} else if (x < 3.0) {
return ((6.0/41.0 * (x-2) - 1008.0/2911.0) * (x-2) + 582.0/2911.0) * (x-2);
} else {
return ((-1.0/41.0 * (x-3) + 168.0/2911.0) * (x-3) - 97.0/2911.0) * (x-3);
}
}
static double gaussian(params *p, double x)
{
return exp(-2.0 * x * x / p->params[0]);
}
static double sinc(params *p, double x)
{
if (fabs(x) < 1e-8)
return 1.0;
x *= M_PI;
return sin(x) / x;
}
static double jinc(params *p, double x)
{
if (fabs(x) < 1e-8)
return 1.0;
x *= M_PI;
return 2.0 * j1(x) / x;
}
static double sphinx(params *p, double x)
{
if (fabs(x) < 1e-8)
return 1.0;
x *= M_PI;
return 3.0 * (sin(x) - x * cos(x)) / (x * x * x);
}
const struct filter_window mp_filter_windows[] = {
{"box", 1, box},
{"triangle", 1, triangle},
{"bartlett", 1, triangle},
{"hanning", 1, hanning},
{"tukey", 1, hanning, .taper = 0.5},
{"hamming", 1, hamming},
{"quadric", 1.5, quadric},
{"welch", 1, welch},
{"kaiser", 1, kaiser, .params = {6.33, NAN} },
{"blackman", 1, blackman, .params = {0.16, NAN} },
{"gaussian", 2, gaussian, .params = {1.00, NAN} },
{"sinc", 1, sinc},
{"jinc", 1.2196698912665045, jinc},
{"sphinx", 1.4302966531242027, sphinx},
{0}
};
const struct filter_kernel mp_filter_kernels[] = {
// Spline filters
{{"spline16", 2, spline16}},
{{"spline36", 3, spline36}},
{{"spline64", 4, spline64}},
// Sinc filters
{{"sinc", 2, sinc, .resizable = true}},
{{"lanczos", 3, sinc, .resizable = true}, .window = "sinc"},
{{"ginseng", 3, sinc, .resizable = true}, .window = "jinc"},
// Jinc filters
{{"jinc", 3, jinc, .resizable = true}, .polar = true},
{{"ewa_lanczos", 3, jinc, .resizable = true}, .polar = true, .window = "jinc"},
{{"ewa_hanning", 3, jinc, .resizable = true}, .polar = true, .window = "hanning" },
{{"ewa_ginseng", 3, jinc, .resizable = true}, .polar = true, .window = "sinc"},
// Radius is based on the true jinc radius, slightly sharpened as per
// calculations by Nicolas Robidoux. Source: Imagemagick's magick/resize.c
{{"ewa_lanczossharp", 3.2383154841662362, jinc, .blur = 0.9812505644269356,
.resizable = true}, .polar = true, .window = "jinc"},
// Similar to the above, but softened instead. This one makes hash patterns
// disappear completely. Blur determined by trial and error.
{{"ewa_lanczossoft", 3.2383154841662362, jinc, .blur = 1.015,
.resizable = true}, .polar = true, .window = "jinc"},
// Very soft (blurred) hanning-windowed jinc; removes almost all aliasing.
// Blur paramater picked to match orthogonal and diagonal contributions
{{"haasnsoft", 3.2383154841662362, jinc, .blur = 1.11, .resizable = true},
.polar = true, .window = "hanning"},
// Cubic filters
{{"bicubic", 2, bicubic}},
{{"bcspline", 2, cubic_bc, .params = {0.5, 0.5} }},
{{"catmull_rom", 2, cubic_bc, .params = {0.0, 0.5} }},
{{"mitchell", 2, cubic_bc, .params = {1.0/3.0, 1.0/3.0} }},
{{"robidoux", 2, cubic_bc, .params = {12 / (19 + 9 * M_SQRT2),
113 / (58 + 216 * M_SQRT2)} }},
{{"robidouxsharp", 2, cubic_bc, .params = {6 / (13 + 7 * M_SQRT2),
7 / (2 + 12 * M_SQRT2)} }},
{{"ewa_robidoux", 2, cubic_bc, .params = {12 / (19 + 9 * M_SQRT2),
113 / (58 + 216 * M_SQRT2)}},
.polar = true},
{{"ewa_robidouxsharp", 2,cubic_bc, .params = {6 / (13 + 7 * M_SQRT2),
7 / (2 + 12 * M_SQRT2)}},
.polar = true},
// Miscellaneous filters
{{"box", 1, box, .resizable = true}},
{{"nearest", 0.5, box}},
{{"triangle", 1, triangle, .resizable = true}},
{{"gaussian", 2, gaussian, .params = {1.0, NAN}, .resizable = true}},
{{0}}
};
|