aboutsummaryrefslogtreecommitdiffhomepage
path: root/video/csputils.c
blob: ea55d4ddbe82af1f93fdd82761597070ae93f08b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
/*
 * Common code related to colorspaces and conversion
 *
 * Copyleft (C) 2009 Reimar Döffinger <Reimar.Doeffinger@gmx.de>
 *
 * mp_invert_cmat based on DarkPlaces engine, original code (GPL2 or later)
 *
 * This file is part of mpv.
 *
 * mpv is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * mpv is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with mpv.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h"

#include <stdint.h>
#include <math.h>
#include <assert.h>
#include <libavutil/common.h>
#include <libavcodec/avcodec.h>

#include "mp_image.h"
#include "csputils.h"
#include "options/m_option.h"

const struct m_opt_choice_alternatives mp_csp_names[] = {
    {"auto",        MP_CSP_AUTO},
    {"bt.601",      MP_CSP_BT_601},
    {"bt.709",      MP_CSP_BT_709},
    {"smpte-240m",  MP_CSP_SMPTE_240M},
    {"bt.2020-ncl", MP_CSP_BT_2020_NC},
    {"bt.2020-cl",  MP_CSP_BT_2020_C},
    {"rgb",         MP_CSP_RGB},
    {"xyz",         MP_CSP_XYZ},
    {"ycgco",       MP_CSP_YCGCO},
    {0}
};

const struct m_opt_choice_alternatives mp_csp_levels_names[] = {
    {"auto",        MP_CSP_LEVELS_AUTO},
    {"limited",     MP_CSP_LEVELS_TV},
    {"full",        MP_CSP_LEVELS_PC},
    {0}
};

const struct m_opt_choice_alternatives mp_csp_prim_names[] = {
    {"auto",        MP_CSP_PRIM_AUTO},
    {"bt.601-525",  MP_CSP_PRIM_BT_601_525},
    {"bt.601-625",  MP_CSP_PRIM_BT_601_625},
    {"bt.709",      MP_CSP_PRIM_BT_709},
    {"bt.2020",     MP_CSP_PRIM_BT_2020},
    {"bt.470m",     MP_CSP_PRIM_BT_470M},
    {"apple",       MP_CSP_PRIM_APPLE},
    {"adobe",       MP_CSP_PRIM_ADOBE},
    {"prophoto",    MP_CSP_PRIM_PRO_PHOTO},
    {"cie1931",     MP_CSP_PRIM_CIE_1931},
    {"dci-p3",      MP_CSP_PRIM_DCI_P3},
    {"v-gamut",     MP_CSP_PRIM_V_GAMUT},
    {0}
};

const struct m_opt_choice_alternatives mp_csp_trc_names[] = {
    {"auto",        MP_CSP_TRC_AUTO},
    {"bt.1886",     MP_CSP_TRC_BT_1886},
    {"srgb",        MP_CSP_TRC_SRGB},
    {"linear",      MP_CSP_TRC_LINEAR},
    {"gamma1.8",    MP_CSP_TRC_GAMMA18},
    {"gamma2.2",    MP_CSP_TRC_GAMMA22},
    {"gamma2.8",    MP_CSP_TRC_GAMMA28},
    {"prophoto",    MP_CSP_TRC_PRO_PHOTO},
    {"st2084",      MP_CSP_TRC_SMPTE_ST2084},
    {"std-b67",     MP_CSP_TRC_ARIB_STD_B67},
    {"v-log",       MP_CSP_TRC_V_LOG},
    {0}
};

const char *const mp_csp_equalizer_names[MP_CSP_EQ_COUNT] = {
    "brightness",
    "contrast",
    "hue",
    "saturation",
    "gamma",
    "output-levels",
};

const struct m_opt_choice_alternatives mp_chroma_names[] = {
    {"unknown",     MP_CHROMA_AUTO},
    {"mpeg2/4/h264",MP_CHROMA_LEFT},
    {"mpeg1/jpeg",  MP_CHROMA_CENTER},
    {0}
};

// The short name _must_ match with what vf_stereo3d accepts (if supported).
// The long name in comments is closer to the Matroska spec (StereoMode element).
// The numeric index matches the Matroska StereoMode value. If you add entries
// that don't match Matroska, make sure demux_mkv.c rejects them properly.
const struct m_opt_choice_alternatives mp_stereo3d_names[] = {
    {"no",     -1}, // disable/invalid
    {"mono",    0},
    {"sbs2l",   1}, // "side_by_side_left"
    {"ab2r",    2}, // "top_bottom_right"
    {"ab2l",    3}, // "top_bottom_left"
    {"checkr",  4}, // "checkboard_right" (unsupported by vf_stereo3d)
    {"checkl",  5}, // "checkboard_left"  (unsupported by vf_stereo3d)
    {"irr",     6}, // "row_interleaved_right"
    {"irl",     7}, // "row_interleaved_left"
    {"icr",     8}, // "column_interleaved_right" (unsupported by vf_stereo3d)
    {"icl",     9}, // "column_interleaved_left" (unsupported by vf_stereo3d)
    {"arcc",   10}, // "anaglyph_cyan_red" (Matroska: unclear which mode)
    {"sbs2r",  11}, // "side_by_side_right"
    {"agmc",   12}, // "anaglyph_green_magenta" (Matroska: unclear which mode)
    {"al",     13}, // "alternating frames left first"
    {"ar",     14}, // "alternating frames right first"
    {0}
};

enum mp_csp avcol_spc_to_mp_csp(int avcolorspace)
{
    switch (avcolorspace) {
    case AVCOL_SPC_BT709:       return MP_CSP_BT_709;
    case AVCOL_SPC_BT470BG:     return MP_CSP_BT_601;
    case AVCOL_SPC_BT2020_NCL:  return MP_CSP_BT_2020_NC;
    case AVCOL_SPC_BT2020_CL:   return MP_CSP_BT_2020_C;
    case AVCOL_SPC_SMPTE170M:   return MP_CSP_BT_601;
    case AVCOL_SPC_SMPTE240M:   return MP_CSP_SMPTE_240M;
    case AVCOL_SPC_RGB:         return MP_CSP_RGB;
    case AVCOL_SPC_YCOCG:       return MP_CSP_YCGCO;
    default:                    return MP_CSP_AUTO;
    }
}

enum mp_csp_levels avcol_range_to_mp_csp_levels(int avrange)
{
    switch (avrange) {
    case AVCOL_RANGE_MPEG:      return MP_CSP_LEVELS_TV;
    case AVCOL_RANGE_JPEG:      return MP_CSP_LEVELS_PC;
    default:                    return MP_CSP_LEVELS_AUTO;
    }
}

enum mp_csp_prim avcol_pri_to_mp_csp_prim(int avpri)
{
    switch (avpri) {
    case AVCOL_PRI_SMPTE240M:   // Same as below
    case AVCOL_PRI_SMPTE170M:   return MP_CSP_PRIM_BT_601_525;
    case AVCOL_PRI_BT470BG:     return MP_CSP_PRIM_BT_601_625;
    case AVCOL_PRI_BT709:       return MP_CSP_PRIM_BT_709;
    case AVCOL_PRI_BT2020:      return MP_CSP_PRIM_BT_2020;
    case AVCOL_PRI_BT470M:      return MP_CSP_PRIM_BT_470M;
    default:                    return MP_CSP_PRIM_AUTO;
    }
}

enum mp_csp_trc avcol_trc_to_mp_csp_trc(int avtrc)
{
    switch (avtrc) {
    case AVCOL_TRC_BT709:
    case AVCOL_TRC_SMPTE170M:
    case AVCOL_TRC_SMPTE240M:
    case AVCOL_TRC_BT1361_ECG:
    case AVCOL_TRC_BT2020_10:
    case AVCOL_TRC_BT2020_12:    return MP_CSP_TRC_BT_1886;
    case AVCOL_TRC_IEC61966_2_1: return MP_CSP_TRC_SRGB;
    case AVCOL_TRC_LINEAR:       return MP_CSP_TRC_LINEAR;
    case AVCOL_TRC_GAMMA22:      return MP_CSP_TRC_GAMMA22;
    case AVCOL_TRC_GAMMA28:      return MP_CSP_TRC_GAMMA28;
#if HAVE_AVUTIL_HDR
    case AVCOL_TRC_SMPTEST2084:  return MP_CSP_TRC_SMPTE_ST2084;
    case AVCOL_TRC_ARIB_STD_B67: return MP_CSP_TRC_ARIB_STD_B67;
#endif
    default:                     return MP_CSP_TRC_AUTO;
    }
}

int mp_csp_to_avcol_spc(enum mp_csp colorspace)
{
    switch (colorspace) {
    case MP_CSP_BT_709:         return AVCOL_SPC_BT709;
    case MP_CSP_BT_601:         return AVCOL_SPC_BT470BG;
    case MP_CSP_BT_2020_NC:     return AVCOL_SPC_BT2020_NCL;
    case MP_CSP_BT_2020_C:      return AVCOL_SPC_BT2020_CL;
    case MP_CSP_SMPTE_240M:     return AVCOL_SPC_SMPTE240M;
    case MP_CSP_RGB:            return AVCOL_SPC_RGB;
    case MP_CSP_YCGCO:          return AVCOL_SPC_YCOCG;
    default:                    return AVCOL_SPC_UNSPECIFIED;
    }
}

int mp_csp_levels_to_avcol_range(enum mp_csp_levels range)
{
    switch (range) {
    case MP_CSP_LEVELS_TV:      return AVCOL_RANGE_MPEG;
    case MP_CSP_LEVELS_PC:      return AVCOL_RANGE_JPEG;
    default:                    return AVCOL_RANGE_UNSPECIFIED;
    }
}

int mp_csp_prim_to_avcol_pri(enum mp_csp_prim prim)
{
    switch (prim) {
    case MP_CSP_PRIM_BT_601_525: return AVCOL_PRI_SMPTE170M;
    case MP_CSP_PRIM_BT_601_625: return AVCOL_PRI_BT470BG;
    case MP_CSP_PRIM_BT_709:     return AVCOL_PRI_BT709;
    case MP_CSP_PRIM_BT_2020:    return AVCOL_PRI_BT2020;
    case MP_CSP_PRIM_BT_470M:    return AVCOL_PRI_BT470M;
    default:                     return AVCOL_PRI_UNSPECIFIED;
    }
}

int mp_csp_trc_to_avcol_trc(enum mp_csp_trc trc)
{
    switch (trc) {
    // We just call it BT.1886 since we're decoding, but it's still BT.709
    case MP_CSP_TRC_BT_1886:      return AVCOL_TRC_BT709;
    case MP_CSP_TRC_SRGB:         return AVCOL_TRC_IEC61966_2_1;
    case MP_CSP_TRC_LINEAR:       return AVCOL_TRC_LINEAR;
    case MP_CSP_TRC_GAMMA22:      return AVCOL_TRC_GAMMA22;
    case MP_CSP_TRC_GAMMA28:      return AVCOL_TRC_GAMMA28;
#if HAVE_AVUTIL_HDR
    case MP_CSP_TRC_SMPTE_ST2084: return AVCOL_TRC_SMPTEST2084;
    case MP_CSP_TRC_ARIB_STD_B67: return AVCOL_TRC_ARIB_STD_B67;
#endif
    default:                      return AVCOL_TRC_UNSPECIFIED;
    }
}

enum mp_csp mp_csp_guess_colorspace(int width, int height)
{
    return width >= 1280 || height > 576 ? MP_CSP_BT_709 : MP_CSP_BT_601;
}

enum mp_csp_prim mp_csp_guess_primaries(int width, int height)
{
    // HD content
    if (width >= 1280 || height > 576)
        return MP_CSP_PRIM_BT_709;

    switch (height) {
    case 576: // Typical PAL content, including anamorphic/squared
        return MP_CSP_PRIM_BT_601_625;

    case 480: // Typical NTSC content, including squared
    case 486: // NTSC Pro or anamorphic NTSC
        return MP_CSP_PRIM_BT_601_525;

    default: // No good metric, just pick BT.709 to minimize damage
        return MP_CSP_PRIM_BT_709;
    }
}

enum mp_chroma_location avchroma_location_to_mp(int avloc)
{
    switch (avloc) {
    case AVCHROMA_LOC_LEFT:             return MP_CHROMA_LEFT;
    case AVCHROMA_LOC_CENTER:           return MP_CHROMA_CENTER;
    default:                            return MP_CHROMA_AUTO;
    }
}

int mp_chroma_location_to_av(enum mp_chroma_location mploc)
{
    switch (mploc) {
    case MP_CHROMA_LEFT:                return AVCHROMA_LOC_LEFT;
    case MP_CHROMA_CENTER:              return AVCHROMA_LOC_CENTER;
    default:                            return AVCHROMA_LOC_UNSPECIFIED;
    }
}

// Return location of chroma samples relative to luma samples. 0/0 means
// centered. Other possible values are -1 (top/left) and +1 (right/bottom).
void mp_get_chroma_location(enum mp_chroma_location loc, int *x, int *y)
{
    *x = 0;
    *y = 0;
    if (loc == MP_CHROMA_LEFT)
        *x = -1;
}

void mp_invert_matrix3x3(float m[3][3])
{
    float m00 = m[0][0], m01 = m[0][1], m02 = m[0][2],
          m10 = m[1][0], m11 = m[1][1], m12 = m[1][2],
          m20 = m[2][0], m21 = m[2][1], m22 = m[2][2];

    // calculate the adjoint
    m[0][0] =  (m11 * m22 - m21 * m12);
    m[0][1] = -(m01 * m22 - m21 * m02);
    m[0][2] =  (m01 * m12 - m11 * m02);
    m[1][0] = -(m10 * m22 - m20 * m12);
    m[1][1] =  (m00 * m22 - m20 * m02);
    m[1][2] = -(m00 * m12 - m10 * m02);
    m[2][0] =  (m10 * m21 - m20 * m11);
    m[2][1] = -(m00 * m21 - m20 * m01);
    m[2][2] =  (m00 * m11 - m10 * m01);

    // calculate the determinant (as inverse == 1/det * adjoint,
    // adjoint * m == identity * det, so this calculates the det)
    float det = m00 * m[0][0] + m10 * m[0][1] + m20 * m[0][2];
    det = 1.0f / det;

    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < 3; j++)
            m[i][j] *= det;
    }
}

// A := A * B
static void mp_mul_matrix3x3(float a[3][3], float b[3][3])
{
    float a00 = a[0][0], a01 = a[0][1], a02 = a[0][2],
          a10 = a[1][0], a11 = a[1][1], a12 = a[1][2],
          a20 = a[2][0], a21 = a[2][1], a22 = a[2][2];

    for (int i = 0; i < 3; i++) {
        a[0][i] = a00 * b[0][i] + a01 * b[1][i] + a02 * b[2][i];
        a[1][i] = a10 * b[0][i] + a11 * b[1][i] + a12 * b[2][i];
        a[2][i] = a20 * b[0][i] + a21 * b[1][i] + a22 * b[2][i];
    }
}

// return the primaries associated with a certain mp_csp_primaries val
struct mp_csp_primaries mp_get_csp_primaries(enum mp_csp_prim spc)
{
    /*
    Values from: ITU-R Recommendations BT.470-6, BT.601-7, BT.709-5, BT.2020-0

    https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.470-6-199811-S!!PDF-E.pdf
    https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf
    https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.709-5-200204-I!!PDF-E.pdf
    https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2020-0-201208-I!!PDF-E.pdf

    Other colorspaces from https://en.wikipedia.org/wiki/RGB_color_space#Specifications
    */

    // CIE standard illuminant series
    static const struct mp_csp_col_xy
        d50 = {0.34577, 0.35850},
        d65 = {0.31271, 0.32902},
        c   = {0.31006, 0.31616},
        e   = {1.0/3.0, 1.0/3.0};

    switch (spc) {
    case MP_CSP_PRIM_BT_470M:
        return (struct mp_csp_primaries) {
            .red   = {0.670, 0.330},
            .green = {0.210, 0.710},
            .blue  = {0.140, 0.080},
            .white = c
        };
    case MP_CSP_PRIM_BT_601_525:
        return (struct mp_csp_primaries) {
            .red   = {0.630, 0.340},
            .green = {0.310, 0.595},
            .blue  = {0.155, 0.070},
            .white = d65
        };
    case MP_CSP_PRIM_BT_601_625:
        return (struct mp_csp_primaries) {
            .red   = {0.640, 0.330},
            .green = {0.290, 0.600},
            .blue  = {0.150, 0.060},
            .white = d65
        };
    // This is the default assumption if no colorspace information could
    // be determined, eg. for files which have no video channel.
    case MP_CSP_PRIM_AUTO:
    case MP_CSP_PRIM_BT_709:
        return (struct mp_csp_primaries) {
            .red   = {0.640, 0.330},
            .green = {0.300, 0.600},
            .blue  = {0.150, 0.060},
            .white = d65
        };
    case MP_CSP_PRIM_BT_2020:
        return (struct mp_csp_primaries) {
            .red   = {0.708, 0.292},
            .green = {0.170, 0.797},
            .blue  = {0.131, 0.046},
            .white = d65
        };
    case MP_CSP_PRIM_APPLE:
        return (struct mp_csp_primaries) {
            .red   = {0.625, 0.340},
            .green = {0.280, 0.595},
            .blue  = {0.115, 0.070},
            .white = d65
        };
    case MP_CSP_PRIM_ADOBE:
        return (struct mp_csp_primaries) {
            .red   = {0.640, 0.330},
            .green = {0.210, 0.710},
            .blue  = {0.150, 0.060},
            .white = d65
        };
    case MP_CSP_PRIM_PRO_PHOTO:
        return (struct mp_csp_primaries) {
            .red   = {0.7347, 0.2653},
            .green = {0.1596, 0.8404},
            .blue  = {0.0366, 0.0001},
            .white = d50
        };
    case MP_CSP_PRIM_CIE_1931:
        return (struct mp_csp_primaries) {
            .red   = {0.7347, 0.2653},
            .green = {0.2738, 0.7174},
            .blue  = {0.1666, 0.0089},
            .white = e
        };
    // From SMPTE RP 431-2
    case MP_CSP_PRIM_DCI_P3:
        return (struct mp_csp_primaries) {
            .red   = {0.680, 0.320},
            .green = {0.265, 0.690},
            .blue  = {0.150, 0.060},
            .white = d65
        };
    // From Panasonic VARICAM reference manual
    case MP_CSP_PRIM_V_GAMUT:
        return (struct mp_csp_primaries) {
            .red   = {0.730, 0.280},
            .green = {0.165, 0.840},
            .blue  = {0.100, -0.03},
            .white = d65
        };
    default:
        return (struct mp_csp_primaries) {{0}};
    }
}

// Get the nominal peak for a given colorspace, based on a known reference peak
// (i.e. the display of a reference white illuminant. This may or may not
// be the actual signal peak)
float mp_csp_trc_nom_peak(enum mp_csp_trc trc, float ref_peak)
{
    switch (trc) {
    case MP_CSP_TRC_SMPTE_ST2084: return 10000; // fixed peak
    case MP_CSP_TRC_ARIB_STD_B67: return 12.0 * ref_peak;
    case MP_CSP_TRC_V_LOG:        return 46.0855 * ref_peak;
    }

    return ref_peak;
}

bool mp_trc_is_hdr(enum mp_csp_trc trc)
{
    switch (trc) {
    case MP_CSP_TRC_SMPTE_ST2084:
    case MP_CSP_TRC_ARIB_STD_B67:
    case MP_CSP_TRC_V_LOG:
        return true;
    }

    return false;
}

// Compute the RGB/XYZ matrix as described here:
// http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
static void mp_get_rgb2xyz_matrix(struct mp_csp_primaries space, float m[3][3])
{
    float S[3], X[4], Z[4];

    // Convert from CIE xyY to XYZ. Note that Y=1 holds true for all primaries
    X[0] = space.red.x   / space.red.y;
    X[1] = space.green.x / space.green.y;
    X[2] = space.blue.x  / space.blue.y;
    X[3] = space.white.x / space.white.y;

    Z[0] = (1 - space.red.x   - space.red.y)   / space.red.y;
    Z[1] = (1 - space.green.x - space.green.y) / space.green.y;
    Z[2] = (1 - space.blue.x  - space.blue.y)  / space.blue.y;
    Z[3] = (1 - space.white.x - space.white.y) / space.white.y;

    // S = XYZ^-1 * W
    for (int i = 0; i < 3; i++) {
        m[0][i] = X[i];
        m[1][i] = 1;
        m[2][i] = Z[i];
    }

    mp_invert_matrix3x3(m);

    for (int i = 0; i < 3; i++)
        S[i] = m[i][0] * X[3] + m[i][1] * 1 + m[i][2] * Z[3];

    // M = [Sc * XYZc]
    for (int i = 0; i < 3; i++) {
        m[0][i] = S[i] * X[i];
        m[1][i] = S[i] * 1;
        m[2][i] = S[i] * Z[i];
    }
}

// M := M * XYZd<-XYZs
static void mp_apply_chromatic_adaptation(struct mp_csp_col_xy src,
                                          struct mp_csp_col_xy dest, float m[3][3])
{
    // If the white points are nearly identical, this is a wasteful identity
    // operation.
    if (fabs(src.x - dest.x) < 1e-6 && fabs(src.y - dest.y) < 1e-6)
        return;

    // XYZd<-XYZs = Ma^-1 * (I*[Cd/Cs]) * Ma
    // http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html
    float C[3][2], tmp[3][3] = {{0}};

    // Ma = Bradford matrix, arguably most popular method in use today.
    // This is derived experimentally and thus hard-coded.
    float bradford[3][3] = {
        {  0.8951,  0.2664, -0.1614 },
        { -0.7502,  1.7135,  0.0367 },
        {  0.0389, -0.0685,  1.0296 },
    };

    for (int i = 0; i < 3; i++) {
        // source cone
        C[i][0] = bradford[i][0] * src.x / src.y
                + bradford[i][1] * 1
                + bradford[i][2] * (1 - src.x - src.y) / src.y;

        // dest cone
        C[i][1] = bradford[i][0] * dest.x / dest.y
                + bradford[i][1] * 1
                + bradford[i][2] * (1 - dest.x - dest.y) / dest.y;
    }

    // tmp := I * [Cd/Cs] * Ma
    for (int i = 0; i < 3; i++)
        tmp[i][i] = C[i][1] / C[i][0];

    mp_mul_matrix3x3(tmp, bradford);

    // M := M * Ma^-1 * tmp
    mp_invert_matrix3x3(bradford);
    mp_mul_matrix3x3(m, bradford);
    mp_mul_matrix3x3(m, tmp);
}

// get the coefficients of the source -> dest cms matrix
void mp_get_cms_matrix(struct mp_csp_primaries src, struct mp_csp_primaries dest,
                       enum mp_render_intent intent, float m[3][3])
{
    float tmp[3][3];

    // In saturation mapping, we don't care about accuracy and just want
    // primaries to map to primaries, making this an identity transformation.
    if (intent == MP_INTENT_SATURATION) {
        for (int i = 0; i < 3; i++)
            m[i][i] = 1;
        return;
    }

    // RGBd<-RGBs = RGBd<-XYZd * XYZd<-XYZs * XYZs<-RGBs
    // Equations from: http://www.brucelindbloom.com/index.html?Math.html
    // Note: Perceptual is treated like relative colorimetric. There's no
    // definition for perceptual other than "make it look good".

    // RGBd<-XYZd, inverted from XYZd<-RGBd
    mp_get_rgb2xyz_matrix(dest, m);
    mp_invert_matrix3x3(m);

    // Chromatic adaptation, except in absolute colorimetric intent
    if (intent != MP_INTENT_ABSOLUTE_COLORIMETRIC)
        mp_apply_chromatic_adaptation(src.white, dest.white, m);

    // XYZs<-RGBs
    mp_get_rgb2xyz_matrix(src, tmp);
    mp_mul_matrix3x3(m, tmp);
}

// get the coefficients of an SMPTE 428-1 xyz -> rgb conversion matrix
// intent = the rendering intent used to convert to the target primaries
static void mp_get_xyz2rgb_coeffs(struct mp_csp_params *params,
                                  enum mp_render_intent intent, struct mp_cmat *m)
{
    struct mp_csp_primaries prim = mp_get_csp_primaries(params->color.primaries);
    float brightness = params->brightness;
    mp_get_rgb2xyz_matrix(prim, m->m);
    mp_invert_matrix3x3(m->m);

    // All non-absolute mappings want to map source white to target white
    if (intent != MP_INTENT_ABSOLUTE_COLORIMETRIC) {
        // SMPTE 428-1 defines the calibration white point as CIE xy (0.314, 0.351)
        static const struct mp_csp_col_xy smpte428 = {0.314, 0.351};
        mp_apply_chromatic_adaptation(smpte428, prim.white, m->m);
    }

    // Since this outputs linear RGB rather than companded RGB, we
    // want to linearize any brightness additions. 2 is a reasonable
    // approximation for any sort of gamma function that could be in use.
    // As this is an aesthetic setting only, any exact values do not matter.
    brightness *= fabs(brightness);

    for (int i = 0; i < 3; i++)
        m->c[i] = brightness;
}

// Get multiplication factor required if image data is fit within the LSBs of a
// higher smaller bit depth isfixed-point texture data.
double mp_get_csp_mul(enum mp_csp csp, int input_bits, int texture_bits)
{
    assert(texture_bits >= input_bits);

    // Convenience for some irrelevant cases, e.g. rgb565 or disabling expansion.
    if (!input_bits)
        return 1;

    // RGB always uses the full range available.
    if (csp == MP_CSP_RGB)
        return ((1LL << input_bits) - 1.) / ((1LL << texture_bits) - 1.);

    if (csp == MP_CSP_XYZ)
        return 1;

    // High bit depth YUV uses a range shifted from 8 bit.
    return (1LL << input_bits) / ((1LL << texture_bits) - 1.) * 255 / 256;
}

/* Fill in the Y, U, V vectors of a yuv-to-rgb conversion matrix
 * based on the given luma weights of the R, G and B components (lr, lg, lb).
 * lr+lg+lb is assumed to equal 1.
 * This function is meant for colorspaces satisfying the following
 * conditions (which are true for common YUV colorspaces):
 * - The mapping from input [Y, U, V] to output [R, G, B] is linear.
 * - Y is the vector [1, 1, 1].  (meaning input Y component maps to 1R+1G+1B)
 * - U maps to a value with zero R and positive B ([0, x, y], y > 0;
 *   i.e. blue and green only).
 * - V maps to a value with zero B and positive R ([x, y, 0], x > 0;
 *   i.e. red and green only).
 * - U and V are orthogonal to the luma vector [lr, lg, lb].
 * - The magnitudes of the vectors U and V are the minimal ones for which
 *   the image of the set Y=[0...1],U=[-0.5...0.5],V=[-0.5...0.5] under the
 *   conversion function will cover the set R=[0...1],G=[0...1],B=[0...1]
 *   (the resulting matrix can be converted for other input/output ranges
 *   outside this function).
 * Under these conditions the given parameters lr, lg, lb uniquely
 * determine the mapping of Y, U, V to R, G, B.
 */
static void luma_coeffs(struct mp_cmat *mat, float lr, float lg, float lb)
{
    assert(fabs(lr+lg+lb - 1) < 1e-6);
    *mat = (struct mp_cmat) {
        { {1, 0,                    2 * (1-lr)          },
          {1, -2 * (1-lb) * lb/lg, -2 * (1-lr) * lr/lg  },
          {1,  2 * (1-lb),          0                   } },
        // Constant coefficients (mat->c) not set here
    };
}

// get the coefficients of the yuv -> rgb conversion matrix
void mp_get_csp_matrix(struct mp_csp_params *params, struct mp_cmat *m)
{
    enum mp_csp colorspace = params->color.space;
    if (colorspace <= MP_CSP_AUTO || colorspace >= MP_CSP_COUNT)
        colorspace = MP_CSP_BT_601;
    enum mp_csp_levels levels_in = params->color.levels;
    if (levels_in <= MP_CSP_LEVELS_AUTO || levels_in >= MP_CSP_LEVELS_COUNT)
        levels_in = MP_CSP_LEVELS_TV;

    switch (colorspace) {
    case MP_CSP_BT_601:     luma_coeffs(m, 0.299,  0.587,  0.114 ); break;
    case MP_CSP_BT_709:     luma_coeffs(m, 0.2126, 0.7152, 0.0722); break;
    case MP_CSP_SMPTE_240M: luma_coeffs(m, 0.2122, 0.7013, 0.0865); break;
    case MP_CSP_BT_2020_NC: luma_coeffs(m, 0.2627, 0.6780, 0.0593); break;
    case MP_CSP_BT_2020_C: {
        // Note: This outputs into the [-0.5,0.5] range for chroma information.
        // If this clips on any VO, a constant 0.5 coefficient can be added
        // to the chroma channels to normalize them into [0,1]. This is not
        // currently needed by anything, though.
        *m = (struct mp_cmat){{{0, 0, 1}, {1, 0, 0}, {0, 1, 0}}};
        break;
    }
    case MP_CSP_RGB: {
        *m = (struct mp_cmat){{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}};
        levels_in = -1;
        break;
    }
    case MP_CSP_XYZ: {
        // The vo should probably not be using a matrix generated by this
        // function for XYZ sources, but if it does, let's just assume it
        // wants BT.709 with D65 white point (virtually all other content).
        mp_get_xyz2rgb_coeffs(params, MP_INTENT_RELATIVE_COLORIMETRIC, m);
        levels_in = -1;
        break;
    }
    case MP_CSP_YCGCO: {
        *m = (struct mp_cmat) {
            {{1,  -1,  1},
             {1,   1,  0},
             {1,  -1, -1}},
        };
        break;
    }
    default:
        abort();
    };

    if ((colorspace == MP_CSP_BT_601 || colorspace == MP_CSP_BT_709 ||
         colorspace == MP_CSP_SMPTE_240M || colorspace == MP_CSP_BT_2020_NC))
    {
        // Hue is equivalent to rotating input [U, V] subvector around the origin.
        // Saturation scales [U, V].
        float huecos = params->gray ? 0 : params->saturation * cos(params->hue);
        float huesin = params->gray ? 0 : params->saturation * sin(params->hue);
        for (int i = 0; i < 3; i++) {
            float u = m->m[i][1], v = m->m[i][2];
            m->m[i][1] = huecos * u - huesin * v;
            m->m[i][2] = huesin * u + huecos * v;
        }
    }

    // The values below are written in 0-255 scale - thus bring s into range.
    double s =
        mp_get_csp_mul(colorspace, params->input_bits, params->texture_bits) / 255;
    // NOTE: The yuvfull ranges as presented here are arguably ambiguous,
    // and conflict with at least the full-range YCbCr/ICtCp values as defined
    // by ITU-R BT.2100. If somebody ever complains about full-range YUV looking
    // different from their reference display, this comment is probably why.
    struct yuvlevels { double ymin, ymax, cmin, cmid; }
        yuvlim =  { 16*s, 235*s, 16*s, 128*s },
        yuvfull = {  0*s, 255*s,  1*s, 128*s },  // '1' for symmetry around 128
        anyfull = {  0*s, 255*s, -255*s/2, 0 },
        yuvlev;
    switch (levels_in) {
    case MP_CSP_LEVELS_TV: yuvlev = yuvlim; break;
    case MP_CSP_LEVELS_PC: yuvlev = yuvfull; break;
    case -1: yuvlev = anyfull; break;
    default:
        abort();
    }

    int levels_out = params->levels_out;
    if (levels_out <= MP_CSP_LEVELS_AUTO || levels_out >= MP_CSP_LEVELS_COUNT)
        levels_out = MP_CSP_LEVELS_PC;
    struct rgblevels { double min, max; }
        rgblim =  { 16/255., 235/255. },
        rgbfull = {      0,        1  },
        rgblev;
    switch (levels_out) {
    case MP_CSP_LEVELS_TV: rgblev = rgblim; break;
    case MP_CSP_LEVELS_PC: rgblev = rgbfull; break;
    default:
        abort();
    }

    double ymul = (rgblev.max - rgblev.min) / (yuvlev.ymax - yuvlev.ymin);
    double cmul = (rgblev.max - rgblev.min) / (yuvlev.cmid - yuvlev.cmin) / 2;

    // Contrast scales the output value range (gain)
    ymul *= params->contrast;
    cmul *= params->contrast;

    for (int i = 0; i < 3; i++) {
        m->m[i][0] *= ymul;
        m->m[i][1] *= cmul;
        m->m[i][2] *= cmul;
        // Set c so that Y=umin,UV=cmid maps to RGB=min (black to black),
        // also add brightness offset (black lift)
        m->c[i] = rgblev.min - m->m[i][0] * yuvlev.ymin
                  - (m->m[i][1] + m->m[i][2]) * yuvlev.cmid
                  + params->brightness;
    }
}

// Set colorspace related fields in p from f. Don't touch other fields.
void mp_csp_set_image_params(struct mp_csp_params *params,
                             const struct mp_image_params *imgparams)
{
    struct mp_image_params p = *imgparams;
    mp_image_params_guess_csp(&p); // ensure consistency
    params->color = p.color;
}

bool mp_colorspace_equal(struct mp_colorspace c1, struct mp_colorspace c2)
{
    return c1.space == c2.space &&
           c1.levels == c2.levels &&
           c1.primaries == c2.primaries &&
           c1.gamma == c2.gamma &&
           c1.sig_peak == c2.sig_peak &&
           c1.nom_peak == c2.nom_peak;
}

// Copy settings from eq into params.
void mp_csp_copy_equalizer_values(struct mp_csp_params *params,
                                  const struct mp_csp_equalizer *eq)
{
    params->brightness = eq->values[MP_CSP_EQ_BRIGHTNESS] / 100.0;
    params->contrast = (eq->values[MP_CSP_EQ_CONTRAST] + 100) / 100.0;
    params->hue = eq->values[MP_CSP_EQ_HUE] / 100.0 * M_PI;
    params->saturation = (eq->values[MP_CSP_EQ_SATURATION] + 100) / 100.0;
    params->gamma = exp(log(8.0) * eq->values[MP_CSP_EQ_GAMMA] / 100.0);
    params->levels_out = eq->values[MP_CSP_EQ_OUTPUT_LEVELS];
}

static int find_eq(int capabilities, const char *name)
{
    for (int i = 0; i < MP_CSP_EQ_COUNT; i++) {
        if (strcmp(name, mp_csp_equalizer_names[i]) == 0)
            return ((1 << i) & capabilities) ? i : -1;
    }
    return -1;
}

int mp_csp_equalizer_get(struct mp_csp_equalizer *eq, const char *property,
                         int *out_value)
{
    int index = find_eq(eq->capabilities, property);
    if (index < 0)
        return -1;

    *out_value = eq->values[index];

    return 0;
}

int mp_csp_equalizer_set(struct mp_csp_equalizer *eq, const char *property,
                         int value)
{
    int index = find_eq(eq->capabilities, property);
    if (index < 0)
        return 0;

    eq->values[index] = value;

    return 1;
}

void mp_invert_cmat(struct mp_cmat *out, struct mp_cmat *in)
{
    *out = *in;
    mp_invert_matrix3x3(out->m);

    // fix the constant coefficient
    // rgb = M * yuv + C
    // M^-1 * rgb = yuv + M^-1 * C
    // yuv = M^-1 * rgb - M^-1 * C
    //                  ^^^^^^^^^^
    out->c[0] = -(out->m[0][0] * in->c[0] + out->m[0][1] * in->c[1] + out->m[0][2] * in->c[2]);
    out->c[1] = -(out->m[1][0] * in->c[0] + out->m[1][1] * in->c[1] + out->m[1][2] * in->c[2]);
    out->c[2] = -(out->m[2][0] * in->c[0] + out->m[2][1] * in->c[1] + out->m[2][2] * in->c[2]);
}

// Multiply the color in c with the given matrix.
// i/o is {R, G, B} or {Y, U, V} (depending on input/output and matrix), using
// a fixed point representation with the given number of bits (so for bits==8,
// [0,255] maps to [0,1]). The output is clipped to the range as needed.
void mp_map_fixp_color(struct mp_cmat *matrix, int ibits, int in[3],
                                               int obits, int out[3])
{
    for (int i = 0; i < 3; i++) {
        double val = matrix->c[i];
        for (int x = 0; x < 3; x++)
            val += matrix->m[i][x] * in[x] / ((1 << ibits) - 1);
        int ival = lrint(val * ((1 << obits) - 1));
        out[i] = av_clip(ival, 0, (1 << obits) - 1);
    }
}