aboutsummaryrefslogtreecommitdiffhomepage
path: root/libfaad2/specrec.c
blob: da28b7039035d42c266222dc5edd8bf78cbbf77c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Initially modified for use with MPlayer on 2006/04/18
** $Id: specrec.c,v 1.56 2004/09/08 09:43:11 gcp Exp $
** detailed changelog at http://svn.mplayerhq.hu/mplayer/trunk/
** local_changes.diff contains the exact changes to this file.
**/

/*
  Spectral reconstruction:
   - grouping/sectioning
   - inverse quantization
   - applying scalefactors
*/

#include "common.h"
#include "structs.h"

#include <string.h>
#include <stdlib.h>
#include "specrec.h"
#include "filtbank.h"
#include "syntax.h"
#include "iq_table.h"
#include "ms.h"
#include "is.h"
#include "pns.h"
#include "tns.h"
#include "drc.h"
#include "lt_predict.h"
#include "ic_predict.h"
#ifdef SSR_DEC
#include "ssr.h"
#include "ssr_fb.h"
#endif


/* static function declarations */
static uint8_t quant_to_spec(NeAACDecHandle hDecoder,
                             ic_stream *ics, int16_t *quant_data,
                             real_t *spec_data, uint16_t frame_len);


#ifdef LD_DEC
ALIGN static const uint8_t num_swb_512_window[] =
{
    0, 0, 0, 36, 36, 37, 31, 31, 0, 0, 0, 0
};
ALIGN static const uint8_t num_swb_480_window[] =
{
    0, 0, 0, 35, 35, 37, 30, 30, 0, 0, 0, 0
};
#endif

ALIGN static const uint8_t num_swb_960_window[] =
{
    40, 40, 45, 49, 49, 49, 46, 46, 42, 42, 42, 40
};

ALIGN static const uint8_t num_swb_1024_window[] =
{
    41, 41, 47, 49, 49, 51, 47, 47, 43, 43, 43, 40
};

ALIGN static const uint8_t num_swb_128_window[] =
{
    12, 12, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15
};

ALIGN static const uint16_t swb_offset_1024_96[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56,
    64, 72, 80, 88, 96, 108, 120, 132, 144, 156, 172, 188, 212, 240,
    276, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024
};

ALIGN static const uint16_t swb_offset_128_96[] =
{
    0, 4, 8, 12, 16, 20, 24, 32, 40, 48, 64, 92, 128
};

ALIGN static const uint16_t swb_offset_1024_64[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56,
    64, 72, 80, 88, 100, 112, 124, 140, 156, 172, 192, 216, 240, 268,
    304, 344, 384, 424, 464, 504, 544, 584, 624, 664, 704, 744, 784, 824,
    864, 904, 944, 984, 1024
};

ALIGN static const uint16_t swb_offset_128_64[] =
{
    0, 4, 8, 12, 16, 20, 24, 32, 40, 48, 64, 92, 128
};

ALIGN static const uint16_t swb_offset_1024_48[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72,
    80, 88, 96, 108, 120, 132, 144, 160, 176, 196, 216, 240, 264, 292,
    320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736,
    768, 800, 832, 864, 896, 928, 1024
};

#ifdef LD_DEC
ALIGN static const uint16_t swb_offset_512_48[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 68, 76, 84,
    92, 100, 112, 124, 136, 148, 164, 184, 208, 236, 268, 300, 332, 364, 396,
    428, 460, 512
};

ALIGN static const uint16_t swb_offset_480_48[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72 ,80 ,88,
    96, 108, 120, 132, 144, 156, 172, 188, 212, 240, 272, 304, 336, 368, 400,
    432, 480
};
#endif

ALIGN static const uint16_t swb_offset_128_48[] =
{
    0, 4, 8, 12, 16, 20, 28, 36, 44, 56, 68, 80, 96, 112, 128
};

ALIGN static const uint16_t swb_offset_1024_32[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72,
    80, 88, 96, 108, 120, 132, 144, 160, 176, 196, 216, 240, 264, 292,
    320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736,
    768, 800, 832, 864, 896, 928, 960, 992, 1024
};

#ifdef LD_DEC
ALIGN static const uint16_t swb_offset_512_32[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 72, 80,
    88, 96, 108, 120, 132, 144, 160, 176, 192, 212, 236, 260, 288, 320, 352,
    384, 416, 448, 480, 512
};

ALIGN static const uint16_t swb_offset_480_32[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 72, 80,
    88, 96, 104, 112, 124, 136, 148, 164, 180, 200, 224, 256, 288, 320, 352,
    384, 416, 448, 480
};
#endif

ALIGN static const uint16_t swb_offset_1024_24[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68,
    76, 84, 92, 100, 108, 116, 124, 136, 148, 160, 172, 188, 204, 220,
    240, 260, 284, 308, 336, 364, 396, 432, 468, 508, 552, 600, 652, 704,
    768, 832, 896, 960, 1024
};

#ifdef LD_DEC
ALIGN static const uint16_t swb_offset_512_24[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68,
    80, 92, 104, 120, 140, 164, 192, 224, 256, 288, 320, 352, 384, 416,
    448, 480, 512
};

ALIGN static const uint16_t swb_offset_480_24[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 52, 60, 68, 80, 92, 104, 120,
    140, 164, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480
};
#endif

ALIGN static const uint16_t swb_offset_128_24[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 36, 44, 52, 64, 76, 92, 108, 128
};

ALIGN static const uint16_t swb_offset_1024_16[] =
{
    0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 100, 112, 124,
    136, 148, 160, 172, 184, 196, 212, 228, 244, 260, 280, 300, 320, 344,
    368, 396, 424, 456, 492, 532, 572, 616, 664, 716, 772, 832, 896, 960, 1024
};

ALIGN static const uint16_t swb_offset_128_16[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 32, 40, 48, 60, 72, 88, 108, 128
};

ALIGN static const uint16_t swb_offset_1024_8[] =
{
    0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 172,
    188, 204, 220, 236, 252, 268, 288, 308, 328, 348, 372, 396, 420, 448,
    476, 508, 544, 580, 620, 664, 712, 764, 820, 880, 944, 1024
};

ALIGN static const uint16_t swb_offset_128_8[] =
{
    0, 4, 8, 12, 16, 20, 24, 28, 36, 44, 52, 60, 72, 88, 108, 128
};

ALIGN static const uint16_t *swb_offset_1024_window[] =
{
    swb_offset_1024_96,      /* 96000 */
    swb_offset_1024_96,      /* 88200 */
    swb_offset_1024_64,      /* 64000 */
    swb_offset_1024_48,      /* 48000 */
    swb_offset_1024_48,      /* 44100 */
    swb_offset_1024_32,      /* 32000 */
    swb_offset_1024_24,      /* 24000 */
    swb_offset_1024_24,      /* 22050 */
    swb_offset_1024_16,      /* 16000 */
    swb_offset_1024_16,      /* 12000 */
    swb_offset_1024_16,      /* 11025 */
    swb_offset_1024_8        /* 8000  */
};

#ifdef LD_DEC
ALIGN static const uint16_t *swb_offset_512_window[] =
{
    0,                       /* 96000 */
    0,                       /* 88200 */
    0,                       /* 64000 */
    swb_offset_512_48,       /* 48000 */
    swb_offset_512_48,       /* 44100 */
    swb_offset_512_32,       /* 32000 */
    swb_offset_512_24,       /* 24000 */
    swb_offset_512_24,       /* 22050 */
    0,                       /* 16000 */
    0,                       /* 12000 */
    0,                       /* 11025 */
    0                        /* 8000  */
};

ALIGN static const uint16_t *swb_offset_480_window[] =
{
    0,                       /* 96000 */
    0,                       /* 88200 */
    0,                       /* 64000 */
    swb_offset_480_48,       /* 48000 */
    swb_offset_480_48,       /* 44100 */
    swb_offset_480_32,       /* 32000 */
    swb_offset_480_24,       /* 24000 */
    swb_offset_480_24,       /* 22050 */
    0,                       /* 16000 */
    0,                       /* 12000 */
    0,                       /* 11025 */
    0                        /* 8000  */
};
#endif

ALIGN static const  uint16_t *swb_offset_128_window[] =
{
    swb_offset_128_96,       /* 96000 */
    swb_offset_128_96,       /* 88200 */
    swb_offset_128_64,       /* 64000 */
    swb_offset_128_48,       /* 48000 */
    swb_offset_128_48,       /* 44100 */
    swb_offset_128_48,       /* 32000 */
    swb_offset_128_24,       /* 24000 */
    swb_offset_128_24,       /* 22050 */
    swb_offset_128_16,       /* 16000 */
    swb_offset_128_16,       /* 12000 */
    swb_offset_128_16,       /* 11025 */
    swb_offset_128_8         /* 8000  */
};

#define bit_set(A, B) ((A) & (1<<(B)))

/* 4.5.2.3.4 */
/*
  - determine the number of windows in a window_sequence named num_windows
  - determine the number of window_groups named num_window_groups
  - determine the number of windows in each group named window_group_length[g]
  - determine the total number of scalefactor window bands named num_swb for
    the actual window type
  - determine swb_offset[swb], the offset of the first coefficient in
    scalefactor window band named swb of the window actually used
  - determine sect_sfb_offset[g][section],the offset of the first coefficient
    in section named section. This offset depends on window_sequence and
    scale_factor_grouping and is needed to decode the spectral_data().
*/
uint8_t window_grouping_info(NeAACDecHandle hDecoder, ic_stream *ics)
{
    uint8_t i, g;

    uint8_t sf_index = hDecoder->sf_index;

    switch (ics->window_sequence) {
    case ONLY_LONG_SEQUENCE:
    case LONG_START_SEQUENCE:
    case LONG_STOP_SEQUENCE:
        ics->num_windows = 1;
        ics->num_window_groups = 1;
        ics->window_group_length[ics->num_window_groups-1] = 1;
#ifdef LD_DEC
        if (hDecoder->object_type == LD)
        {
            if (hDecoder->frameLength == 512)
                ics->num_swb = num_swb_512_window[sf_index];
            else /* if (hDecoder->frameLength == 480) */
                ics->num_swb = num_swb_480_window[sf_index];
        } else {
#endif
            if (hDecoder->frameLength == 1024)
                ics->num_swb = num_swb_1024_window[sf_index];
            else /* if (hDecoder->frameLength == 960) */
                ics->num_swb = num_swb_960_window[sf_index];
#ifdef LD_DEC
        }
#endif

        /* preparation of sect_sfb_offset for long blocks */
        /* also copy the last value! */
#ifdef LD_DEC
        if (hDecoder->object_type == LD)
        {
            if (hDecoder->frameLength == 512)
            {
                for (i = 0; i < ics->num_swb; i++)
                {
                    ics->sect_sfb_offset[0][i] = swb_offset_512_window[sf_index][i];
                    ics->swb_offset[i] = swb_offset_512_window[sf_index][i];
                }
            } else /* if (hDecoder->frameLength == 480) */ {
                for (i = 0; i < ics->num_swb; i++)
                {
                    ics->sect_sfb_offset[0][i] = swb_offset_480_window[sf_index][i];
                    ics->swb_offset[i] = swb_offset_480_window[sf_index][i];
                }
            }
            ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength;
            ics->swb_offset[ics->num_swb] = hDecoder->frameLength;
        } else {
#endif
            for (i = 0; i < ics->num_swb; i++)
            {
                ics->sect_sfb_offset[0][i] = swb_offset_1024_window[sf_index][i];
                ics->swb_offset[i] = swb_offset_1024_window[sf_index][i];
            }
            ics->sect_sfb_offset[0][ics->num_swb] = hDecoder->frameLength;
            ics->swb_offset[ics->num_swb] = hDecoder->frameLength;
#ifdef LD_DEC
        }
#endif
        return 0;
    case EIGHT_SHORT_SEQUENCE:
        ics->num_windows = 8;
        ics->num_window_groups = 1;
        ics->window_group_length[ics->num_window_groups-1] = 1;
        ics->num_swb = num_swb_128_window[sf_index];

        for (i = 0; i < ics->num_swb; i++)
            ics->swb_offset[i] = swb_offset_128_window[sf_index][i];
        ics->swb_offset[ics->num_swb] = hDecoder->frameLength/8;

        for (i = 0; i < ics->num_windows-1; i++) {
            if (bit_set(ics->scale_factor_grouping, 6-i) == 0)
            {
                ics->num_window_groups += 1;
                ics->window_group_length[ics->num_window_groups-1] = 1;
            } else {
                ics->window_group_length[ics->num_window_groups-1] += 1;
            }
        }

        /* preparation of sect_sfb_offset for short blocks */
        for (g = 0; g < ics->num_window_groups; g++)
        {
            uint16_t width;
            uint8_t sect_sfb = 0;
            uint16_t offset = 0;

            for (i = 0; i < ics->num_swb; i++)
            {
                if (i+1 == ics->num_swb)
                {
                    width = (hDecoder->frameLength/8) - swb_offset_128_window[sf_index][i];
                } else {
                    width = swb_offset_128_window[sf_index][i+1] -
                        swb_offset_128_window[sf_index][i];
                }
                width *= ics->window_group_length[g];
                ics->sect_sfb_offset[g][sect_sfb++] = offset;
                offset += width;
            }
            ics->sect_sfb_offset[g][sect_sfb] = offset;
        }
        return 0;
    default:
        return 1;
    }
}

/* iquant() *
/* output = sign(input)*abs(input)^(4/3) */
/**/
static INLINE real_t iquant(int16_t q, const real_t *tab, uint8_t *error)
{
#ifdef FIXED_POINT
/* For FIXED_POINT the iq_table is prescaled by 3 bits (iq_table[]/8) */
/* BIG_IQ_TABLE allows you to use the full 8192 value table, if this is not
 * defined a 1026 value table and interpolation will be used
 */
#ifndef BIG_IQ_TABLE
    static const real_t errcorr[] = {
        REAL_CONST(0), REAL_CONST(1.0/8.0), REAL_CONST(2.0/8.0), REAL_CONST(3.0/8.0),
        REAL_CONST(4.0/8.0),  REAL_CONST(5.0/8.0), REAL_CONST(6.0/8.0), REAL_CONST(7.0/8.0),
        REAL_CONST(0)
    };
    real_t x1, x2;
#endif
    int16_t sgn = 1;

    if (q < 0)
    {
        q = -q;
        sgn = -1;
    }

    if (q < IQ_TABLE_SIZE)
    {
//#define IQUANT_PRINT
#ifdef IQUANT_PRINT
        //printf("0x%.8X\n", sgn * tab[q]);
        printf("%d\n", sgn * tab[q]);
#endif
        return sgn * tab[q];
    }

#ifndef BIG_IQ_TABLE
    if (q >= 8192)
    {
        *error = 17;
        return 0;
    }

    /* linear interpolation */
    x1 = tab[q>>3];
    x2 = tab[(q>>3) + 1];
    return sgn * 16 * (MUL_R(errcorr[q&7],(x2-x1)) + x1);
#else
    *error = 17;
    return 0;
#endif

#else
    if (q < 0)
    {
        /* tab contains a value for all possible q [0,8192] */
        if (-q < IQ_TABLE_SIZE)
            return -tab[-q];

        *error = 17;
        return 0;
    } else {
        /* tab contains a value for all possible q [0,8192] */
        if (q < IQ_TABLE_SIZE)
            return tab[q];

        *error = 17;
        return 0;
    }
#endif
}

#ifndef FIXED_POINT
ALIGN static const real_t pow2sf_tab[] = {
    2.9802322387695313E-008, 5.9604644775390625E-008, 1.1920928955078125E-007,
    2.384185791015625E-007, 4.76837158203125E-007, 9.5367431640625E-007,
    1.9073486328125E-006, 3.814697265625E-006, 7.62939453125E-006,
    1.52587890625E-005, 3.0517578125E-005, 6.103515625E-005,
    0.0001220703125, 0.000244140625, 0.00048828125,
    0.0009765625, 0.001953125, 0.00390625,
    0.0078125, 0.015625, 0.03125,
    0.0625, 0.125, 0.25,
    0.5, 1.0, 2.0,
    4.0, 8.0, 16.0, 32.0,
    64.0, 128.0, 256.0,
    512.0, 1024.0, 2048.0,
    4096.0, 8192.0, 16384.0,
    32768.0, 65536.0, 131072.0,
    262144.0, 524288.0, 1048576.0,
    2097152.0, 4194304.0, 8388608.0,
    16777216.0, 33554432.0, 67108864.0,
    134217728.0, 268435456.0, 536870912.0,
    1073741824.0, 2147483648.0, 4294967296.0,
    8589934592.0, 17179869184.0, 34359738368.0,
    68719476736.0, 137438953472.0, 274877906944.0
};
#endif

/* quant_to_spec: perform dequantisation and scaling
 * and in case of short block it also does the deinterleaving
 */
/*
  For ONLY_LONG_SEQUENCE windows (num_window_groups = 1,
  window_group_length[0] = 1) the spectral data is in ascending spectral
  order.
  For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the
  grouping in the following manner:
  - Groups are ordered sequentially
  - Within a group, a scalefactor band consists of the spectral data of all
    grouped SHORT_WINDOWs for the associated scalefactor window band. To
    clarify via example, the length of a group is in the range of one to eight
    SHORT_WINDOWs.
  - If there are eight groups each with length one (num_window_groups = 8,
    window_group_length[0..7] = 1), the result is a sequence of eight spectra,
    each in ascending spectral order.
  - If there is only one group with length eight (num_window_groups = 1,
    window_group_length[0] = 8), the result is that spectral data of all eight
    SHORT_WINDOWs is interleaved by scalefactor window bands.
  - Within a scalefactor window band, the coefficients are in ascending
    spectral order.
*/
static uint8_t quant_to_spec(NeAACDecHandle hDecoder,
                             ic_stream *ics, int16_t *quant_data,
                             real_t *spec_data, uint16_t frame_len)
{
    ALIGN static const real_t pow2_table[] =
    {
        COEF_CONST(1.0),
        COEF_CONST(1.1892071150027210667174999705605), /* 2^0.25 */
        COEF_CONST(1.4142135623730950488016887242097), /* 2^0.5 */
        COEF_CONST(1.6817928305074290860622509524664) /* 2^0.75 */
    };
    const real_t *tab = iq_table;

    uint8_t g, sfb, win;
    uint16_t width, bin, k, gindex, wa, wb;
    uint8_t error = 0; /* Init error flag */
#ifndef FIXED_POINT
    real_t scf;
#endif

    k = 0;
    gindex = 0;

    for (g = 0; g < ics->num_window_groups; g++)
    {
        uint16_t j = 0;
        uint16_t gincrease = 0;
        uint16_t win_inc = ics->swb_offset[ics->num_swb];

        for (sfb = 0; sfb < ics->num_swb; sfb++)
        {
            int32_t exp, frac;

            width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb];

            /* this could be scalefactor for IS or PNS, those can be negative or bigger then 255 */
            /* just ignore them */
            if (ics->scale_factors[g][sfb] < 0 || ics->scale_factors[g][sfb] > 255)
            {
                exp = 0;
                frac = 0;
            } else {
                /* ics->scale_factors[g][sfb] must be between 0 and 255 */
                exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2;
                /* frac must always be > 0 */
                frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3;
            }

#ifdef FIXED_POINT
            exp -= 25;
            /* IMDCT pre-scaling */
            if (hDecoder->object_type == LD)
            {
                exp -= 6 /*9*/;
            } else {
                if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
                    exp -= 4 /*7*/;
                else
                    exp -= 7 /*10*/;
            }
#endif

            wa = gindex + j;

#ifndef FIXED_POINT
            scf = pow2sf_tab[exp/*+25*/] * pow2_table[frac];
#endif

            for (win = 0; win < ics->window_group_length[g]; win++)
            {
                for (bin = 0; bin < width; bin += 4)
                {
#ifndef FIXED_POINT
                    wb = wa + bin;

                    spec_data[wb+0] = iquant(quant_data[k+0], tab, &error) * scf;
                    spec_data[wb+1] = iquant(quant_data[k+1], tab, &error) * scf;
                    spec_data[wb+2] = iquant(quant_data[k+2], tab, &error) * scf;
                    spec_data[wb+3] = iquant(quant_data[k+3], tab, &error) * scf;

#else
                    real_t iq0 = iquant(quant_data[k+0], tab, &error);
                    real_t iq1 = iquant(quant_data[k+1], tab, &error);
                    real_t iq2 = iquant(quant_data[k+2], tab, &error);
                    real_t iq3 = iquant(quant_data[k+3], tab, &error);

                    wb = wa + bin;

                    if (exp < 0)
                    {
                        spec_data[wb+0] = iq0 >>= -exp;
                        spec_data[wb+1] = iq1 >>= -exp;
                        spec_data[wb+2] = iq2 >>= -exp;
                        spec_data[wb+3] = iq3 >>= -exp;
                    } else {
                        spec_data[wb+0] = iq0 <<= exp;
                        spec_data[wb+1] = iq1 <<= exp;
                        spec_data[wb+2] = iq2 <<= exp;
                        spec_data[wb+3] = iq3 <<= exp;
                    }
                    if (frac != 0)
                    {
                        spec_data[wb+0] = MUL_C(spec_data[wb+0],pow2_table[frac]);
                        spec_data[wb+1] = MUL_C(spec_data[wb+1],pow2_table[frac]);
                        spec_data[wb+2] = MUL_C(spec_data[wb+2],pow2_table[frac]);
                        spec_data[wb+3] = MUL_C(spec_data[wb+3],pow2_table[frac]);
                    }

//#define SCFS_PRINT
#ifdef SCFS_PRINT
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+0]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+1]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+2]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+3]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+0]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+1]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+2]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+3]);
#endif
#endif

                    gincrease += 4;
                    k += 4;
                }
                wa += win_inc;
            }
            j += width;
        }
        gindex += gincrease;
    }

    return error;
}

static uint8_t allocate_single_channel(NeAACDecHandle hDecoder, uint8_t channel,
                                       uint8_t output_channels)
{
    uint8_t mul = 1;

#ifdef MAIN_DEC
    /* MAIN object type prediction */
    if (hDecoder->object_type == MAIN)
    {
            hDecoder->pred_stat[channel] = (pred_state*)realloc(hDecoder->pred_stat[channel], hDecoder->frameLength * sizeof(pred_state));
            reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength);
    }
#endif

#ifdef LTP_DEC
    if (is_ltp_ot(hDecoder->object_type))
    {
            hDecoder->lt_pred_stat[channel] = (int16_t*)realloc(hDecoder->lt_pred_stat[channel], hDecoder->frameLength*4 * sizeof(int16_t));
            memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
    }
#endif

        mul = 1;
#ifdef SBR_DEC
        hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0;
        if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
        {
            /* SBR requires 2 times as much output data */
            mul = 2;
            hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1;
        }
#endif
        hDecoder->time_out[channel] = (real_t*)realloc(hDecoder->time_out[channel], mul*hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
#if (defined(PS_DEC) || defined(DRM_PS))
    if (output_channels == 2)
    {
            hDecoder->time_out[channel+1] = (real_t*)realloc(hDecoder->time_out[channel+1], mul*hDecoder->frameLength*sizeof(real_t));
            memset(hDecoder->time_out[channel+1], 0, mul*hDecoder->frameLength*sizeof(real_t));
    }
#endif

        hDecoder->fb_intermed[channel] = (real_t*)realloc(hDecoder->fb_intermed[channel], hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t));

#ifdef SSR_DEC
    if (hDecoder->object_type == SSR)
    {
            uint16_t k;
            hDecoder->ssr_overlap[channel] = (real_t*)realloc(hDecoder->ssr_overlap[channel], 2*hDecoder->frameLength*sizeof(real_t));
            memset(hDecoder->ssr_overlap[channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
            hDecoder->prev_fmd[channel] = (real_t*)realloc(hDecoder->prev_fmd[channel], 2*hDecoder->frameLength*sizeof(real_t));
            for (k = 0; k < 2*hDecoder->frameLength; k++)
                hDecoder->prev_fmd[channel][k] = REAL_CONST(-1);
    }
#endif

    return 0;
}

static uint8_t allocate_channel_pair(NeAACDecHandle hDecoder,
                                     uint8_t channel, uint8_t paired_channel)
{
    uint8_t mul = 1;

#ifdef MAIN_DEC
    /* MAIN object type prediction */
    if (hDecoder->object_type == MAIN)
    {
        /* allocate the state only when needed */
        if (hDecoder->pred_stat[channel] == NULL)
        {
            hDecoder->pred_stat[channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state));
            reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength);
        }
        if (hDecoder->pred_stat[paired_channel] == NULL)
        {
            hDecoder->pred_stat[paired_channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state));
            reset_all_predictors(hDecoder->pred_stat[paired_channel], hDecoder->frameLength);
        }
    }
#endif

#ifdef LTP_DEC
    if (is_ltp_ot(hDecoder->object_type))
    {
        /* allocate the state only when needed */
        if (hDecoder->lt_pred_stat[channel] == NULL)
        {
            hDecoder->lt_pred_stat[channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t));
            memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
        }
        if (hDecoder->lt_pred_stat[paired_channel] == NULL)
        {
            hDecoder->lt_pred_stat[paired_channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t));
            memset(hDecoder->lt_pred_stat[paired_channel], 0, hDecoder->frameLength*4 * sizeof(int16_t));
        }
    }
#endif

    if (hDecoder->time_out[channel] == NULL)
    {
        mul = 1;
#ifdef SBR_DEC
        hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0;
        if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
        {
            /* SBR requires 2 times as much output data */
            mul = 2;
            hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1;
        }
#endif
        hDecoder->time_out[channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
    }
    if (hDecoder->time_out[paired_channel] == NULL)
    {
        hDecoder->time_out[paired_channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->time_out[paired_channel], 0, mul*hDecoder->frameLength*sizeof(real_t));
    }

    if (hDecoder->fb_intermed[channel] == NULL)
    {
        hDecoder->fb_intermed[channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t));
    }
    if (hDecoder->fb_intermed[paired_channel] == NULL)
    {
        hDecoder->fb_intermed[paired_channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t));
        memset(hDecoder->fb_intermed[paired_channel], 0, hDecoder->frameLength*sizeof(real_t));
    }

#ifdef SSR_DEC
    if (hDecoder->object_type == SSR)
    {
        if (hDecoder->ssr_overlap[cpe->channel] == NULL)
        {
            hDecoder->ssr_overlap[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            memset(hDecoder->ssr_overlap[cpe->channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
        }
        if (hDecoder->ssr_overlap[cpe->paired_channel] == NULL)
        {
            hDecoder->ssr_overlap[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            memset(hDecoder->ssr_overlap[cpe->paired_channel], 0, 2*hDecoder->frameLength*sizeof(real_t));
        }
        if (hDecoder->prev_fmd[cpe->channel] == NULL)
        {
            uint16_t k;
            hDecoder->prev_fmd[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            for (k = 0; k < 2*hDecoder->frameLength; k++)
                hDecoder->prev_fmd[cpe->channel][k] = REAL_CONST(-1);
        }
        if (hDecoder->prev_fmd[cpe->paired_channel] == NULL)
        {
            uint16_t k;
            hDecoder->prev_fmd[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t));
            for (k = 0; k < 2*hDecoder->frameLength; k++)
                hDecoder->prev_fmd[cpe->paired_channel][k] = REAL_CONST(-1);
        }
    }
#endif

    return 0;
}

uint8_t reconstruct_single_channel(NeAACDecHandle hDecoder, ic_stream *ics,
                                   element *sce, int16_t *spec_data)
{
    uint8_t retval, output_channels;
    ALIGN real_t spec_coef[1024];

#ifdef PROFILE
    int64_t count = faad_get_ts();
#endif


    /* always allocate 2 channels, PS can always "suddenly" turn up */
#if (defined(PS_DEC) || defined(DRM_PS))
    output_channels = hDecoder->ps_used[hDecoder->fr_ch_ele] ? 2 : 1;
#else
    output_channels = 1;
#endif

    if (hDecoder->element_alloced[hDecoder->fr_ch_ele] == 0 ||
        hDecoder->element_output_channels[hDecoder->fr_ch_ele] < output_channels) {
        hDecoder->element_output_channels[hDecoder->fr_ch_ele] = output_channels;
        retval = allocate_single_channel(hDecoder, sce->channel, output_channels);
        if (retval > 0)
            return retval;

        hDecoder->element_alloced[hDecoder->fr_ch_ele] = 1;
    }


    /* dequantisation and scaling */
    retval = quant_to_spec(hDecoder, ics, spec_data, spec_coef, hDecoder->frameLength);
    if (retval > 0)
        return retval;

#ifdef PROFILE
    count = faad_get_ts() - count;
    hDecoder->requant_cycles += count;
#endif


    /* pns decoding */
    pns_decode(ics, NULL, spec_coef, NULL, hDecoder->frameLength, 0, hDecoder->object_type);

#ifdef MAIN_DEC
    /* MAIN object type prediction */
    if (hDecoder->object_type == MAIN)
    {
        /* intra channel prediction */
        ic_prediction(ics, spec_coef, hDecoder->pred_stat[sce->channel], hDecoder->frameLength,
            hDecoder->sf_index);

        /* In addition, for scalefactor bands coded by perceptual
           noise substitution the predictors belonging to the
           corresponding spectral coefficients are reset.
        */
        pns_reset_pred_state(ics, hDecoder->pred_stat[sce->channel]);
    }
#endif

#ifdef LTP_DEC
    if (is_ltp_ot(hDecoder->object_type))
    {
#ifdef LD_DEC
        if (hDecoder->object_type == LD)
        {
            if (ics->ltp.data_present)
            {
                if (ics->ltp.lag_update)
                    hDecoder->ltp_lag[sce->channel] = ics->ltp.lag;
            }
            ics->ltp.lag = hDecoder->ltp_lag[sce->channel];
        }
#endif

        /* long term prediction */
        lt_prediction(ics, &(ics->ltp), spec_coef, hDecoder->lt_pred_stat[sce->channel], hDecoder->fb,
            ics->window_shape, hDecoder->window_shape_prev[sce->channel],
            hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength);
    }
#endif

    /* tns decoding */
    tns_decode_frame(ics, &(ics->tns), hDecoder->sf_index, hDecoder->object_type,
        spec_coef, hDecoder->frameLength);

    /* drc decoding */
    if (hDecoder->drc->present)
    {
        if (!hDecoder->drc->exclude_mask[sce->channel] || !hDecoder->drc->excluded_chns_present)
            drc_decode(hDecoder->drc, spec_coef);
    }

    /* filter bank */
#ifdef SSR_DEC
    if (hDecoder->object_type != SSR)
    {
#endif
        ifilter_bank(hDecoder->fb, ics->window_sequence, ics->window_shape,
            hDecoder->window_shape_prev[sce->channel], spec_coef,
            hDecoder->time_out[sce->channel], hDecoder->fb_intermed[sce->channel],
            hDecoder->object_type, hDecoder->frameLength);
#ifdef SSR_DEC
    } else {
        ssr_decode(&(ics->ssr), hDecoder->fb, ics->window_sequence, ics->window_shape,
            hDecoder->window_shape_prev[sce->channel], spec_coef, hDecoder->time_out[sce->channel],
            hDecoder->ssr_overlap[sce->channel], hDecoder->ipqf_buffer[sce->channel], hDecoder->prev_fmd[sce->channel],
            hDecoder->frameLength);
    }
#endif

    /* save window shape for next frame */
    hDecoder->window_shape_prev[sce->channel] = ics->window_shape;

#ifdef LTP_DEC
    if (is_ltp_ot(hDecoder->object_type))
    {
        lt_update_state(hDecoder->lt_pred_stat[sce->channel], hDecoder->time_out[sce->channel],
            hDecoder->fb_intermed[sce->channel], hDecoder->frameLength, hDecoder->object_type);
    }
#endif

#ifdef SBR_DEC
    if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
        && hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
    {
        uint8_t ele = hDecoder->fr_ch_ele;
        uint8_t ch = sce->channel;

        /* following case can happen when forceUpSampling == 1 */
        if (hDecoder->sbr[ele] == NULL)
        {
            hDecoder->sbr[ele] = sbrDecodeInit(hDecoder->frameLength,
                hDecoder->element_id[ele], 2*get_sample_rate(hDecoder->sf_index),
                hDecoder->downSampledSBR
#ifdef DRM
                , 0
#endif
                );
        }

        if (sce->ics1.window_sequence == EIGHT_SHORT_SEQUENCE)
            hDecoder->sbr[ele]->maxAACLine = 8*sce->ics1.swb_offset[max(sce->ics1.max_sfb-1, 0)];
        else
            hDecoder->sbr[ele]->maxAACLine = sce->ics1.swb_offset[max(sce->ics1.max_sfb-1, 0)];

        /* check if any of the PS tools is used */
#if (defined(PS_DEC) || defined(DRM_PS))
        if (hDecoder->ps_used[ele] == 0)
        {
#endif
            retval = sbrDecodeSingleFrame(hDecoder->sbr[ele], hDecoder->time_out[ch],
                hDecoder->postSeekResetFlag, hDecoder->downSampledSBR);
#if (defined(PS_DEC) || defined(DRM_PS))
        } else {
            retval = sbrDecodeSingleFramePS(hDecoder->sbr[ele], hDecoder->time_out[ch],
                hDecoder->time_out[ch+1], hDecoder->postSeekResetFlag,
                hDecoder->downSampledSBR);
        }
#endif
        if (retval > 0)
            return retval;
    } else if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
        && !hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
    {
        return 23;
    }

    /* copy L to R when no PS is used */
#if (defined(PS_DEC) || defined(DRM_PS))
    if ((hDecoder->ps_used[hDecoder->fr_ch_ele] == 0) && (output_channels == 2))
    {
        uint8_t ele = hDecoder->fr_ch_ele;
        uint8_t ch = sce->channel;
        uint16_t frame_size = (hDecoder->sbr_alloced[ele]) ? 2 : 1;
        frame_size *= hDecoder->frameLength*sizeof(real_t);

        memcpy(hDecoder->time_out[ch+1], hDecoder->time_out[ch], frame_size);
    }
#endif
#endif

    return 0;
}

uint8_t reconstruct_channel_pair(NeAACDecHandle hDecoder, ic_stream *ics1, ic_stream *ics2,
                                 element *cpe, int16_t *spec_data1, int16_t *spec_data2)
{
    uint8_t retval;
    ALIGN real_t spec_coef1[1024];
    ALIGN real_t spec_coef2[1024];

#ifdef PROFILE
    int64_t count = faad_get_ts();
#endif
    if (hDecoder->element_alloced[hDecoder->fr_ch_ele] == 0)
    {
        retval = allocate_channel_pair(hDecoder, cpe->channel, (uint8_t)cpe->paired_channel);
        if (retval > 0)
            return retval;

        hDecoder->element_alloced[hDecoder->fr_ch_ele] = 1;
    }

    /* dequantisation and scaling */
    retval = quant_to_spec(hDecoder, ics1, spec_data1, spec_coef1, hDecoder->frameLength);
    if (retval > 0)
        return retval;
    retval = quant_to_spec(hDecoder, ics2, spec_data2, spec_coef2, hDecoder->frameLength);
    if (retval > 0)
        return retval;

#ifdef PROFILE
    count = faad_get_ts() - count;
    hDecoder->requant_cycles += count;
#endif


    /* pns decoding */
    if (ics1->ms_mask_present)
    {
        pns_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength, 1, hDecoder->object_type);
    } else {
        pns_decode(ics1, NULL, spec_coef1, NULL, hDecoder->frameLength, 0, hDecoder->object_type);
        pns_decode(ics2, NULL, spec_coef2, NULL, hDecoder->frameLength, 0, hDecoder->object_type);
    }

    /* mid/side decoding */
    ms_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength);

#if 0
    {
        int i;
        for (i = 0; i < 1024; i++)
        {
            //printf("%d\n", spec_coef1[i]);
            printf("0x%.8X\n", spec_coef1[i]);
        }
        for (i = 0; i < 1024; i++)
        {
            //printf("%d\n", spec_coef2[i]);
            printf("0x%.8X\n", spec_coef2[i]);
        }
    }
#endif

    /* intensity stereo decoding */
    is_decode(ics1, ics2, spec_coef1, spec_coef2, hDecoder->frameLength);

#if 0
    {
        int i;
        for (i = 0; i < 1024; i++)
        {
            printf("%d\n", spec_coef1[i]);
            //printf("0x%.8X\n", spec_coef1[i]);
        }
        for (i = 0; i < 1024; i++)
        {
            printf("%d\n", spec_coef2[i]);
            //printf("0x%.8X\n", spec_coef2[i]);
        }
    }
#endif

#ifdef MAIN_DEC
    /* MAIN object type prediction */
    if (hDecoder->object_type == MAIN)
    {
        /* intra channel prediction */
        ic_prediction(ics1, spec_coef1, hDecoder->pred_stat[cpe->channel], hDecoder->frameLength,
            hDecoder->sf_index);
        ic_prediction(ics2, spec_coef2, hDecoder->pred_stat[cpe->paired_channel], hDecoder->frameLength,
            hDecoder->sf_index);

        /* In addition, for scalefactor bands coded by perceptual
           noise substitution the predictors belonging to the
           corresponding spectral coefficients are reset.
        */
        pns_reset_pred_state(ics1, hDecoder->pred_stat[cpe->channel]);
        pns_reset_pred_state(ics2, hDecoder->pred_stat[cpe->paired_channel]);
    }
#endif

#ifdef LTP_DEC
    if (is_ltp_ot(hDecoder->object_type))
    {
        ltp_info *ltp1 = &(ics1->ltp);
        ltp_info *ltp2 = (cpe->common_window) ? &(ics2->ltp2) : &(ics2->ltp);
#ifdef LD_DEC
        if (hDecoder->object_type == LD)
        {
            if (ltp1->data_present)
            {
                if (ltp1->lag_update)
                    hDecoder->ltp_lag[cpe->channel] = ltp1->lag;
            }
            ltp1->lag = hDecoder->ltp_lag[cpe->channel];
            if (ltp2->data_present)
            {
                if (ltp2->lag_update)
                    hDecoder->ltp_lag[cpe->paired_channel] = ltp2->lag;
            }
            ltp2->lag = hDecoder->ltp_lag[cpe->paired_channel];
        }
#endif

        /* long term prediction */
        lt_prediction(ics1, ltp1, spec_coef1, hDecoder->lt_pred_stat[cpe->channel], hDecoder->fb,
            ics1->window_shape, hDecoder->window_shape_prev[cpe->channel],
            hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength);
        lt_prediction(ics2, ltp2, spec_coef2, hDecoder->lt_pred_stat[cpe->paired_channel], hDecoder->fb,
            ics2->window_shape, hDecoder->window_shape_prev[cpe->paired_channel],
            hDecoder->sf_index, hDecoder->object_type, hDecoder->frameLength);
    }
#endif

    /* tns decoding */
    tns_decode_frame(ics1, &(ics1->tns), hDecoder->sf_index, hDecoder->object_type,
        spec_coef1, hDecoder->frameLength);
    tns_decode_frame(ics2, &(ics2->tns), hDecoder->sf_index, hDecoder->object_type,
        spec_coef2, hDecoder->frameLength);

    /* drc decoding */
    if (hDecoder->drc->present)
    {
        if (!hDecoder->drc->exclude_mask[cpe->channel] || !hDecoder->drc->excluded_chns_present)
            drc_decode(hDecoder->drc, spec_coef1);
        if (!hDecoder->drc->exclude_mask[cpe->paired_channel] || !hDecoder->drc->excluded_chns_present)
            drc_decode(hDecoder->drc, spec_coef2);
    }

    /* filter bank */
#ifdef SSR_DEC
    if (hDecoder->object_type != SSR)
    {
#endif
        ifilter_bank(hDecoder->fb, ics1->window_sequence, ics1->window_shape,
            hDecoder->window_shape_prev[cpe->channel], spec_coef1,
            hDecoder->time_out[cpe->channel], hDecoder->fb_intermed[cpe->channel],
            hDecoder->object_type, hDecoder->frameLength);
        ifilter_bank(hDecoder->fb, ics2->window_sequence, ics2->window_shape,
            hDecoder->window_shape_prev[cpe->paired_channel], spec_coef2,
            hDecoder->time_out[cpe->paired_channel], hDecoder->fb_intermed[cpe->paired_channel],
            hDecoder->object_type, hDecoder->frameLength);
#ifdef SSR_DEC
    } else {
        ssr_decode(&(ics1->ssr), hDecoder->fb, ics1->window_sequence, ics1->window_shape,
            hDecoder->window_shape_prev[cpe->channel], spec_coef1, hDecoder->time_out[cpe->channel],
            hDecoder->ssr_overlap[cpe->channel], hDecoder->ipqf_buffer[cpe->channel],
            hDecoder->prev_fmd[cpe->channel], hDecoder->frameLength);
        ssr_decode(&(ics2->ssr), hDecoder->fb, ics2->window_sequence, ics2->window_shape,
            hDecoder->window_shape_prev[cpe->paired_channel], spec_coef2, hDecoder->time_out[cpe->paired_channel],
            hDecoder->ssr_overlap[cpe->paired_channel], hDecoder->ipqf_buffer[cpe->paired_channel],
            hDecoder->prev_fmd[cpe->paired_channel], hDecoder->frameLength);
    }
#endif

    /* save window shape for next frame */
    hDecoder->window_shape_prev[cpe->channel] = ics1->window_shape;
    hDecoder->window_shape_prev[cpe->paired_channel] = ics2->window_shape;

#ifdef LTP_DEC
    if (is_ltp_ot(hDecoder->object_type))
    {
        lt_update_state(hDecoder->lt_pred_stat[cpe->channel], hDecoder->time_out[cpe->channel],
            hDecoder->fb_intermed[cpe->channel], hDecoder->frameLength, hDecoder->object_type);
        lt_update_state(hDecoder->lt_pred_stat[cpe->paired_channel], hDecoder->time_out[cpe->paired_channel],
            hDecoder->fb_intermed[cpe->paired_channel], hDecoder->frameLength, hDecoder->object_type);
    }
#endif

#ifdef SBR_DEC
    if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
        && hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
    {
        uint8_t ele = hDecoder->fr_ch_ele;
        uint8_t ch0 = cpe->channel;
        uint8_t ch1 = cpe->paired_channel;

        /* following case can happen when forceUpSampling == 1 */
        if (hDecoder->sbr[ele] == NULL)
        {
            hDecoder->sbr[ele] = sbrDecodeInit(hDecoder->frameLength,
                hDecoder->element_id[ele], 2*get_sample_rate(hDecoder->sf_index),
                hDecoder->downSampledSBR
#ifdef DRM
                , 0
#endif
                );
        }

        if (cpe->ics1.window_sequence == EIGHT_SHORT_SEQUENCE)
            hDecoder->sbr[ele]->maxAACLine = 8*cpe->ics1.swb_offset[max(cpe->ics1.max_sfb-1, 0)];
        else
            hDecoder->sbr[ele]->maxAACLine = cpe->ics1.swb_offset[max(cpe->ics1.max_sfb-1, 0)];

        retval = sbrDecodeCoupleFrame(hDecoder->sbr[ele],
            hDecoder->time_out[ch0], hDecoder->time_out[ch1],
            hDecoder->postSeekResetFlag, hDecoder->downSampledSBR);
        if (retval > 0)
            return retval;
    } else if (((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1))
        && !hDecoder->sbr_alloced[hDecoder->fr_ch_ele])
    {
        return 23;
    }
#endif

    return 0;
}