1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: sbr_hfgen.c,v 1.1 2003/07/29 08:20:13 menno Exp $
**/
/* High Frequency generation */
#include "common.h"
#include "structs.h"
#ifdef SBR_DEC
#include "sbr_syntax.h"
#include "sbr_hfgen.h"
#include "sbr_fbt.h"
void hf_generation(sbr_info *sbr, qmf_t *Xlow,
qmf_t *Xhigh
#ifdef SBR_LOW_POWER
,real_t *deg
#endif
,uint8_t ch)
{
uint8_t l, i, x;
complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
real_t rxx[64];
#endif
calc_chirp_factors(sbr, ch);
if ((ch == 0) && (sbr->Reset))
patch_construction(sbr);
/* calculate the prediction coefficients */
calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1
#ifdef SBR_LOW_POWER
, rxx
#endif
);
#ifdef SBR_LOW_POWER
calc_aliasing_degree(sbr, rxx, deg);
#endif
/* actual HF generation */
for (i = 0; i < sbr->noPatches; i++)
{
for (x = 0; x < sbr->patchNoSubbands[i]; x++)
{
complex_t a0, a1;
real_t bw, bw2;
uint8_t q, p, k, g;
/* find the low and high band for patching */
k = sbr->kx + x;
for (q = 0; q < i; q++)
{
k += sbr->patchNoSubbands[q];
}
p = sbr->patchStartSubband[i] + x;
#ifdef SBR_LOW_POWER
if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
deg[k] = deg[p];
else
deg[k] = 0;
#endif
g = sbr->table_map_k_to_g[k];
bw = sbr->bwArray[ch][g];
bw2 = MUL_C_C(bw, bw);
/* do the patching */
/* with or without filtering */
if (bw2 > 0)
{
RE(a0) = MUL_R_C(RE(alpha_0[p]), bw);
RE(a1) = MUL_R_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
IM(a0) = MUL_R_C(IM(alpha_0[p]), bw);
IM(a1) = MUL_R_C(IM(alpha_1[p]), bw2);
#endif
for (l = sbr->t_E[ch][0]; l < sbr->t_E[ch][sbr->L_E[ch]]; l++)
{
QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_RE(Xlow[((l + tHFAdj)<<5) + p]);
#ifndef SBR_LOW_POWER
QMF_IM(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_IM(Xlow[((l + tHFAdj)<<5) + p]);
#endif
#ifdef SBR_LOW_POWER
QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) += (
MUL(RE(a0), QMF_RE(Xlow[((l - 1 + tHFAdj)<<5) + p])) +
MUL(RE(a1), QMF_RE(Xlow[((l - 2 + tHFAdj)<<5) + p])));
#else
QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) += (
RE(a0) * QMF_RE(Xlow[((l - 1 + tHFAdj)<<5) + p]) -
IM(a0) * QMF_IM(Xlow[((l - 1 + tHFAdj)<<5) + p]) +
RE(a1) * QMF_RE(Xlow[((l - 2 + tHFAdj)<<5) + p]) -
IM(a1) * QMF_IM(Xlow[((l - 2 + tHFAdj)<<5) + p]));
QMF_IM(Xhigh[((l + tHFAdj)<<6) + k]) += (
IM(a0) * QMF_RE(Xlow[((l - 1 + tHFAdj)<<5) + p]) +
RE(a0) * QMF_IM(Xlow[((l - 1 + tHFAdj)<<5) + p]) +
IM(a1) * QMF_RE(Xlow[((l - 2 + tHFAdj)<<5) + p]) +
RE(a1) * QMF_IM(Xlow[((l - 2 + tHFAdj)<<5) + p]));
#endif
}
} else {
for (l = sbr->t_E[ch][0]; l < sbr->t_E[ch][sbr->L_E[ch]]; l++)
{
QMF_RE(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_RE(Xlow[((l + tHFAdj)<<5) + p]);
#ifndef SBR_LOW_POWER
QMF_IM(Xhigh[((l + tHFAdj)<<6) + k]) = QMF_IM(Xlow[((l + tHFAdj)<<5) + p]);
#endif
}
}
}
}
#if 0
if (sbr->frame == 179)
{
for (l = 0; l < 64; l++)
{
printf("%d %.3f\n", l, deg[l]);
}
}
#endif
if (sbr->Reset)
{
limiter_frequency_table(sbr);
}
}
typedef struct
{
complex_t r01;
complex_t r02;
complex_t r11;
complex_t r12;
complex_t r22;
real_t det;
} acorr_coef;
#define SBR_ABS(A) ((A) < 0) ? -(A) : (A)
static void auto_correlation(acorr_coef *ac, qmf_t *buffer,
uint8_t bd, uint8_t len)
{
int8_t j, jminus1, jminus2;
const real_t rel = COEF_CONST(0.9999999999999); // 1 / (1 + 1e-6f);
#ifdef FIXED_POINT
/*
* For computing the covariance matrix and the filter coefficients
* in fixed point, all values are normalised so that the fixed point
* values don't overflow.
*/
uint32_t max = 0;
uint32_t pow2, exp;
for (j = tHFAdj-2; j < len + tHFAdj; j++)
{
max = max(SBR_ABS(QMF_RE(buffer[j*32 + bd])>>REAL_BITS), max);
}
/* find the first power of 2 bigger than max to avoid division */
pow2 = 1;
exp = 0;
while (max > pow2)
{
pow2 <<= 1;
exp++;
}
/* give some more space */
// if (exp > 3)
// exp -= 3;
#endif
memset(ac, 0, sizeof(acorr_coef));
for (j = tHFAdj; j < len + tHFAdj; j++)
{
jminus1 = j - 1;
jminus2 = jminus1 - 1;
#ifdef SBR_LOW_POWER
#ifdef FIXED_POINT
/* normalisation with rounding */
RE(ac->r01) += MUL(((QMF_RE(buffer[j*32 + bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[jminus1*32 + bd])+(1<<(exp-1)))>>exp));
RE(ac->r02) += MUL(((QMF_RE(buffer[j*32 + bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[jminus2*32 + bd])+(1<<(exp-1)))>>exp));
RE(ac->r11) += MUL(((QMF_RE(buffer[jminus1*32 + bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[jminus1*32 + bd])+(1<<(exp-1)))>>exp));
RE(ac->r12) += MUL(((QMF_RE(buffer[jminus1*32 + bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[jminus2*32 + bd])+(1<<(exp-1)))>>exp));
RE(ac->r22) += MUL(((QMF_RE(buffer[jminus2*32 + bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[jminus2*32 + bd])+(1<<(exp-1)))>>exp));
#else
RE(ac->r01) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]);
RE(ac->r02) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]);
RE(ac->r11) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]);
RE(ac->r12) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]);
RE(ac->r22) += QMF_RE(buffer[jminus2*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]);
#endif
#else
RE(ac->r01) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]) +
QMF_IM(buffer[j*32 + bd]) * QMF_IM(buffer[jminus1*32 + bd]);
IM(ac->r01) += QMF_IM(buffer[j*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]) -
QMF_RE(buffer[j*32 + bd]) * QMF_IM(buffer[jminus1*32 + bd]);
RE(ac->r02) += QMF_RE(buffer[j*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) +
QMF_IM(buffer[j*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]);
IM(ac->r02) += QMF_IM(buffer[j*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) -
QMF_RE(buffer[j*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]);
RE(ac->r11) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus1*32 + bd]) +
QMF_IM(buffer[jminus1*32 + bd]) * QMF_IM(buffer[jminus1*32 + bd]);
RE(ac->r12) += QMF_RE(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) +
QMF_IM(buffer[jminus1*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]);
IM(ac->r12) += QMF_IM(buffer[jminus1*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) -
QMF_RE(buffer[jminus1*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]);
RE(ac->r22) += QMF_RE(buffer[jminus2*32 + bd]) * QMF_RE(buffer[jminus2*32 + bd]) +
QMF_IM(buffer[jminus2*32 + bd]) * QMF_IM(buffer[jminus2*32 + bd]);
#endif
}
#ifdef SBR_LOW_POWER
ac->det = MUL(RE(ac->r11), RE(ac->r22)) - MUL_R_C(MUL(RE(ac->r12), RE(ac->r12)), rel);
#else
ac->det = RE(ac->r11) * RE(ac->r22) - rel * (RE(ac->r12) * RE(ac->r12) + IM(ac->r12) * IM(ac->r12));
#endif
#if 0
if (ac->det != 0)
printf("%f %f\n", ac->det, max);
#endif
}
static void calc_prediction_coef(sbr_info *sbr, qmf_t *Xlow,
complex_t *alpha_0, complex_t *alpha_1
#ifdef SBR_LOW_POWER
, real_t *rxx
#endif
)
{
uint8_t k;
real_t tmp;
acorr_coef ac;
for (k = 1; k < sbr->kx; k++)
{
auto_correlation(&ac, Xlow, k, 38);
#ifdef SBR_LOW_POWER
if (ac.det == 0)
{
RE(alpha_1[k]) = 0;
} else {
tmp = MUL(RE(ac.r01), RE(ac.r12)) - MUL(RE(ac.r02), RE(ac.r11));
RE(alpha_1[k]) = SBR_DIV(tmp, ac.det);
}
if (RE(ac.r11) == 0)
{
RE(alpha_0[k]) = 0;
} else {
tmp = RE(ac.r01) + MUL(RE(alpha_1[k]), RE(ac.r12));
RE(alpha_0[k]) = -SBR_DIV(tmp, RE(ac.r11));
}
if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4)))
{
RE(alpha_0[k]) = REAL_CONST(0);
RE(alpha_1[k]) = REAL_CONST(0);
}
/* reflection coefficient */
if (RE(ac.r11) == REAL_CONST(0.0))
{
rxx[k] = REAL_CONST(0.0);
} else {
rxx[k] = -SBR_DIV(RE(ac.r01), RE(ac.r11));
if (rxx[k] > REAL_CONST(1.0)) rxx[k] = REAL_CONST(1.0);
if (rxx[k] < REAL_CONST(-1.0)) rxx[k] = REAL_CONST(-1.0);
}
#else
if (ac.det == 0)
{
RE(alpha_1[k]) = 0;
IM(alpha_1[k]) = 0;
} else {
tmp = 1.0 / ac.det;
RE(alpha_1[k]) = (RE(ac.r01) * RE(ac.r12) - IM(ac.r01) * IM(ac.r12) - RE(ac.r02) * RE(ac.r11)) * tmp;
IM(alpha_1[k]) = (IM(ac.r01) * RE(ac.r12) + RE(ac.r01) * IM(ac.r12) - IM(ac.r02) * RE(ac.r11)) * tmp;
}
if (RE(ac.r11) == 0)
{
RE(alpha_0[k]) = 0;
IM(alpha_0[k]) = 0;
} else {
tmp = 1.0f / RE(ac.r11);
RE(alpha_0[k]) = -(RE(ac.r01) + RE(alpha_1[k]) * RE(ac.r12) + IM(alpha_1[k]) * IM(ac.r12)) * tmp;
IM(alpha_0[k]) = -(IM(ac.r01) + IM(alpha_1[k]) * RE(ac.r12) - RE(alpha_1[k]) * IM(ac.r12)) * tmp;
}
if ((RE(alpha_0[k])*RE(alpha_0[k]) + IM(alpha_0[k])*IM(alpha_0[k]) >= 16) ||
(RE(alpha_1[k])*RE(alpha_1[k]) + IM(alpha_1[k])*IM(alpha_1[k]) >= 16))
{
RE(alpha_0[k]) = 0;
IM(alpha_0[k]) = 0;
RE(alpha_1[k]) = 0;
IM(alpha_1[k]) = 0;
}
#endif
}
}
#ifdef SBR_LOW_POWER
static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg)
{
uint8_t k;
rxx[0] = REAL_CONST(0.0);
deg[1] = REAL_CONST(0.0);
for (k = 2; k < sbr->k0; k++)
{
deg[k] = 0.0;
if ((k % 2 == 0) && (rxx[k] < REAL_CONST(0.0)))
{
if (rxx[k-1] < 0.0)
{
deg[k] = REAL_CONST(1.0);
if (rxx[k-2] > REAL_CONST(0.0))
{
deg[k-1] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]);
}
} else if (rxx[k-2] > REAL_CONST(0.0)) {
deg[k] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]);
}
}
if ((k % 2 == 1) && (rxx[k] > REAL_CONST(0.0)))
{
if (rxx[k-1] > REAL_CONST(0.0))
{
deg[k] = REAL_CONST(1.0);
if (rxx[k-2] < REAL_CONST(0.0))
{
deg[k-1] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]);
}
} else if (rxx[k-2] < REAL_CONST(0.0)) {
deg[k] = REAL_CONST(1.0) - MUL(rxx[k-1], rxx[k-1]);
}
}
}
}
#endif
static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev)
{
switch (invf_mode)
{
case 1: /* LOW */
if (invf_mode_prev == 0) /* NONE */
return COEF_CONST(0.6);
else
return COEF_CONST(0.75);
case 2: /* MID */
return COEF_CONST(0.9);
case 3: /* HIGH */
return COEF_CONST(0.98);
default: /* NONE */
if (invf_mode_prev == 1) /* LOW */
return COEF_CONST(0.6);
else
return COEF_CONST(0.0);
}
}
static void calc_chirp_factors(sbr_info *sbr, uint8_t ch)
{
uint8_t i;
for (i = 0; i < sbr->N_Q; i++)
{
sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]);
if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i])
sbr->bwArray[ch][i] = MUL_C_C(COEF_CONST(0.75), sbr->bwArray[ch][i]) + MUL_C_C(COEF_CONST(0.25), sbr->bwArray_prev[ch][i]);
else
sbr->bwArray[ch][i] = MUL_C_C(COEF_CONST(0.90625), sbr->bwArray[ch][i]) + MUL_C_C(COEF_CONST(0.09375), sbr->bwArray_prev[ch][i]);
if (sbr->bwArray[ch][i] < COEF_CONST(0.015625))
sbr->bwArray[ch][i] = COEF_CONST(0.0);
if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375))
sbr->bwArray[ch][i] = COEF_CONST(0.99609375);
sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i];
sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i];
}
}
static void patch_construction(sbr_info *sbr)
{
uint8_t i, k;
uint8_t odd, sb;
uint8_t msb = sbr->k0;
uint8_t usb = sbr->kx;
uint32_t goalSb = (uint32_t)(2.048e6/sbr->sample_rate + 0.5);
sbr->noPatches = 0;
if (goalSb < (sbr->kx + sbr->M))
{
for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++)
k = i+1;
} else {
k = sbr->N_master;
}
do
{
uint8_t j = k + 1;
do
{
j--;
sb = sbr->f_master[j];
odd = (sb - 2 + sbr->k0) % 2;
} while (sb > (sbr->k0 - 1 + msb - odd));
sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0);
sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd -
sbr->patchNoSubbands[sbr->noPatches];
if (sbr->patchNoSubbands[sbr->noPatches] > 0)
{
usb = sb;
msb = sb;
sbr->noPatches++;
} else {
msb = sbr->kx;
}
if (sb == sbr->f_master[k])
k = sbr->N_master;
} while (sb != (sbr->kx + sbr->M));
if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) &&
(sbr->noPatches > 1))
{
sbr->noPatches--;
}
sbr->noPatches = min(sbr->noPatches, 5);
}
#endif
|