aboutsummaryrefslogtreecommitdiffhomepage
path: root/libfaad2/mdct.c
blob: e42247ff08fb7ca63ca31417a1d7fe1e22853f09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**  
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
** 
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
** 
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software 
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** Initially modified for use with MPlayer by Arpad Gereöffy on 2003/08/30
** $Id: mdct.c,v 1.3 2004/06/02 22:59:03 diego Exp $
** detailed CVS changelog at http://www.mplayerhq.hu/cgi-bin/cvsweb.cgi/main/
**/

/*
 * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform)
 * and consists of three steps: pre-(I)FFT complex multiplication, complex
 * (I)FFT, post-(I)FFT complex multiplication,
 * 
 * As described in:
 *  P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the
 *  Implementation of Filter Banks Based on 'Time Domain Aliasing
 *  Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212.
 *
 *
 * As of April 6th 2002 completely rewritten.
 * This (I)MDCT can now be used for any data size n, where n is divisible by 8.
 *
 */

#include "common.h"
#include "structs.h"

#include <stdlib.h>
#ifdef _WIN32_WCE
#define assert(x)
#else
#include <assert.h>
#endif

#include "cfft.h"
#include "mdct.h"

/* const_tab[]:
    0: sqrt(2 / N)
    1: cos(2 * PI / N)
    2: sin(2 * PI / N)
    3: cos(2 * PI * (1/8) / N)
    4: sin(2 * PI * (1/8) / N)
 */
#ifdef FIXED_POINT
real_t const_tab[][5] =
{
    {    /* 2048 */
        COEF_CONST(1),
        FRAC_CONST(0.99999529380957619),
        FRAC_CONST(0.0030679567629659761),
        FRAC_CONST(0.99999992646571789),
        FRAC_CONST(0.00038349518757139556)
    }, { /* 1920 */
        COEF_CONST(/* sqrt(1024/960) */ 1.0327955589886444),
        FRAC_CONST(0.99999464540169647),
        FRAC_CONST(0.0032724865065266251),
        FRAC_CONST(0.99999991633432805),
        FRAC_CONST(0.00040906153202803459)
    }, { /* 1024 */
        COEF_CONST(1),
        FRAC_CONST(0.99998117528260111),
        FRAC_CONST(0.0061358846491544753),
        FRAC_CONST(0.99999970586288223),
        FRAC_CONST(0.00076699031874270449)
    }, { /* 960 */
        COEF_CONST(/* sqrt(512/480) */ 1.0327955589886444),
        FRAC_CONST(0.99997858166412923),
        FRAC_CONST(0.0065449379673518581),
        FRAC_CONST(0.99999966533732598),
        FRAC_CONST(0.00081812299560725323)
    }, { /* 256 */
        COEF_CONST(1),
        FRAC_CONST(0.99969881869620425),
        FRAC_CONST(0.024541228522912288),
        FRAC_CONST(0.99999529380957619),
        FRAC_CONST(0.0030679567629659761)
    }, {  /* 240 */
        COEF_CONST(/* sqrt(256/240) */ 1.0327955589886444),
        FRAC_CONST(0.99965732497555726),
        FRAC_CONST(0.026176948307873149),
        FRAC_CONST(0.99999464540169647),
        FRAC_CONST(0.0032724865065266251)
    }
#ifdef SSR_DEC
    ,{   /* 512 */
        COEF_CONST(1),
        FRAC_CONST(0.9999247018391445),
        FRAC_CONST(0.012271538285719925),
        FRAC_CONST(0.99999882345170188),
        FRAC_CONST(0.0015339801862847655)
    }, { /* 64 */
        COEF_CONST(1),
        FRAC_CONST(0.99518472667219693),
        FRAC_CONST(0.098017140329560604),
        FRAC_CONST(0.9999247018391445),
        FRAC_CONST(0.012271538285719925)
    }
#endif
};
#endif

#ifdef FIXED_POINT
static uint8_t map_N_to_idx(uint16_t N)
{
    /* gives an index into const_tab above */
    /* for normal AAC deocding (eg. no scalable profile) only */
    /* index 0 and 4 will be used */
    switch(N)
    {
    case 2048: return 0;
    case 1920: return 1;
    case 1024: return 2;
    case 960:  return 3;
    case 256:  return 4;
    case 240:  return 5;
#ifdef SSR_DEC
    case 512:  return 6;
    case 64:   return 7;
#endif
    }
    return 0;
}
#endif

mdct_info *faad_mdct_init(uint16_t N)
{
    uint16_t k;
#ifdef FIXED_POINT
    uint16_t N_idx;
    real_t cangle, sangle, c, s, cold;
#endif
	real_t scale;

    mdct_info *mdct = (mdct_info*)faad_malloc(sizeof(mdct_info));

    assert(N % 8 == 0);

    mdct->N = N;
    mdct->sincos = (complex_t*)faad_malloc(N/4*sizeof(complex_t));

#ifdef FIXED_POINT
    N_idx = map_N_to_idx(N);

    scale = const_tab[N_idx][0];
    cangle = const_tab[N_idx][1];
    sangle = const_tab[N_idx][2];
    c = const_tab[N_idx][3];
    s = const_tab[N_idx][4];
#else
    scale = (real_t)sqrt(2.0 / (real_t)N);
#endif

    /* (co)sine table build using recurrence relations */
    /* this can also be done using static table lookup or */
    /* some form of interpolation */
    for (k = 0; k < N/4; k++)
    {
#ifdef FIXED_POINT
        RE(mdct->sincos[k]) = c; //MUL_C_C(c,scale);
        IM(mdct->sincos[k]) = s; //MUL_C_C(s,scale);

        cold = c;
        c = MUL_F(c,cangle) - MUL_F(s,sangle);
        s = MUL_F(s,cangle) + MUL_F(cold,sangle);
#else
        /* no recurrence, just sines */
        RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N));
        IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N));
#endif
    }

    /* initialise fft */
    mdct->cfft = cffti(N/4);

#ifdef PROFILE
    mdct->cycles = 0;
    mdct->fft_cycles = 0;
#endif

    return mdct;
}

void faad_mdct_end(mdct_info *mdct)
{
    if (mdct != NULL)
    {
#ifdef PROFILE
        printf("MDCT[%.4d]:         %I64d cycles\n", mdct->N, mdct->cycles);
        printf("CFFT[%.4d]:         %I64d cycles\n", mdct->N/4, mdct->fft_cycles);
#endif

        cfftu(mdct->cfft);

        if (mdct->sincos) faad_free(mdct->sincos);

        faad_free(mdct);
    }
}

void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
    uint16_t k;

    complex_t x;
    ALIGN complex_t Z1[512];
    complex_t *sincos = mdct->sincos;

    uint16_t N  = mdct->N;
    uint16_t N2 = N >> 1;
    uint16_t N4 = N >> 2;
    uint16_t N8 = N >> 3;

#ifdef PROFILE
    int64_t count1, count2 = faad_get_ts();
#endif

    /* pre-IFFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
            X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
    }

#ifdef PROFILE
    count1 = faad_get_ts();
#endif

    /* complex IFFT, any non-scaling FFT can be used here */
    cfftb(mdct->cfft, Z1);

#ifdef PROFILE
    count1 = faad_get_ts() - count1;
#endif

    /* post-IFFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        RE(x) = RE(Z1[k]);
        IM(x) = IM(Z1[k]);
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
            IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));
    }

    /* reordering */
    for (k = 0; k < N8; k+=2)
    {
        X_out[              2*k] =  IM(Z1[N8 +     k]);
        X_out[          2 + 2*k] =  IM(Z1[N8 + 1 + k]);

        X_out[          1 + 2*k] = -RE(Z1[N8 - 1 - k]);
        X_out[          3 + 2*k] = -RE(Z1[N8 - 2 - k]);

        X_out[N4 +          2*k] =  RE(Z1[         k]);
        X_out[N4 +    + 2 + 2*k] =  RE(Z1[     1 + k]);

        X_out[N4 +      1 + 2*k] = -IM(Z1[N4 - 1 - k]);
        X_out[N4 +      3 + 2*k] = -IM(Z1[N4 - 2 - k]);

        X_out[N2 +          2*k] =  RE(Z1[N8 +     k]);
        X_out[N2 +    + 2 + 2*k] =  RE(Z1[N8 + 1 + k]);

        X_out[N2 +      1 + 2*k] = -IM(Z1[N8 - 1 - k]);
        X_out[N2 +      3 + 2*k] = -IM(Z1[N8 - 2 - k]);

        X_out[N2 + N4 +     2*k] = -IM(Z1[         k]);
        X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[     1 + k]);

        X_out[N2 + N4 + 1 + 2*k] =  RE(Z1[N4 - 1 - k]);
        X_out[N2 + N4 + 3 + 2*k] =  RE(Z1[N4 - 2 - k]);
    }

#ifdef PROFILE
    count2 = faad_get_ts() - count2;
    mdct->fft_cycles += count1;
    mdct->cycles += (count2 - count1);
#endif
}

#ifdef USE_SSE
void faad_imdct_sse(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
    uint16_t k;

    ALIGN complex_t Z1[512];
    complex_t *sincos = mdct->sincos;

    uint16_t N  = mdct->N;
    uint16_t N2 = N >> 1;
    uint16_t N4 = N >> 2;
    uint16_t N8 = N >> 3;

#ifdef PROFILE
    int64_t count1, count2 = faad_get_ts();
#endif

    /* pre-IFFT complex multiplication */
    for (k = 0; k < N4; k+=4)
    {
        __m128 m12, m13, m14, m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11;
        __m128 n12, n13, n14, n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11;
        n12 = _mm_load_ps(&X_in[N2 - 2*k - 8]);
        m12 = _mm_load_ps(&X_in[N2 - 2*k - 4]);
        m13 = _mm_load_ps(&X_in[2*k]);
        n13 = _mm_load_ps(&X_in[2*k + 4]);
        m1 = _mm_load_ps(&RE(sincos[k]));
        n1 = _mm_load_ps(&RE(sincos[k+2]));

        m0 = _mm_shuffle_ps(m12, m13, _MM_SHUFFLE(2,0,1,3));
        m2 = _mm_shuffle_ps(m1, m1, _MM_SHUFFLE(2,3,0,1));
        m14 = _mm_shuffle_ps(m0, m0, _MM_SHUFFLE(3,1,2,0));
        n0 = _mm_shuffle_ps(n12, n13, _MM_SHUFFLE(2,0,1,3));
        n2 = _mm_shuffle_ps(n1, n1, _MM_SHUFFLE(2,3,0,1));
        n14 = _mm_shuffle_ps(n0, n0, _MM_SHUFFLE(3,1,2,0));

        m3 = _mm_mul_ps(m14, m1);
        n3 = _mm_mul_ps(n14, n1);
        m4 = _mm_mul_ps(m14, m2);
        n4 = _mm_mul_ps(n14, n2);

        m5 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(2,0,2,0));
        n5 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(2,0,2,0));
        m6 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(3,1,3,1));
        n6 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(3,1,3,1));

        m7 = _mm_add_ps(m5, m6);
        n7 = _mm_add_ps(n5, n6);
        m8 = _mm_sub_ps(m5, m6);
        n8 = _mm_sub_ps(n5, n6);

        m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(3,2,3,2));
        n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(3,2,3,2));
        m10 = _mm_shuffle_ps(m8, m8, _MM_SHUFFLE(1,0,1,0));
        n10 = _mm_shuffle_ps(n8, n8, _MM_SHUFFLE(1,0,1,0));

        m11 = _mm_unpacklo_ps(m10, m9);
        n11 = _mm_unpacklo_ps(n10, n9);

        _mm_store_ps(&RE(Z1[k]), m11);
        _mm_store_ps(&RE(Z1[k+2]), n11);
    }

#ifdef PROFILE
    count1 = faad_get_ts();
#endif

    /* complex IFFT, any non-scaling FFT can be used here */
    cfftb_sse(mdct->cfft, Z1);

#ifdef PROFILE
    count1 = faad_get_ts() - count1;
#endif

    /* post-IFFT complex multiplication */
    for (k = 0; k < N4; k+=4)
    {
        __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11;
        __m128 n0, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11;
        m0 = _mm_load_ps(&RE(Z1[k]));
        n0 = _mm_load_ps(&RE(Z1[k+2]));
        m1 = _mm_load_ps(&RE(sincos[k]));
        n1 = _mm_load_ps(&RE(sincos[k+2]));

        m2 = _mm_shuffle_ps(m1, m1, _MM_SHUFFLE(2,3,0,1));
        n2 = _mm_shuffle_ps(n1, n1, _MM_SHUFFLE(2,3,0,1));

        m3 = _mm_mul_ps(m0, m1);
        n3 = _mm_mul_ps(n0, n1);
        m4 = _mm_mul_ps(m0, m2);
        n4 = _mm_mul_ps(n0, n2);

        m5 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(2,0,2,0));
        n5 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(2,0,2,0));
        m6 = _mm_shuffle_ps(m3, m4, _MM_SHUFFLE(3,1,3,1));
        n6 = _mm_shuffle_ps(n3, n4, _MM_SHUFFLE(3,1,3,1));

        m7 = _mm_add_ps(m5, m6);
        n7 = _mm_add_ps(n5, n6);
        m8 = _mm_sub_ps(m5, m6);
        n8 = _mm_sub_ps(n5, n6);

        m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(3,2,3,2));
        n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(3,2,3,2));
        m10 = _mm_shuffle_ps(m8, m8, _MM_SHUFFLE(1,0,1,0));
        n10 = _mm_shuffle_ps(n8, n8, _MM_SHUFFLE(1,0,1,0));

        m11 = _mm_unpacklo_ps(m10, m9);
        n11 = _mm_unpacklo_ps(n10, n9);

        _mm_store_ps(&RE(Z1[k]), m11);
        _mm_store_ps(&RE(Z1[k+2]), n11);
    }

    /* reordering */
    for (k = 0; k < N8; k+=2)
    {
        __m128 m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m13;
        __m128 n4, n5, n6, n7, n8, n9;
        __m128 neg1 = _mm_set_ps(-1.0,  1.0, -1.0,  1.0);
        __m128 neg2 = _mm_set_ps(-1.0, -1.0, -1.0, -1.0);

        m0 = _mm_load_ps(&RE(Z1[k]));
        m1 = _mm_load_ps(&RE(Z1[N8 - 2 - k]));
        m2 = _mm_load_ps(&RE(Z1[N8 + k]));
        m3 = _mm_load_ps(&RE(Z1[N4 - 2 - k]));

        m10 = _mm_mul_ps(m0, neg1);
        m11 = _mm_mul_ps(m1, neg2);
        m13 = _mm_mul_ps(m3, neg1);

        m5 = _mm_shuffle_ps(m2, m2, _MM_SHUFFLE(3,1,2,0));
        n4 = _mm_shuffle_ps(m10, m10, _MM_SHUFFLE(3,1,2,0));
        m4 = _mm_shuffle_ps(m11, m11, _MM_SHUFFLE(3,1,2,0));
        n5 = _mm_shuffle_ps(m13, m13, _MM_SHUFFLE(3,1,2,0));

        m6 = _mm_shuffle_ps(m4, m5, _MM_SHUFFLE(3,2,1,0));
        n6 = _mm_shuffle_ps(n4, n5, _MM_SHUFFLE(3,2,1,0));
        m7 = _mm_shuffle_ps(m5, m4, _MM_SHUFFLE(3,2,1,0));
        n7 = _mm_shuffle_ps(n5, n4, _MM_SHUFFLE(3,2,1,0));

        m8 = _mm_shuffle_ps(m6, m6, _MM_SHUFFLE(0,3,1,2));
        n8 = _mm_shuffle_ps(n6, n6, _MM_SHUFFLE(2,1,3,0));
        m9 = _mm_shuffle_ps(m7, m7, _MM_SHUFFLE(2,1,3,0));
        n9 = _mm_shuffle_ps(n7, n7, _MM_SHUFFLE(0,3,1,2));

        _mm_store_ps(&X_out[2*k], m8);
        _mm_store_ps(&X_out[N4 + 2*k], n8);
        _mm_store_ps(&X_out[N2 + 2*k], m9);
        _mm_store_ps(&X_out[N2 + N4 + 2*k], n9);
    }

#ifdef PROFILE
    count2 = faad_get_ts() - count2;
    mdct->fft_cycles += count1;
    mdct->cycles += (count2 - count1);
#endif
}
#endif

#ifdef LTP_DEC
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
    uint16_t k;

    complex_t x;
    ALIGN complex_t Z1[512];
    complex_t *sincos = mdct->sincos;

    uint16_t N  = mdct->N;
    uint16_t N2 = N >> 1;
    uint16_t N4 = N >> 2;
    uint16_t N8 = N >> 3;

#ifndef FIXED_POINT
	real_t scale = REAL_CONST(N);
#else
	real_t scale = REAL_CONST(4.0/N);
#endif

    /* pre-FFT complex multiplication */
    for (k = 0; k < N8; k++)
    {
        uint16_t n = k << 1;
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];

        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));

        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);

        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];

        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));

        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
    }

    /* complex FFT, any non-scaling FFT can be used here  */
    cfftf(mdct->cfft, Z1);

    /* post-FFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        uint16_t n = k << 1;
        ComplexMult(&RE(x), &IM(x),
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));

        X_out[         n] = -RE(x);
        X_out[N2 - 1 - n] =  IM(x);
        X_out[N2 +     n] = -IM(x);
        X_out[N  - 1 - n] =  RE(x);
    }
}
#endif