aboutsummaryrefslogtreecommitdiffhomepage
path: root/libfaad2/ic_predict.c
blob: 8b9372ec537e35341014a9f1abd8dd561d43d42a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
**
** Any non-GPL usage of this software or parts of this software is strictly
** forbidden.
**
** Commercial non-GPL licensing of this software is possible.
** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
**
** $Id: ic_predict.c,v 1.23 2004/09/04 14:56:28 menno Exp $
**/

#include "common.h"
#include "structs.h"

#ifdef MAIN_DEC

#include "syntax.h"
#include "ic_predict.h"
#include "pns.h"


static void flt_round(float32_t *pf)
{
    int32_t flg;
    uint32_t tmp, tmp1, tmp2;

    tmp = *(uint32_t*)pf;
    flg = tmp & (uint32_t)0x00008000;
    tmp &= (uint32_t)0xffff0000;
    tmp1 = tmp;
    /* round 1/2 lsb toward infinity */
    if (flg)
    {
        tmp &= (uint32_t)0xff800000;       /* extract exponent and sign */
        tmp |= (uint32_t)0x00010000;       /* insert 1 lsb */
        tmp2 = tmp;                             /* add 1 lsb and elided one */
        tmp &= (uint32_t)0xff800000;       /* extract exponent and sign */

        *pf = *(float32_t*)&tmp1 + *(float32_t*)&tmp2 - *(float32_t*)&tmp;
    } else {
        *pf = *(float32_t*)&tmp;
    }
}

static int16_t quant_pred(float32_t x)
{
    int16_t q;
    uint32_t *tmp = (uint32_t*)&x;

    q = (int16_t)(*tmp>>16);

    return q;
}

static float32_t inv_quant_pred(int16_t q)
{
    float32_t x;
    uint32_t *tmp = (uint32_t*)&x;
    *tmp = ((uint32_t)q)<<16;

    return x;
}

static void ic_predict(pred_state *state, real_t input, real_t *output, uint8_t pred)
{
    uint16_t tmp;
    int16_t i, j;
    real_t dr1, predictedvalue;
    real_t e0, e1;
    real_t k1, k2;

    real_t r[2];
    real_t COR[2];
    real_t VAR[2];

    r[0] = inv_quant_pred(state->r[0]);
    r[1] = inv_quant_pred(state->r[1]);
    COR[0] = inv_quant_pred(state->COR[0]);
    COR[1] = inv_quant_pred(state->COR[1]);
    VAR[0] = inv_quant_pred(state->VAR[0]);
    VAR[1] = inv_quant_pred(state->VAR[1]);


#if 1
    tmp = state->VAR[0];
    j = (tmp >> 7);
    i = tmp & 0x7f;
    if (j >= 128)
    {
        j -= 128;
        k1 = COR[0] * exp_table[j] * mnt_table[i];
    } else {
        k1 = REAL_CONST(0);
    }
#else

    {
#define B 0.953125
        real_t c = COR[0];
        real_t v = VAR[0];
        real_t tmp;
        if (c == 0 || v <= 1)
        {
            k1 = 0;
        } else {
            tmp = B / v;
            flt_round(&tmp);
            k1 = c * tmp;
        }
    }
#endif

    if (pred)
    {
#if 1
        tmp = state->VAR[1];
        j = (tmp >> 7);
        i = tmp & 0x7f;
        if (j >= 128)
        {
            j -= 128;
            k2 = COR[1] * exp_table[j] * mnt_table[i];
        } else {
            k2 = REAL_CONST(0);
        }
#else

#define B 0.953125
        real_t c = COR[1];
        real_t v = VAR[1];
        real_t tmp;
        if (c == 0 || v <= 1)
        {
            k2 = 0;
        } else {
            tmp = B / v;
            flt_round(&tmp);
            k2 = c * tmp;
        }
#endif

        predictedvalue = k1*r[0] + k2*r[1];
        flt_round(&predictedvalue);
        *output = input + predictedvalue;
    }

    /* calculate new state data */
    e0 = *output;
    e1 = e0 - k1*r[0];
    dr1 = k1*e0;

    VAR[0] = ALPHA*VAR[0] + 0.5f * (r[0]*r[0] + e0*e0);
    COR[0] = ALPHA*COR[0] + r[0]*e0;
    VAR[1] = ALPHA*VAR[1] + 0.5f * (r[1]*r[1] + e1*e1);
    COR[1] = ALPHA*COR[1] + r[1]*e1;

    r[1] = A * (r[0]-dr1);
    r[0] = A * e0;

    state->r[0] = quant_pred(r[0]);
    state->r[1] = quant_pred(r[1]);
    state->COR[0] = quant_pred(COR[0]);
    state->COR[1] = quant_pred(COR[1]);
    state->VAR[0] = quant_pred(VAR[0]);
    state->VAR[1] = quant_pred(VAR[1]);
}

static void reset_pred_state(pred_state *state)
{
    state->r[0]   = 0;
    state->r[1]   = 0;
    state->COR[0] = 0;
    state->COR[1] = 0;
    state->VAR[0] = 0x3F80;
    state->VAR[1] = 0x3F80;
}

void pns_reset_pred_state(ic_stream *ics, pred_state *state)
{
    uint8_t sfb, g, b;
    uint16_t i, offs, offs2;

    /* prediction only for long blocks */
    if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
        return;

    for (g = 0; g < ics->num_window_groups; g++)
    {
        for (b = 0; b < ics->window_group_length[g]; b++)
        {
            for (sfb = 0; sfb < ics->max_sfb; sfb++)
            {
                if (is_noise(ics, g, sfb))
                {
                    offs = ics->swb_offset[sfb];
                    offs2 = ics->swb_offset[sfb+1];

                    for (i = offs; i < offs2; i++)
                        reset_pred_state(&state[i]);
                }
            }
        }
    }
}

void reset_all_predictors(pred_state *state, uint16_t frame_len)
{
    uint16_t i;

    for (i = 0; i < frame_len; i++)
        reset_pred_state(&state[i]);
}

/* intra channel prediction */
void ic_prediction(ic_stream *ics, real_t *spec, pred_state *state,
                   uint16_t frame_len, uint8_t sf_index)
{
    uint8_t sfb;
    uint16_t bin;

    if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
    {
        reset_all_predictors(state, frame_len);
    } else {
        for (sfb = 0; sfb < max_pred_sfb(sf_index); sfb++)
        {
            uint16_t low  = ics->swb_offset[sfb];
            uint16_t high = ics->swb_offset[sfb+1];

            for (bin = low; bin < high; bin++)
            {
                ic_predict(&state[bin], spec[bin], &spec[bin],
                    (ics->predictor_data_present && ics->pred.prediction_used[sfb]));
            }
        }

        if (ics->predictor_data_present)
        {
            if (ics->pred.predictor_reset)
            {
                for (bin = ics->pred.predictor_reset_group_number - 1;
                     bin < frame_len; bin += 30)
                {
                    reset_pred_state(&state[bin]);
                }
            }
        }
    }
}

#endif