1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/*
This is an ao2 plugin to do simple decoding of matrixed surround
sound. This will provide a (basic) surround-sound effect from
audio encoded for Dolby Surround, Pro Logic etc.
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Original author: Steve Davies <steve@daviesfam.org>
*/
/* The principle: Make rear channels by extracting anti-phase data
from the front channels, delay by 20msec and feed to rear in anti-phase
*/
// SPLITREAR: Define to decode two distinct rear channels -
// this doesn't work so well in practice because
// separation in a passive matrix is not high.
// C (dialogue) to Ls and Rs 14dB or so -
// so dialogue leaks to the rear.
// Still - give it a try and send feedback.
// comment this define for old behaviour of a single
// surround sent to rear in anti-phase
#define SPLITREAR
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "audio_out.h"
#include "audio_plugin.h"
#include "audio_plugin_internal.h"
#include "afmt.h"
#include "remez.h"
#include "firfilter.c"
static ao_info_t info =
{
"Surround decoder plugin",
"surround",
"Steve Davies <steve@daviesfam.org>",
""
};
LIBAO_PLUGIN_EXTERN(surround)
// local data
typedef struct pl_surround_s
{
int passthrough; // Just be a "NO-OP"
int msecs; // Rear channel delay in milliseconds
int16_t* databuf; // Output audio buffer
int16_t* Ls_delaybuf; // circular buffer to be used for delaying Ls audio
int16_t* Rs_delaybuf; // circular buffer to be used for delaying Rs audio
int delaybuf_len; // delaybuf buffer length in samples
int delaybuf_pos; // offset in buffer where we are reading/writing
double* filter_coefs_surround; // FIR filter coefficients for surround sound 7kHz lowpass
int rate; // input data rate
int format; // input format
int input_channels; // input channels
} pl_surround_t;
static pl_surround_t pl_surround={0,20,NULL,NULL,NULL,0,0,NULL,0,0,0};
// to set/get/query special features/parameters
static int control(int cmd,int arg){
switch(cmd){
case AOCONTROL_PLUGIN_SET_LEN:
if (pl_surround.passthrough) return CONTROL_OK;
//fprintf(stderr, "pl_surround: AOCONTROL_PLUGIN_SET_LEN with arg=%d\n", arg);
//fprintf(stderr, "pl_surround: ao_plugin_data.len=%d\n", ao_plugin_data.len);
// Allocate an output buffer
if (pl_surround.databuf != NULL) {
free(pl_surround.databuf); pl_surround.databuf = NULL;
}
// Allocate output buffer
pl_surround.databuf = calloc(ao_plugin_data.len, 1);
// Return back smaller len so we don't get overflowed...
ao_plugin_data.len /= 2;
return CONTROL_OK;
}
return -1;
}
// open & setup audio device
// return: 1=success 0=fail
static int init(){
fprintf(stderr, "pl_surround: init input rate=%d, channels=%d\n", ao_plugin_data.rate, ao_plugin_data.channels);
if (ao_plugin_data.channels != 2) {
fprintf(stderr, "pl_surround: source audio must have 2 channels, using passthrough mode\n");
pl_surround.passthrough = 1;
return 1;
}
if (ao_plugin_data.format != AFMT_S16_LE) {
fprintf(stderr, "pl_surround: I'm dumb and can only handle AFMT_S16_LE audio format, using passthrough mode\n");
pl_surround.passthrough = 1;
return 1;
}
pl_surround.passthrough = 0;
/* Store info on input format to expect */
pl_surround.rate=ao_plugin_data.rate;
pl_surround.format=ao_plugin_data.format;
pl_surround.input_channels=ao_plugin_data.channels;
// Input 2 channels, output will be 4 - tell ao_plugin
ao_plugin_data.channels = 4;
ao_plugin_data.sz_mult /= 2;
// Figure out buffer space (in int16_ts) needed for the 15msec delay
// Extra 31 samples allow for lowpass filter delay (taps-1)
pl_surround.delaybuf_len = (pl_surround.rate * pl_surround.msecs / 1000) + 31;
// Allocate delay buffers
pl_surround.Ls_delaybuf=(void*)calloc(pl_surround.delaybuf_len,sizeof(int16_t));
pl_surround.Rs_delaybuf=(void*)calloc(pl_surround.delaybuf_len,sizeof(int16_t));
fprintf(stderr, "pl_surround: %dmsec surround delay, rate %d - buffers are %d bytes each\n",
pl_surround.msecs,pl_surround.rate, pl_surround.delaybuf_len*sizeof(int16_t));
pl_surround.delaybuf_pos = 0;
// Surround filer coefficients
pl_surround.filter_coefs_surround = calc_coefficients_7kHz_lowpass(pl_surround.rate);
//dump_filter_coefficients(pl_surround.filter_coefs_surround);
//testfilter(pl_surround.filter_coefs_surround, 32, pl_surround.rate);
return 1;
}
// close plugin
static void uninit(){
// fprintf(stderr, "pl_surround: uninit called!\n");
if (pl_surround.passthrough) return;
if(pl_surround.Ls_delaybuf)
free(pl_surround.Ls_delaybuf);
if(pl_surround.Rs_delaybuf)
free(pl_surround.Rs_delaybuf);
if(pl_surround.databuf) {
free(pl_surround.databuf);
pl_surround.databuf = NULL;
}
pl_surround.delaybuf_len=0;
}
// empty buffers
static void reset()
{
if (pl_surround.passthrough) return;
//fprintf(stderr, "pl_surround: reset called\n");
pl_surround.delaybuf_pos = 0;
memset(pl_surround.Ls_delaybuf, 0, sizeof(int16_t)*pl_surround.delaybuf_len);
memset(pl_surround.Rs_delaybuf, 0, sizeof(int16_t)*pl_surround.delaybuf_len);
}
// The beginnings of an active matrix...
static double steering_matrix[][12] = {
// LL RL LR RR LS RS LLs RLs LRs RRs LC RC
{.707, .0, .0, .707, .5, -.5, .5878, -.3928, .3928, -.5878, .5, .5},
};
// Experimental moving average dominances
static int amp_L = 0, amp_R = 0, amp_C = 0, amp_S = 0;
// processes 'ao_plugin_data.len' bytes of 'data'
// called for every block of data
static int play(){
int16_t *in, *out;
int i, samples;
double *matrix = steering_matrix[0]; // later we'll index based on detected dominance
if (pl_surround.passthrough) return 1;
// fprintf(stderr, "pl_surround: play %d bytes, %d samples\n", ao_plugin_data.len, samples);
samples = ao_plugin_data.len / sizeof(int16_t) / pl_surround.input_channels;
out = pl_surround.databuf; in = (int16_t *)ao_plugin_data.data;
// Testing - place a 1kHz tone on Lt and Rt in anti-phase: should decode in S
//sinewave(in, samples, pl_surround.input_channels, 1000, 0.0, pl_surround.rate);
//sinewave(&in[1], samples, pl_surround.input_channels, 1000, PI, pl_surround.rate);
for (i=0; i<samples; i++) {
// Dominance:
//abs(in[0]) abs(in[1]);
//abs(in[0]+in[1]) abs(in[0]-in[1]);
//10 * log( abs(in[0]) / (abs(in[1])|1) );
//10 * log( abs(in[0]+in[1]) / (abs(in[0]-in[1])|1) );
// About volume balancing...
// Surround encoding does the following:
// Lt=L+.707*C+.707*S, Rt=R+.707*C-.707*S
// So S should be extracted as:
// (Lt-Rt)
// But we are splitting the S to two output channels, so we
// must take 3dB off as we split it:
// Ls=Rs=.707*(Lt-Rt)
// Trouble is, Lt could be +32767, Rt -32768, so possibility that S will
// overflow. So to avoid that, we cut L/R by 3dB (*.707), and S by 6dB (/2).
// this keeps the overall balance, but guarantees no overflow.
// output front left and right
out[0] = matrix[0]*in[0] + matrix[1]*in[1];
out[1] = matrix[2]*in[0] + matrix[3]*in[1];
// output Ls and Rs - from 20msec ago, lowpass filtered @ 7kHz
out[2] = firfilter(pl_surround.Ls_delaybuf, pl_surround.delaybuf_pos,
pl_surround.delaybuf_len, 32, pl_surround.filter_coefs_surround);
#ifdef SPLITREAR
out[3] = firfilter(pl_surround.Rs_delaybuf, pl_surround.delaybuf_pos,
pl_surround.delaybuf_len, 32, pl_surround.filter_coefs_surround);
#else
out[3] = -out[2];
#endif
// calculate and save surround for 20msecs time
#ifdef SPLITREAR
pl_surround.Ls_delaybuf[pl_surround.delaybuf_pos] =
matrix[6]*in[0] + matrix[7]*in[1];
pl_surround.Rs_delaybuf[pl_surround.delaybuf_pos++] =
matrix[8]*in[0] + matrix[9]*in[1];
#else
pl_surround.Ls_delaybuf[pl_surround.delaybuf_pos++] =
matrix[4]*in[0] + matrix[5]*in[1];
#endif
pl_surround.delaybuf_pos %= pl_surround.delaybuf_len;
// next samples...
in = &in[pl_surround.input_channels]; out = &out[4];
}
// Show some state
//printf("\npl_surround: delaybuf_pos=%d, samples=%d\r\033[A", pl_surround.delaybuf_pos, samples);
// Set output block/len
ao_plugin_data.data=pl_surround.databuf;
ao_plugin_data.len=samples*sizeof(int16_t)*4;
return 1;
}
|