aboutsummaryrefslogtreecommitdiffhomepage
path: root/libaf/af_volnorm.c
blob: 60485118b082ea387648225a27f0618fc3bd100b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*=============================================================================
//	
//  This software has been released under the terms of the GNU General Public
//  license. See http://www.gnu.org/copyleft/gpl.html for details.
//
//  Copyright 2004 Alex Beregszaszi & Pierre Lombard
//
//=============================================================================
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h> 

#include <unistd.h>
#include <inttypes.h>
#include <math.h>
#include <limits.h>

#include "af.h"

// Methods:
// 1: uses a 1 value memory and coefficients new=a*old+b*cur (with a+b=1)
// 2: uses several samples to smooth the variations (standard weighted mean
//    on past samples)

// Size of the memory array
// FIXME: should depend on the frequency of the data (should be a few seconds)
#define NSAMPLES 128

// If summing all the mem[].len is lower than MIN_SAMPLE_SIZE bytes, then we
// choose to ignore the computed value as it's not significant enough
// FIXME: should depend on the frequency of the data (0.5s maybe)
#define MIN_SAMPLE_SIZE 32000

// mul is the value by which the samples are scaled
// and has to be in [MUL_MIN, MUL_MAX]
#define MUL_INIT 1.0
#define MUL_MIN 0.1
#define MUL_MAX 5.0
// "Ideal" level
#define MID_S16 (SHRT_MAX * 0.25)
#define MID_FLOAT (INT_MAX * 0.25)

// Silence level
// FIXME: should be relative to the level of the samples
#define SIL_S16 (SHRT_MAX * 0.01)
#define SIL_FLOAT (INT_MAX * 0.01) // FIXME

// smooth must be in ]0.0, 1.0[
#define SMOOTH_MUL 0.06
#define SMOOTH_LASTAVG 0.06

// Data for specific instances of this filter
typedef struct af_volume_s
{
    int method; // method used
    float mul;
    // method 1
    float lastavg; // history value of the filter
    // method 2
    int idx;
    struct {
	float avg; // average level of the sample
	int len; // sample size (weight)
    } mem[NSAMPLES];
}af_volnorm_t;

// Initialization and runtime control
static int control(struct af_instance_s* af, int cmd, void* arg)
{
  af_volnorm_t* s   = (af_volnorm_t*)af->setup; 

  switch(cmd){
  case AF_CONTROL_REINIT:
    // Sanity check
    if(!arg) return AF_ERROR;
    
    af->data->rate   = ((af_data_t*)arg)->rate;
    af->data->nch    = ((af_data_t*)arg)->nch;
    
    if(((af_data_t*)arg)->format == (AF_FORMAT_S16_NE)){
      af->data->format = AF_FORMAT_S16_NE;
      af->data->bps    = 2;
    }else{
      af->data->format = AF_FORMAT_FLOAT_NE;
      af->data->bps    = 4;
    }
    return af_test_output(af,(af_data_t*)arg);
  case AF_CONTROL_COMMAND_LINE:{
    int   i;
    sscanf((char*)arg,"%d", &i);
    if (i != 1 && i != 2)
	return AF_ERROR;
    s->method = i-1;
    return AF_OK;
  }
  }
  return AF_UNKNOWN;
}

// Deallocate memory 
static void uninit(struct af_instance_s* af)
{
  if(af->data)
    free(af->data);
  if(af->setup)
    free(af->setup);
}

static void method1_int16(af_volnorm_t *s, af_data_t *c)
{
  register int i = 0;
  int16_t *data = (int16_t*)c->audio;	// Audio data
  int len = c->len/2;		// Number of samples
  float curavg = 0.0, newavg, neededmul;
  int tmp;
  
  for (i = 0; i < len; i++)
  {
    tmp = data[i];
    curavg += tmp * tmp;
  }
  curavg = sqrt(curavg / (float) len);
  
  // Evaluate an adequate 'mul' coefficient based on previous state, current
  // samples level, etc
  
  if (curavg > SIL_S16)
  {
    neededmul = MID_S16 / (curavg * s->mul);
    s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
    
    // clamp the mul coefficient
    s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
  }
  
  // Scale & clamp the samples
  for (i = 0; i < len; i++)
  {
    tmp = s->mul * data[i];
    tmp = clamp(tmp, SHRT_MIN, SHRT_MAX);
    data[i] = tmp;
  }
  
  // Evaulation of newavg (not 100% accurate because of values clamping)
  newavg = s->mul * curavg;
  
  // Stores computed values for future smoothing
  s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
}

static void method1_float(af_volnorm_t *s, af_data_t *c)
{
  register int i = 0;
  float *data = (float*)c->audio;	// Audio data
  int len = c->len/4;		// Number of samples
  float curavg = 0.0, newavg, neededmul, tmp;
  
  for (i = 0; i < len; i++)
  {
    tmp = data[i];
    curavg += tmp * tmp;
  }
  curavg = sqrt(curavg / (float) len);
  
  // Evaluate an adequate 'mul' coefficient based on previous state, current
  // samples level, etc
  
  if (curavg > SIL_FLOAT) // FIXME
  {
    neededmul = MID_FLOAT / (curavg * s->mul);
    s->mul = (1.0 - SMOOTH_MUL) * s->mul + SMOOTH_MUL * neededmul;
    
    // clamp the mul coefficient
    s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
  }
  
  // Scale & clamp the samples
  for (i = 0; i < len; i++)
    data[i] *= s->mul;
  
  // Evaulation of newavg (not 100% accurate because of values clamping)
  newavg = s->mul * curavg;
  
  // Stores computed values for future smoothing
  s->lastavg = (1.0 - SMOOTH_LASTAVG) * s->lastavg + SMOOTH_LASTAVG * newavg;
}

static void method2_int16(af_volnorm_t *s, af_data_t *c)
{
  register int i = 0;
  int16_t *data = (int16_t*)c->audio;	// Audio data
  int len = c->len/2;		// Number of samples
  float curavg = 0.0, newavg, avg = 0.0;
  int tmp, totallen = 0;
  
  for (i = 0; i < len; i++)
  {
    tmp = data[i];
    curavg += tmp * tmp;
  }
  curavg = sqrt(curavg / (float) len);
  
  // Evaluate an adequate 'mul' coefficient based on previous state, current
  // samples level, etc
  for (i = 0; i < NSAMPLES; i++)
  {
    avg += s->mem[i].avg * (float)s->mem[i].len;
    totallen += s->mem[i].len;
  }
  
  if (totallen > MIN_SAMPLE_SIZE)
  {
    avg /= (float)totallen;
    if (avg >= SIL_S16)
    {
	s->mul = MID_S16 / avg;
	s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
    }
  }
  
  // Scale & clamp the samples
  for (i = 0; i < len; i++)
  {
    tmp = s->mul * data[i];
    tmp = clamp(tmp, SHRT_MIN, SHRT_MAX);
    data[i] = tmp;
  }
  
  // Evaulation of newavg (not 100% accurate because of values clamping)
  newavg = s->mul * curavg;
  
  // Stores computed values for future smoothing
  s->mem[s->idx].len = len;
  s->mem[s->idx].avg = newavg;
  s->idx = (s->idx + 1) % NSAMPLES;
}

static void method2_float(af_volnorm_t *s, af_data_t *c)
{
  register int i = 0;
  float *data = (float*)c->audio;	// Audio data
  int len = c->len/4;		// Number of samples
  float curavg = 0.0, newavg, avg = 0.0, tmp;
  int totallen = 0;
  
  for (i = 0; i < len; i++)
  {
    tmp = data[i];
    curavg += tmp * tmp;
  }
  curavg = sqrt(curavg / (float) len);
  
  // Evaluate an adequate 'mul' coefficient based on previous state, current
  // samples level, etc
  for (i = 0; i < NSAMPLES; i++)
  {
    avg += s->mem[i].avg * (float)s->mem[i].len;
    totallen += s->mem[i].len;
  }
  
  if (totallen > MIN_SAMPLE_SIZE)
  {
    avg /= (float)totallen;
    if (avg >= SIL_FLOAT)
    {
	s->mul = MID_FLOAT / avg;
	s->mul = clamp(s->mul, MUL_MIN, MUL_MAX);
    }
  }
  
  // Scale & clamp the samples
  for (i = 0; i < len; i++)
    data[i] *= s->mul;
  
  // Evaulation of newavg (not 100% accurate because of values clamping)
  newavg = s->mul * curavg;
  
  // Stores computed values for future smoothing
  s->mem[s->idx].len = len;
  s->mem[s->idx].avg = newavg;
  s->idx = (s->idx + 1) % NSAMPLES;
}

// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
{
  af_volnorm_t *s = af->setup;

  if(af->data->format == (AF_FORMAT_S16_NE))
  {
    if (s->method)
	method2_int16(s, data);
    else
	method1_int16(s, data);
  }
  else if(af->data->format == (AF_FORMAT_FLOAT_NE))
  { 
    if (s->method)
	method2_float(s, data);
    else
	method1_float(s, data);
  }
  return data;
}

// Allocate memory and set function pointers
static int open(af_instance_t* af){
  int i = 0;
  af->control=control;
  af->uninit=uninit;
  af->play=play;
  af->mul.n=1;
  af->mul.d=1;
  af->data=calloc(1,sizeof(af_data_t));
  af->setup=calloc(1,sizeof(af_volnorm_t));
  if(af->data == NULL || af->setup == NULL)
    return AF_ERROR;

  ((af_volnorm_t*)af->setup)->mul = MUL_INIT;
  ((af_volnorm_t*)af->setup)->lastavg = MID_S16;
  ((af_volnorm_t*)af->setup)->idx = 0;
  for (i = 0; i < NSAMPLES; i++)
  {
     ((af_volnorm_t*)af->setup)->mem[i].len = 0;
     ((af_volnorm_t*)af->setup)->mem[i].avg = 0;
  }
  return AF_OK;
}

// Description of this filter
af_info_t af_info_volnorm = {
    "Volume normalizer filter",
    "volnorm",
    "Alex Beregszaszi & Pierre Lombard",
    "",
    AF_FLAGS_NOT_REENTRANT,
    open
};