aboutsummaryrefslogtreecommitdiffhomepage
path: root/libaf/af_scaletempo.c
blob: d09fe950b5f844fcead5fa00dab8d07e062001af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
 * scaletempo audio filter
 *
 * scale tempo while maintaining pitch
 * (WSOLA technique with cross correlation)
 * inspired by SoundTouch library by Olli Parviainen
 *
 * basic algorithm
 *   - produce 'stride' output samples per loop
 *   - consume stride*scale input samples per loop
 *
 * to produce smoother transitions between strides, blend next overlap
 * samples from last stride with correlated samples of current input
 *
 * Copyright (c) 2007 Robert Juliano
 *
 * This file is part of MPlayer.
 *
 * MPlayer is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * MPlayer is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with MPlayer; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <stdlib.h>
#include <string.h>
#include <limits.h>

#include "af.h"
#include "libavutil/common.h"
#include "subopt-helper.h"
#include "help_mp.h"

// Data for specific instances of this filter
typedef struct af_scaletempo_s
{
  // stride
  float   scale;
  float   speed;
  float   frames_stride_scaled;
  float   frames_stride_error;
  int     bytes_per_frame;
  int     bytes_stride;
  float   bytes_stride_scaled;
  int     bytes_queue;
  int     bytes_queued;
  int     bytes_to_slide;
  int8_t* buf_queue;
  // overlap
  int     samples_overlap;
  int     samples_standing;
  int     bytes_overlap;
  int     bytes_standing;
  void*   buf_overlap;
  void*   table_blend;
  void    (*output_overlap)(struct af_scaletempo_s* s, void* out_buf, int bytes_off);
  // best overlap
  int     frames_search;
  int     num_channels;
  void*   buf_pre_corr;
  void*   table_window;
  int     (*best_overlap_offset)(struct af_scaletempo_s* s);
  // command line
  float   scale_nominal;
  float   ms_stride;
  float   percent_overlap;
  float   ms_search;
  short   speed_tempo;
  short   speed_pitch;
} af_scaletempo_t;

static int fill_queue(struct af_instance_s* af, af_data_t* data, int offset)
{
  af_scaletempo_t* s = af->setup;
  int bytes_in = data->len - offset;
  int offset_unchanged = offset;

  if (s->bytes_to_slide > 0) {
    if (s->bytes_to_slide < s->bytes_queued) {
      int bytes_move = s->bytes_queued - s->bytes_to_slide;
      memmove(s->buf_queue,
              s->buf_queue + s->bytes_to_slide,
              bytes_move);
      s->bytes_to_slide = 0;
      s->bytes_queued = bytes_move;
    } else {
      int bytes_skip;
      s->bytes_to_slide -= s->bytes_queued;
      bytes_skip = FFMIN(s->bytes_to_slide, bytes_in);
      s->bytes_queued = 0;
      s->bytes_to_slide -= bytes_skip;
      offset += bytes_skip;
      bytes_in -= bytes_skip;
    }
  }

  if (bytes_in > 0) {
    int bytes_copy = FFMIN(s->bytes_queue - s->bytes_queued, bytes_in);
    memcpy(s->buf_queue + s->bytes_queued,
           (int8_t*)data->audio + offset,
           bytes_copy);
    s->bytes_queued += bytes_copy;
    offset += bytes_copy;
  }

  return offset - offset_unchanged;
}

#define UNROLL_PADDING (4*4)

static int best_overlap_offset_float(af_scaletempo_t* s)
{
  float *pw, *po, *ppc, *search_start;
  float best_corr = INT_MIN;
  int best_off = 0;
  int i, off;

  pw  = s->table_window;
  po  = s->buf_overlap;
  po += s->num_channels;
  ppc = s->buf_pre_corr;
  for (i=s->num_channels; i<s->samples_overlap; i++) {
    *ppc++ = *pw++ * *po++;
  }

  search_start = (float*)s->buf_queue + s->num_channels;
  for (off=0; off<s->frames_search; off++) {
    float corr = 0;
    float* ps = search_start;
    ppc = s->buf_pre_corr;
    for (i=s->num_channels; i<s->samples_overlap; i++) {
      corr += *ppc++ * *ps++;
    }
    if (corr > best_corr) {
      best_corr = corr;
      best_off  = off;
    }
    search_start += s->num_channels;
  }

  return best_off * 4 * s->num_channels;
}

static int best_overlap_offset_s16(af_scaletempo_t* s)
{
  int32_t *pw, *ppc;
  int16_t *po, *search_start;
  int64_t best_corr = INT64_MIN;
  int best_off = 0;
  int off;
  long i;

  pw  = s->table_window;
  po  = s->buf_overlap;
  po += s->num_channels;
  ppc = s->buf_pre_corr;
  for (i=s->num_channels; i<s->samples_overlap; i++) {
    *ppc++ = ( *pw++ * *po++ ) >> 15;
  }

  search_start = (int16_t*)s->buf_queue + s->num_channels;
  for (off=0; off<s->frames_search; off++) {
    int64_t corr = 0;
    int16_t* ps = search_start;
    ppc = s->buf_pre_corr;
    ppc += s->samples_overlap - s->num_channels;
    ps  += s->samples_overlap - s->num_channels;
    i  = -(s->samples_overlap - s->num_channels);
    do {
      corr += ppc[i+0] * ps[i+0];
      corr += ppc[i+1] * ps[i+1];
      corr += ppc[i+2] * ps[i+2];
      corr += ppc[i+3] * ps[i+3];
      i += 4;
    } while (i < 0);
    if (corr > best_corr) {
      best_corr = corr;
      best_off  = off;
    }
    search_start += s->num_channels;
  }

  return best_off * 2 * s->num_channels;
}

static void output_overlap_float(af_scaletempo_t* s, void* buf_out,
				  int bytes_off)
{
  float* pout = buf_out;
  float* pb   = s->table_blend;
  float* po   = s->buf_overlap;
  float* pin  = (float*)(s->buf_queue + bytes_off);
  int i;
  for (i=0; i<s->samples_overlap; i++) {
    *pout++ = *po - *pb++ * ( *po - *pin++ ); po++;
  }
}
static void output_overlap_s16(af_scaletempo_t* s, void* buf_out,
			       int bytes_off)
{
  int16_t* pout = buf_out;
  int32_t* pb   = s->table_blend;
  int16_t* po   = s->buf_overlap;
  int16_t* pin  = (int16_t*)(s->buf_queue + bytes_off);
  int i;
  for (i=0; i<s->samples_overlap; i++) {
    *pout++ = *po - ( ( *pb++ * ( *po - *pin++ ) ) >> 16 ); po++;
  }
}

// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
{
  af_scaletempo_t* s = af->setup;
  int offset_in;
  int max_bytes_out;
  int8_t* pout;

  if (s->scale == 1.0) {
    return data;
  }

  // RESIZE_LOCAL_BUFFER - can't use macro
  max_bytes_out = ((int)(data->len / s->bytes_stride_scaled) + 1) * s->bytes_stride;
  if (max_bytes_out > af->data->len) {
    af_msg(AF_MSG_VERBOSE, "[libaf] Reallocating memory in module %s, "
          "old len = %i, new len = %i\n",af->info->name,af->data->len,max_bytes_out);
    af->data->audio = realloc(af->data->audio, max_bytes_out);
    if (!af->data->audio) {
      af_msg(AF_MSG_FATAL, "[libaf] Could not allocate memory\n");
      return NULL;
    }
    af->data->len = max_bytes_out;
  }

  offset_in = fill_queue(af, data, 0);
  pout = af->data->audio;
  while (s->bytes_queued >= s->bytes_queue) {
    int ti;
    float tf;
    int bytes_off = 0;

    // output stride
    if (s->output_overlap) {
      if (s->best_overlap_offset)
        bytes_off = s->best_overlap_offset(s);
      s->output_overlap(s, pout, bytes_off);
    }
    memcpy(pout + s->bytes_overlap,
           s->buf_queue + bytes_off + s->bytes_overlap,
           s->bytes_standing);
    pout += s->bytes_stride;

    // input stride
    memcpy(s->buf_overlap,
           s->buf_queue + bytes_off + s->bytes_stride,
           s->bytes_overlap);
    tf = s->frames_stride_scaled + s->frames_stride_error;
    ti = (int)tf;
    s->frames_stride_error = tf - ti;
    s->bytes_to_slide = ti * s->bytes_per_frame;

    offset_in += fill_queue(af, data, offset_in);
  }

  // This filter can have a negative delay when scale > 1:
  // output corresponding to some length of input can be decided and written
  // after receiving only a part of that input.
  af->delay = s->bytes_queued - s->bytes_to_slide;

  data->audio = af->data->audio;
  data->len   = pout - (int8_t *)af->data->audio;
  return data;
}

// Initialization and runtime control
static int control(struct af_instance_s* af, int cmd, void* arg)
{
  af_scaletempo_t* s = af->setup;
  switch(cmd){
  case AF_CONTROL_REINIT:{
    af_data_t* data = (af_data_t*)arg;
    float srate = data->rate / 1000;
    int nch = data->nch;
    int bps;
    int use_int = 0;
    int frames_stride, frames_overlap;
    int i, j;

    af_msg(AF_MSG_VERBOSE,
           "[scaletempo] %.3f speed * %.3f scale_nominal = %.3f\n",
           s->speed, s->scale_nominal, s->scale);

    if (s->scale == 1.0) {
      if (s->speed_tempo && s->speed_pitch)
        return AF_DETACH;
      memcpy(af->data, data, sizeof(af_data_t));
      return af_test_output(af, data);
    }

    af->data->rate = data->rate;
    af->data->nch  = data->nch;
    if ( data->format == AF_FORMAT_S16_LE
         || data->format == AF_FORMAT_S16_BE ) {
      use_int = 1;
      af->data->format  = AF_FORMAT_S16_NE;
      af->data->bps     = bps = 2;
    } else {
      af->data->format = AF_FORMAT_FLOAT_NE;
      af->data->bps    = bps = 4;
    }

    frames_stride           = srate * s->ms_stride;
    s->bytes_stride         = frames_stride * bps * nch;
    s->bytes_stride_scaled  = s->scale * s->bytes_stride;
    s->frames_stride_scaled = s->scale * frames_stride;
    s->frames_stride_error  = 0;
    af->mul = (double)s->bytes_stride / s->bytes_stride_scaled;

    frames_overlap = frames_stride * s->percent_overlap;
    if (frames_overlap <= 0) {
      s->bytes_standing   = s->bytes_stride;
      s->samples_standing = s->bytes_standing / bps;
      s->output_overlap   = NULL;
    } else {
      s->samples_overlap  = frames_overlap * nch;
      s->bytes_overlap    = frames_overlap * nch * bps;
      s->bytes_standing   = s->bytes_stride - s->bytes_overlap;
      s->samples_standing = s->bytes_standing / bps;
      s->buf_overlap      = realloc(s->buf_overlap, s->bytes_overlap);
      s->table_blend      = realloc(s->table_blend, s->bytes_overlap * 4);
      if(!s->buf_overlap || !s->table_blend) {
        af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
        return AF_ERROR;
      }
      memset(s->buf_overlap, 0, s->bytes_overlap);
      if (use_int) {
        int32_t* pb = s->table_blend;
        int64_t blend = 0;
        for (i=0; i<frames_overlap; i++) {
          int32_t v = blend / frames_overlap;
          for (j=0; j<nch; j++) {
            *pb++ = v;
          }
          blend += 65536;  // 2^16
        }
        s->output_overlap = output_overlap_s16;
      } else {
        float* pb = s->table_blend;
        for (i=0; i<frames_overlap; i++) {
          float v = i / (float)frames_overlap;
          for (j=0; j<nch; j++) {
            *pb++ = v;
          }
        }
        s->output_overlap = output_overlap_float;
      }
    }

    s->frames_search = (frames_overlap > 1) ? srate * s->ms_search : 0;
    if (s->frames_search <= 0) {
      s->best_overlap_offset = NULL;
    } else {
      if (use_int) {
        int64_t t = frames_overlap;
        int32_t n = 8589934588LL / (t * t);  // 4 * (2^31 - 1) / t^2
        int32_t* pw;
        s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap * 2 + UNROLL_PADDING);
        s->table_window = realloc(s->table_window, s->bytes_overlap * 2 - nch * bps * 2);
        if(!s->buf_pre_corr || !s->table_window) {
          af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
          return AF_ERROR;
        }
        memset((char *)s->buf_pre_corr + s->bytes_overlap * 2, 0, UNROLL_PADDING);
        pw = s->table_window;
        for (i=1; i<frames_overlap; i++) {
          int32_t v = ( i * (t - i) * n ) >> 15;
          for (j=0; j<nch; j++) {
            *pw++ = v;
          }
        }
        s->best_overlap_offset = best_overlap_offset_s16;
      } else {
        float* pw;
        s->buf_pre_corr = realloc(s->buf_pre_corr, s->bytes_overlap);
        s->table_window = realloc(s->table_window, s->bytes_overlap - nch * bps);
        if(!s->buf_pre_corr || !s->table_window) {
          af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
          return AF_ERROR;
        }
        pw = s->table_window;
        for (i=1; i<frames_overlap; i++) {
          float v = i * (frames_overlap - i);
          for (j=0; j<nch; j++) {
            *pw++ = v;
          }
        }
        s->best_overlap_offset = best_overlap_offset_float;
      }
    }

    s->bytes_per_frame = bps * nch;
    s->num_channels    = nch;

    s->bytes_queue
      = (s->frames_search + frames_stride + frames_overlap) * bps * nch;
    s->buf_queue = realloc(s->buf_queue, s->bytes_queue + UNROLL_PADDING);
    if(!s->buf_queue) {
      af_msg(AF_MSG_FATAL, "[scaletempo] Out of memory\n");
      return AF_ERROR;
    }

    af_msg (AF_MSG_DEBUG0, "[scaletempo] "
            "%.2f stride_in, %i stride_out, %i standing, "
            "%i overlap, %i search, %i queue, %s mode\n",
            s->frames_stride_scaled,
            (int)(s->bytes_stride / nch / bps),
            (int)(s->bytes_standing / nch / bps),
            (int)(s->bytes_overlap / nch / bps),
            s->frames_search,
            (int)(s->bytes_queue / nch / bps),
            (use_int?"s16":"float"));

    return af_test_output(af, (af_data_t*)arg);
  }
  case AF_CONTROL_PLAYBACK_SPEED | AF_CONTROL_SET:{
    if (s->speed_tempo) {
      if (s->speed_pitch) {
        break;
      }
      s->speed = *(float*)arg;
      s->scale = s->speed * s->scale_nominal;
    } else {
      if (s->speed_pitch) {
        s->speed = 1 / *(float*)arg;
        s->scale = s->speed * s->scale_nominal;
        break;
      }
    }
    return AF_OK;
  }
  case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_SET:{
    s->scale = *(float*)arg;
    s->scale = s->speed * s->scale_nominal;
    return AF_OK;
  }
  case AF_CONTROL_SCALETEMPO_AMOUNT | AF_CONTROL_GET:
    *(float*)arg = s->scale;
    return AF_OK;
  case AF_CONTROL_COMMAND_LINE:{
    strarg_t speed = {};
    opt_t subopts[] = {
      {"scale",   OPT_ARG_FLOAT, &s->scale_nominal, NULL},
      {"stride",  OPT_ARG_FLOAT, &s->ms_stride, NULL},
      {"overlap", OPT_ARG_FLOAT, &s->percent_overlap, NULL},
      {"search",  OPT_ARG_FLOAT, &s->ms_search, NULL},
      {"speed",   OPT_ARG_STR,   &speed, NULL},
      {NULL},
    };
    if (subopt_parse(arg, subopts) != 0) {
      return AF_ERROR;
    }
    if (s->scale_nominal <= 0) {
      af_msg(AF_MSG_ERROR, "[scaletempo] "
             MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
             ": scale > 0\n");
      return AF_ERROR;
    }
    if (s->ms_stride <= 0) {
      af_msg(AF_MSG_ERROR, "[scaletempo] "
             MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
             ": stride > 0\n");
      return AF_ERROR;
    }
    if (s->percent_overlap < 0 || s->percent_overlap > 1) {
      af_msg(AF_MSG_ERROR, "[scaletempo] "
             MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
             ": 0 <= overlap <= 1\n");
      return AF_ERROR;
    }
    if (s->ms_search < 0) {
      af_msg(AF_MSG_ERROR, "[scaletempo] "
             MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
             ": search >= 0\n");
      return AF_ERROR;
    }
    if (speed.len > 0) {
      if (strcmp(speed.str, "pitch") == 0) {
        s->speed_tempo = 0;
        s->speed_pitch = 1;
      } else if (strcmp(speed.str, "tempo") == 0) {
        s->speed_tempo = 1;
        s->speed_pitch = 0;
      } else if (strcmp(speed.str, "none") == 0) {
        s->speed_tempo = 0;
        s->speed_pitch = 0;
      } else if (strcmp(speed.str, "both") == 0) {
        s->speed_tempo = 1;
        s->speed_pitch = 1;
      } else {
        af_msg(AF_MSG_ERROR, "[scaletempo] "
               MSGTR_ErrorParsingCommandLine ": " MSGTR_AF_ValueOutOfRange
               ": speed=[pitch|tempo|none|both]\n");
        return AF_ERROR;
      }
    }
    s->scale = s->speed * s->scale_nominal;
    af_msg(AF_MSG_DEBUG0, "[scaletempo] %6.3f scale, %6.2f stride, %6.2f overlap, %6.2f search, speed = %s\n", s->scale_nominal, s->ms_stride, s->percent_overlap, s->ms_search, (s->speed_tempo?(s->speed_pitch?"tempo and speed":"tempo"):(s->speed_pitch?"pitch":"none")));
    return AF_OK;
  }
  }
  return AF_UNKNOWN;
}

// Deallocate memory
static void uninit(struct af_instance_s* af)
{
  af_scaletempo_t* s = af->setup;
  free(af->data->audio);
  free(af->data);
  free(s->buf_queue);
  free(s->buf_overlap);
  free(s->buf_pre_corr);
  free(s->table_blend);
  free(s->table_window);
  free(af->setup);
}

// Allocate memory and set function pointers
static int af_open(af_instance_t* af){
  af_scaletempo_t* s;

  af->control   = control;
  af->uninit    = uninit;
  af->play      = play;
  af->mul       = 1;
  af->data      = calloc(1,sizeof(af_data_t));
  af->setup     = calloc(1,sizeof(af_scaletempo_t));
  if(af->data == NULL || af->setup == NULL)
    return AF_ERROR;

  s = af->setup;
  s->scale = s->speed = s->scale_nominal = 1.0;
  s->speed_tempo = 1;
  s->speed_pitch = 0;
  s->ms_stride = 60;
  s->percent_overlap = .20;
  s->ms_search = 14;

  return AF_OK;
}

// Description of this filter
af_info_t af_info_scaletempo = {
  "Scale audio tempo while maintaining pitch",
  "scaletempo",
  "Robert Juliano",
  "",
  AF_FLAGS_REENTRANT,
  af_open
};