1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
// Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
// #inlcude <GPL_v2.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "../config.h"
#include "af.h"
#ifdef USE_LIBAVCODEC
#ifdef USE_LIBAVCODEC_SO
#include <ffmpeg/avcodec.h>
#include <ffmpeg/rational.h>
#else
#include "../libavcodec/avcodec.h"
#include "../libavcodec/rational.h"
#endif
#define CHANS 6
int64_t ff_gcd(int64_t a, int64_t b);
// Data for specific instances of this filter
typedef struct af_resample_s{
struct AVResampleContext *avrctx;
int16_t *in[CHANS];
int in_alloc;
int index;
int filter_length;
int linear;
int phase_shift;
double cutoff;
}af_resample_t;
// Initialization and runtime control
static int control(struct af_instance_s* af, int cmd, void* arg)
{
int g;
af_resample_t* s = (af_resample_t*)af->setup;
af_data_t *data= (af_data_t*)arg;
int out_rate, test_output_res; // helpers for checking input format
switch(cmd){
case AF_CONTROL_REINIT:
if((af->data->rate == data->rate) || (af->data->rate == 0))
return AF_DETACH;
af->data->nch = data->nch;
if (af->data->nch > CHANS) af->data->nch = CHANS;
af->data->format = AF_FORMAT_S16_NE;
af->data->bps = 2;
g= ff_gcd(af->data->rate, data->rate);
af->mul.n = af->data->rate/g;
af->mul.d = data->rate/g;
af->delay = 500*s->filter_length/(double)min(af->data->rate, data->rate);
if(s->avrctx) av_resample_close(s->avrctx);
s->avrctx= av_resample_init(af->mul.n, /*in_rate*/af->mul.d, s->filter_length, s->phase_shift, s->linear, s->cutoff);
// hack to make af_test_output ignore the samplerate change
out_rate = af->data->rate;
af->data->rate = data->rate;
test_output_res = af_test_output(af, (af_data_t*)arg);
af->data->rate = out_rate;
return test_output_res;
case AF_CONTROL_COMMAND_LINE:{
sscanf((char*)arg,"%d:%d:%d:%d:%lf", &af->data->rate, &s->filter_length, &s->linear, &s->phase_shift, &s->cutoff);
if(s->cutoff <= 0.0) s->cutoff= max(1.0 - 1.0/s->filter_length, 0.80);
return AF_OK;
}
case AF_CONTROL_RESAMPLE_RATE | AF_CONTROL_SET:
af->data->rate = *(int*)arg;
return AF_OK;
}
return AF_UNKNOWN;
}
// Deallocate memory
static void uninit(struct af_instance_s* af)
{
if(af->data)
free(af->data);
if(af->setup){
af_resample_t *s = af->setup;
if(s->avrctx) av_resample_close(s->avrctx);
free(s);
}
}
// Filter data through filter
static af_data_t* play(struct af_instance_s* af, af_data_t* data)
{
af_resample_t *s = af->setup;
int i, j, consumed, ret;
int16_t *in = (int16_t*)data->audio;
int16_t *out;
int chans = data->nch;
int in_len = data->len/(2*chans);
int out_len = (in_len*af->mul.n) / af->mul.d + 10;
int16_t tmp[CHANS][out_len];
if(AF_OK != RESIZE_LOCAL_BUFFER(af,data))
return NULL;
out= (int16_t*)af->data->audio;
out_len= min(out_len, af->data->len/(2*chans));
if(s->in_alloc < in_len + s->index){
s->in_alloc= in_len + s->index;
for(i=0; i<chans; i++){
s->in[i]= realloc(s->in[i], s->in_alloc*sizeof(int16_t)); //FIXME free this maybe ;)
}
}
if(chans==1){
memcpy(&s->in[0][s->index], in, in_len * sizeof(int16_t));
}else if(chans==2){
for(j=0; j<in_len; j++){
s->in[0][j + s->index]= *(in++);
s->in[1][j + s->index]= *(in++);
}
}else{
for(j=0; j<in_len; j++){
for(i=0; i<chans; i++){
s->in[i][j + s->index]= *(in++);
}
}
}
in_len += s->index;
for(i=0; i<chans; i++){
ret= av_resample(s->avrctx, tmp[i], s->in[i], &consumed, in_len, out_len, i+1 == chans);
}
out_len= ret;
s->index= in_len - consumed;
for(i=0; i<chans; i++){
memmove(s->in[i], s->in[i] + consumed, s->index*sizeof(int16_t));
}
if(chans==1){
memcpy(out, tmp[0], out_len*sizeof(int16_t));
}else if(chans==2){
for(j=0; j<out_len; j++){
*(out++)= tmp[0][j];
*(out++)= tmp[1][j];
}
}else{
for(j=0; j<out_len; j++){
for(i=0; i<chans; i++){
*(out++)= tmp[i][j];
}
}
}
data->audio = af->data->audio;
data->len = out_len*chans*2;
data->rate = af->data->rate;
return data;
}
static int open(af_instance_t* af){
af_resample_t *s = calloc(1,sizeof(af_resample_t));
af->control=control;
af->uninit=uninit;
af->play=play;
af->mul.n=1;
af->mul.d=1;
af->data=calloc(1,sizeof(af_data_t));
s->filter_length= 16;
s->cutoff= max(1.0 - 1.0/s->filter_length, 0.80);
s->phase_shift= 10;
// s->setup = RSMP_INT | FREQ_SLOPPY;
af->setup=s;
return AF_OK;
}
af_info_t af_info_lavcresample = {
"Sample frequency conversion using libavcodec",
"lavcresample",
"Michael Niedermayer",
"",
AF_FLAGS_REENTRANT,
open
};
#endif
|