aboutsummaryrefslogtreecommitdiffhomepage
path: root/libaf/af_hrtf.c
blob: 3e973f62f258bbe9ffbff0394a98ee7b9ce90c72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/* Experimental audio filter that mixes 5.1 and 5.1 with matrix
   encoded rear channels into headphone signal using FIR filtering
   with HRTF.
*/
//#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

#include <math.h>

#include "af.h"
#include "dsp.h"

/* HRTF filter coefficients and adjustable parameters */
#include "af_hrtf.h"

typedef struct af_hrtf_s {
    /* Lengths */
    int dlbuflen, hrflen, basslen;
    /* L, C, R, Ls, Rs channels */
    float *lf, *rf, *lr, *rr, *cf, *cr;
    float *cf_ir, *af_ir, *of_ir, *ar_ir, *or_ir, *cr_ir;
    int cf_o, af_o, of_o, ar_o, or_o, cr_o;
    /* Bass */
    float *ba_l, *ba_r;
    float *ba_ir;
    /* Whether to matrix decode the rear center channel */
    int matrix_mode;
    /* How to decode the input:
       0 = 5/5+1 channels
       1 = 2 channels
       2 = matrix encoded 2 channels */
    int decode_mode;
    /* Full wave rectified (FWR) amplitudes and gain used to steer the
       active matrix decoding of front channels (variable names
       lpr/lmr means Lt + Rt, Lt - Rt) */
    float l_fwr, r_fwr, lpr_fwr, lmr_fwr;
    float adapt_l_gain, adapt_r_gain, adapt_lpr_gain, adapt_lmr_gain;
    /* Matrix input decoding require special FWR buffer, since the
       decoding is done in place. */
    float *fwrbuf_l, *fwrbuf_r, *fwrbuf_lr, *fwrbuf_rr;
    /* Rear channel delay buffer for matrix decoding */
    float *rear_dlbuf;
    /* Full wave rectified amplitude and gain used to steer the active
       matrix decoding of center rear channel */
    float lr_fwr, rr_fwr, lrprr_fwr, lrmrr_fwr;
    float adapt_lr_gain, adapt_rr_gain;
    float adapt_lrprr_gain, adapt_lrmrr_gain;
    /* Cyclic position on the ring buffer */
    int cyc_pos;
    int print_flag;
} af_hrtf_t;

/* Convolution on a ring buffer
 *    nx:	length of the ring buffer
 *    nk:	length of the convolution kernel
 *    sx:	ring buffer
 *    sk:	convolution kernel
 *    offset:	offset on the ring buffer, can be 
 */
static float conv(const int nx, const int nk, float *sx, float *sk,
		  const int offset)
{
    /* k = reminder of offset / nx */
    int k = offset >= 0 ? offset % nx : nx + (offset % nx);

    if(nk + k <= nx)
	return af_filter_fir(nk, sx + k, sk);
    else
	return af_filter_fir(nk + k - nx, sx, sk + nx - k) +
	    af_filter_fir(nx - k, sx + k, sk);
}

/* Detect when the impulse response starts (significantly) */
static int pulse_detect(float *sx)
{
    /* nmax must be the reference impulse response length (128) minus
       s->hrflen */
    const int nmax = 128 - HRTFFILTLEN;
    const float thresh = IRTHRESH;
    int i;

    for(i = 0; i < nmax; i++)
	if(fabs(sx[i]) > thresh)
	    return i;
    return 0;
}

/* Fuzzy matrix coefficient transfer function to "lock" the matrix on
   a effectively passive mode if the gain is approximately 1 */
static inline float passive_lock(float x)
{
   const float x1 = x - 1;
   const float ax1s = fabs(x - 1) * (1.0 / MATAGCLOCK);

   return x1 - x1 / (1 + ax1s * ax1s) + 1;
}

/* Unified active matrix decoder for 2 channel matrix encoded surround
   sources */
static inline void matrix_decode(short *in, const int k, const int il,
			  const int ir, const int decode_rear,
			  const int dlbuflen,
			  float l_fwr, float r_fwr,
			  float lpr_fwr, float lmr_fwr,
			  float *adapt_l_gain, float *adapt_r_gain,
			  float *adapt_lpr_gain, float *adapt_lmr_gain,
			  float *lf, float *rf, float *lr,
			  float *rr, float *cf)
{
   const int kr = (k + MATREARDELAY) % dlbuflen;
   float l_gain = (l_fwr + r_fwr) /
      (1 + l_fwr + l_fwr);
   float r_gain = (l_fwr + r_fwr) /
      (1 + r_fwr + r_fwr);
   /* The 2nd axis has strong gain fluctuations, and therefore require
      limits.  The factor corresponds to the 1 / amplification of (Lt
      - Rt) when (Lt, Rt) is strongly correlated. (e.g. during
      dialogues).  It should be bigger than -12 dB to prevent
      distortion. */
   float lmr_lim_fwr = lmr_fwr > M9_03DB * lpr_fwr ?
      lmr_fwr : M9_03DB * lpr_fwr;
   float lpr_gain = (lpr_fwr + lmr_lim_fwr) /
      (1 + lpr_fwr + lpr_fwr);
   float lmr_gain = (lpr_fwr + lmr_lim_fwr) /
      (1 + lmr_lim_fwr + lmr_lim_fwr);
   float lmr_unlim_gain = (lpr_fwr + lmr_fwr) /
      (1 + lmr_fwr + lmr_fwr);
   float lpr, lmr;
   float l_agc, r_agc, lpr_agc, lmr_agc;
   float f, d_gain, c_gain, c_agc_cfk;

#if 0
   static int counter = 0;
   static FILE *fp_out;

   if(counter == 0)
      fp_out = fopen("af_hrtf.log", "w");
   if(counter % 240 == 0)
      fprintf(fp_out, "%g %g %g %g %g ", counter * (1.0 / 48000),
	      l_gain, r_gain, lpr_gain, lmr_gain);
#endif

   /*** AXIS NO. 1: (Lt, Rt) -> (C, Ls, Rs) ***/
   /* AGC adaption */
   d_gain = (fabs(l_gain - *adapt_l_gain) +
	     fabs(r_gain - *adapt_r_gain)) * 0.5;
   f = d_gain * (1.0 / MATAGCTRIG);
   f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
   *adapt_l_gain = (1 - f) * *adapt_l_gain + f * l_gain;
   *adapt_r_gain = (1 - f) * *adapt_r_gain + f * r_gain;
   /* Matrix */
   l_agc = in[il] * passive_lock(*adapt_l_gain);
   r_agc = in[ir] * passive_lock(*adapt_r_gain);
   cf[k] = (l_agc + r_agc) * M_SQRT1_2;
   if(decode_rear) {
      lr[kr] = rr[kr] = (l_agc - r_agc) * M_SQRT1_2;
      /* Stereo rear channel is steered with the same AGC steering as
	 the decoding matrix. Note this requires a fast updating AGC
	 at the order of 20 ms (which is the case here). */
      lr[kr] *= (l_fwr + l_fwr) /
	 (1 + l_fwr + r_fwr);
      rr[kr] *= (r_fwr + r_fwr) /
	 (1 + l_fwr + r_fwr);
   }

   /*** AXIS NO. 2: (Lt + Rt, Lt - Rt) -> (L, R) ***/
   lpr = (in[il] + in[ir]) * M_SQRT1_2;
   lmr = (in[il] - in[ir]) * M_SQRT1_2;
   /* AGC adaption */
   d_gain = fabs(lmr_unlim_gain - *adapt_lmr_gain);
   f = d_gain * (1.0 / MATAGCTRIG);
   f = MATAGCDECAY - MATAGCDECAY / (1 + f * f);
   *adapt_lpr_gain = (1 - f) * *adapt_lpr_gain + f * lpr_gain;
   *adapt_lmr_gain = (1 - f) * *adapt_lmr_gain + f * lmr_gain;
   /* Matrix */
   lpr_agc = lpr * passive_lock(*adapt_lpr_gain);
   lmr_agc = lmr * passive_lock(*adapt_lmr_gain);
   lf[k] = (lpr_agc + lmr_agc) * M_SQRT1_2;
   rf[k] = (lpr_agc - lmr_agc) * M_SQRT1_2;

   /*** CENTER FRONT CANCELLATION ***/
   /* A heuristic approach exploits that Lt + Rt gain contains the
      information about Lt, Rt correlation.  This effectively reshapes
      the front and rear "cones" to concentrate Lt + Rt to C and
      introduce Lt - Rt in L, R. */
   /* 0.67677 is the emprical lower bound for lpr_gain. */
   c_gain = 8 * (*adapt_lpr_gain - 0.67677);
   c_gain = c_gain > 0 ? c_gain : 0;
   /* c_gain should not be too high, not even reaching full
      cancellation (~ 0.50 - 0.55 at current AGC implementation), or
      the center will s0und too narrow. */
   c_gain = MATCOMPGAIN / (1 + c_gain * c_gain);
   c_agc_cfk = c_gain * cf[k];
   lf[k] -= c_agc_cfk;
   rf[k] -= c_agc_cfk;
   cf[k] += c_agc_cfk + c_agc_cfk;
#if 0
   if(counter % 240 == 0)
      fprintf(fp_out, "%g %g %g %g %g\n",
	      *adapt_l_gain, *adapt_r_gain,
	      *adapt_lpr_gain, *adapt_lmr_gain,
	      c_gain);
   counter++;
#endif
}

static inline void update_ch(af_hrtf_t *s, short *in, const int k)
{
    const int fwr_pos = (k + FWRDURATION) % s->dlbuflen;
    /* Update the full wave rectified total amplitude */
    /* Input matrix decoder */
    if(s->decode_mode == HRTF_MIX_MATRIX2CH) {
       s->l_fwr += abs(in[0]) - fabs(s->fwrbuf_l[fwr_pos]);
       s->r_fwr += abs(in[1]) - fabs(s->fwrbuf_r[fwr_pos]);
       s->lpr_fwr += abs(in[0] + in[1]) -
	  fabs(s->fwrbuf_l[fwr_pos] + s->fwrbuf_r[fwr_pos]);
       s->lmr_fwr += abs(in[0] - in[1]) -
	  fabs(s->fwrbuf_l[fwr_pos] - s->fwrbuf_r[fwr_pos]);
    }
    /* Rear matrix decoder */
    if(s->matrix_mode) {
       s->lr_fwr += abs(in[2]) - fabs(s->fwrbuf_lr[fwr_pos]);
       s->rr_fwr += abs(in[3]) - fabs(s->fwrbuf_rr[fwr_pos]);
       s->lrprr_fwr += abs(in[2] + in[3]) -
	  fabs(s->fwrbuf_lr[fwr_pos] + s->fwrbuf_rr[fwr_pos]);
       s->lrmrr_fwr += abs(in[2] - in[3]) -
	  fabs(s->fwrbuf_lr[fwr_pos] - s->fwrbuf_rr[fwr_pos]);
    }

    switch (s->decode_mode) {
    case HRTF_MIX_51:
       /* 5/5+1 channel sources */
       s->lf[k] = in[0];
       s->cf[k] = in[4];
       s->rf[k] = in[1];
       s->fwrbuf_lr[k] = s->lr[k] = in[2];
       s->fwrbuf_rr[k] = s->rr[k] = in[3];
       break;
    case HRTF_MIX_MATRIX2CH:
       /* Matrix encoded 2 channel sources */
       s->fwrbuf_l[k] = in[0];
       s->fwrbuf_r[k] = in[1];
       matrix_decode(in, k, 0, 1, 1, s->dlbuflen,
		     s->l_fwr, s->r_fwr,
		     s->lpr_fwr, s->lmr_fwr,
		     &(s->adapt_l_gain), &(s->adapt_r_gain),
		     &(s->adapt_lpr_gain), &(s->adapt_lmr_gain),
		     s->lf, s->rf, s->lr, s->rr, s->cf);
       break;
    case HRTF_MIX_STEREO:
       /* Stereo sources */
       s->lf[k] = in[0];
       s->rf[k] = in[1];
       s->cf[k] = s->lr[k] = s->rr[k] = 0;
       break;
    }

    /* We need to update the bass compensation delay line, too. */
    s->ba_l[k] = in[0] + in[4] + in[2];
    s->ba_r[k] = in[4] + in[1] + in[3];
}

/* Initialization and runtime control */
static int control(struct af_instance_s *af, int cmd, void* arg)
{
    af_hrtf_t *s = af->setup;
    int test_output_res;
    char mode;

    switch(cmd) {
    case AF_CONTROL_REINIT:
	af->data->rate   = ((af_data_t*)arg)->rate;
	if(af->data->rate != 48000) {
	    // automatic samplerate adjustment in the filter chain
	    // is not yet supported.
	    af_msg(AF_MSG_ERROR,
		   "[hrtf] ERROR: Sampling rate is not 48000 Hz (%d)!\n",
		   af->data->rate);
	    return AF_ERROR;
	}
	af->data->nch    = ((af_data_t*)arg)->nch;
	    if(af->data->nch == 2) {
 	       /* 2 channel input */
 	       if(s->decode_mode != HRTF_MIX_MATRIX2CH) {
   		  /* Default behavior is stereo mixing. */
 		  s->decode_mode = HRTF_MIX_STEREO;
	       }
	    }
	    else if (af->data->nch < 5)
	      af->data->nch = 5;
	af->data->format = AF_FORMAT_S16_NE;
	af->data->bps    = 2;
	test_output_res = af_test_output(af, (af_data_t*)arg);
	af->mul.n = 2;
	af->mul.d = af->data->nch;
	// after testing input set the real output format
	af->data->nch = 2;
	s->print_flag = 1;
	return test_output_res;
    case AF_CONTROL_COMMAND_LINE:
	sscanf((char*)arg, "%c", &mode);
	switch(mode) {
	case 'm':
	    /* Use matrix rear decoding. */
	    s->matrix_mode = 1;
	    break;
	case 's':
	    /* Input needs matrix decoding. */
	    s->decode_mode = HRTF_MIX_MATRIX2CH;
	    break;
	case '0':
	    s->matrix_mode = 0;
	    break;
	default:
	    af_msg(AF_MSG_ERROR,
		   "[hrtf] Mode is neither 'm', 's', nor '0' (%c).\n",
		   mode);
	    return AF_ERROR;
	}
	s->print_flag = 1;
	return AF_OK;
    }    

    return AF_UNKNOWN;
}

/* Deallocate memory */
static void uninit(struct af_instance_s *af)
{
    if(af->setup) {
	af_hrtf_t *s = af->setup;

	if(s->lf)
	    free(s->lf);
	if(s->rf)
	    free(s->rf);
	if(s->lr)
	    free(s->lr);
	if(s->rr)
	    free(s->rr);
	if(s->cf)
	    free(s->cf);
	if(s->cr)
	    free(s->cr);
	if(s->ba_l)
	    free(s->ba_l);
	if(s->ba_r)
	    free(s->ba_r);
	if(s->ba_ir)
	    free(s->ba_ir);
	if(s->fwrbuf_l)
	   free(s->fwrbuf_l);
	if(s->fwrbuf_r)
	   free(s->fwrbuf_r);
	if(s->fwrbuf_lr)
	   free(s->fwrbuf_lr);
	if(s->fwrbuf_rr)
	   free(s->fwrbuf_rr);
	free(af->setup);
    }
    if(af->data)
	free(af->data->audio);
    free(af->data);
}

/* Filter data through filter

Two "tricks" are used to compensate the "color" of the KEMAR data:

1. The KEMAR data is refiltered to ensure that the front L, R channels
on the same side of the ear are equalized (especially in the high
frequencies).

2. A bass compensation is introduced to ensure that 0-200 Hz are not
damped (without any real 3D acoustical image, however).
*/
static af_data_t* play(struct af_instance_s *af, af_data_t *data)
{
    af_hrtf_t *s = af->setup;
    short *in = data->audio; // Input audio data
    short *out = NULL; // Output audio data
    short *end = in + data->len / sizeof(short); // Loop end
    float common, left, right, diff, left_b, right_b;
    const int dblen = s->dlbuflen, hlen = s->hrflen, blen = s->basslen;

    if(AF_OK != RESIZE_LOCAL_BUFFER(af, data))
	return NULL;

    if(s->print_flag) {
	s->print_flag = 0;
	switch (s->decode_mode) {
	case HRTF_MIX_51:
	  af_msg(AF_MSG_INFO,
		 "[hrtf] Using HRTF to mix %s discrete surround into "
		 "L, R channels\n", s->matrix_mode ? "5+1" : "5");
	  break;
	case HRTF_MIX_STEREO:
	  af_msg(AF_MSG_INFO,
		 "[hrtf] Using HRTF to mix stereo into "
		 "L, R channels\n");
	  break;
	case HRTF_MIX_MATRIX2CH:
	  af_msg(AF_MSG_INFO,
		 "[hrtf] Using active matrix to decode 2 channel "
		 "input, HRTF to mix %s matrix surround into "
		 "L, R channels\n", "3/2");
	  break;
	default:
	  af_msg(AF_MSG_WARN,
		 "[hrtf] bogus decode_mode: %d\n", s->decode_mode);
	  break;
	}
	
       if(s->matrix_mode)
	  af_msg(AF_MSG_INFO,
		 "[hrtf] Using active matrix to decode rear center "
		 "channel\n");
    }

    out = af->data->audio;

    /* MPlayer's 5 channel layout (notation for the variable):
     * 
     * 0: L (LF), 1: R (RF), 2: Ls (LR), 3: Rs (RR), 4: C (CF), matrix
     * encoded: Cs (CR)
     * 
     * or: L = left, C = center, R = right, F = front, R = rear
     * 
     * Filter notation:
     * 
     *      CF
     * OF        AF
     *      Ear->
     * OR        AR
     *      CR
     * 
     * or: C = center, A = same side, O = opposite, F = front, R = rear
     */

    while(in < end) {
	const int k = s->cyc_pos;

	update_ch(s, in, k);

	/* Simulate a 7.5 ms -20 dB echo of the center channel in the
	   front channels (like reflection from a room wall) - a kind of
	   psycho-acoustically "cheating" to focus the center front
	   channel, which is normally hard to be perceived as front */
	s->lf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];
	s->rf[k] += CFECHOAMPL * s->cf[(k + CFECHODELAY) % s->dlbuflen];

	switch (s->decode_mode) {
	case HRTF_MIX_51:
	case HRTF_MIX_MATRIX2CH:
	   /* Mixer filter matrix */
	   common = conv(dblen, hlen, s->cf, s->cf_ir, k + s->cf_o);
	   if(s->matrix_mode) {
	      /* In matrix decoding mode, the rear channel gain must be
		 renormalized, as there is an additional channel. */
	      matrix_decode(in, k, 2, 3, 0, s->dlbuflen,
			    s->lr_fwr, s->rr_fwr,
			    s->lrprr_fwr, s->lrmrr_fwr,
			    &(s->adapt_lr_gain), &(s->adapt_rr_gain),
			    &(s->adapt_lrprr_gain), &(s->adapt_lrmrr_gain),
			    s->lr, s->rr, NULL, NULL, s->cr);
	      common +=
		 conv(dblen, hlen, s->cr, s->cr_ir, k + s->cr_o) *
		 M1_76DB;
	      left    =
		 ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
		   conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
		   (conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
		    conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o)) *
		   M1_76DB + common);
	      right   =
		 ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
		   conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
		   (conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
		    conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o)) *
		   M1_76DB + common);
	   } else {
	      left    =
		 ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
		   conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o) +
		   conv(dblen, hlen, s->lr, s->ar_ir, k + s->ar_o) +
		   conv(dblen, hlen, s->rr, s->or_ir, k + s->or_o) +
		   common);
	      right   =
		 ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
		   conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o) +
		   conv(dblen, hlen, s->rr, s->ar_ir, k + s->ar_o) +
		   conv(dblen, hlen, s->lr, s->or_ir, k + s->or_o) +
		   common);
	   }
	   break;
	case HRTF_MIX_STEREO:
	   left    =
	      ( conv(dblen, hlen, s->lf, s->af_ir, k + s->af_o) +
		conv(dblen, hlen, s->rf, s->of_ir, k + s->of_o));
	   right   =
	      ( conv(dblen, hlen, s->rf, s->af_ir, k + s->af_o) +
		conv(dblen, hlen, s->lf, s->of_ir, k + s->of_o));
	   break;
	default:
	    /* make gcc happy */
	    left = 0.0;
	    right = 0.0;
	    break;
	}

	/* Bass compensation for the lower frequency cut of the HRTF.  A
	   cross talk of the left and right channel is introduced to
	   match the directional characteristics of higher frequencies.
	   The bass will not have any real 3D perception, but that is
	   OK (note at 180 Hz, the wavelength is about 2 m, and any
	   spatial perception is impossible). */
	left_b  = conv(dblen, blen, s->ba_l, s->ba_ir, k);
	right_b = conv(dblen, blen, s->ba_r, s->ba_ir, k);
	left  += (1 - BASSCROSS) * left_b  + BASSCROSS * right_b;
	right += (1 - BASSCROSS) * right_b + BASSCROSS * left_b;
	/* Also mix the LFE channel (if available) */
	if(data->nch >= 6) {
	    left  += in[5] * M3_01DB;
	    right += in[5] * M3_01DB;
	}

	/* Amplitude renormalization. */
	left  *= AMPLNORM;
	right *= AMPLNORM;

	switch (s->decode_mode) {
	case HRTF_MIX_51:
	case HRTF_MIX_STEREO:
	   /* "Cheating": linear stereo expansion to amplify the 3D
	      perception.  Note: Too much will destroy the acoustic space
	      and may even result in headaches. */
	   diff = STEXPAND2 * (left - right);
	   out[0] = (int16_t)(left  + diff);
	   out[1] = (int16_t)(right - diff);
	   break;
	case HRTF_MIX_MATRIX2CH:
	   /* Do attempt any stereo expansion with matrix encoded
	      sources.  The L, R channels are already stereo expanded
	      by the steering, any further stereo expansion will sound
	      very unnatural. */
	   out[0] = (int16_t)left;
	   out[1] = (int16_t)right;
	   break;
	}

	/* Next sample... */
	in = &in[data->nch];
	out = &out[af->data->nch];
	(s->cyc_pos)--;
	if(s->cyc_pos < 0)
	    s->cyc_pos += dblen;
    }

    /* Set output data */
    data->audio = af->data->audio;
    data->len   = (data->len * af->mul.n) / af->mul.d;
    data->nch   = 2;

    return data;
}

static int allocate(af_hrtf_t *s)
{
    if ((s->lf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->rf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->lr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->rr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->cf = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->cr = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->ba_l = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->ba_r = malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->fwrbuf_l =
	 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->fwrbuf_r =
	 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->fwrbuf_lr =
	 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    if ((s->fwrbuf_rr =
	 malloc(s->dlbuflen * sizeof(float))) == NULL) return -1;
    return 0;
}

/* Allocate memory and set function pointers */
static int af_open(af_instance_t* af)
{
    int i;
    af_hrtf_t *s;
    float fc;

    af->control = control;
    af->uninit = uninit;
    af->play = play;
    af->mul.n = 1;
    af->mul.d = 1;
    af->data = calloc(1, sizeof(af_data_t));
    af->setup = calloc(1, sizeof(af_hrtf_t));
    if((af->data == NULL) || (af->setup == NULL))
	return AF_ERROR;

    s = af->setup;

    s->dlbuflen = DELAYBUFLEN;
    s->hrflen = HRTFFILTLEN;
    s->basslen = BASSFILTLEN;

    s->cyc_pos = s->dlbuflen - 1;
    /* With a full (two axis) steering matrix decoder, s->matrix_mode
       should not be enabled lightly (it will also steer the Ls, Rs
       channels). */
    s->matrix_mode = 0;
    s->decode_mode = HRTF_MIX_51;

    s->print_flag = 1;

    if (allocate(s) != 0) {
 	af_msg(AF_MSG_ERROR, "[hrtf] Memory allocation error.\n");
	return AF_ERROR;
    }

    for(i = 0; i < s->dlbuflen; i++)
	s->lf[i] = s->rf[i] = s->lr[i] = s->rr[i] = s->cf[i] =
	    s->cr[i] = 0;

    s->lr_fwr =
	s->rr_fwr = 0;

    s->cf_ir = cf_filt + (s->cf_o = pulse_detect(cf_filt));
    s->af_ir = af_filt + (s->af_o = pulse_detect(af_filt));
    s->of_ir = of_filt + (s->of_o = pulse_detect(of_filt));
    s->ar_ir = ar_filt + (s->ar_o = pulse_detect(ar_filt));
    s->or_ir = or_filt + (s->or_o = pulse_detect(or_filt));
    s->cr_ir = cr_filt + (s->cr_o = pulse_detect(cr_filt));

    if((s->ba_ir = malloc(s->basslen * sizeof(float))) == NULL) {
 	af_msg(AF_MSG_ERROR, "[hrtf] Memory allocation error.\n");
	return AF_ERROR;
    }
    fc = 2.0 * BASSFILTFREQ / (float)af->data->rate;
    if(af_filter_design_fir(s->basslen, s->ba_ir, &fc, LP | KAISER, 4 * M_PI) ==
       -1) {
	af_msg(AF_MSG_ERROR, "[hrtf] Unable to design low-pass "
	       "filter.\n");
	return AF_ERROR;
    }
    for(i = 0; i < s->basslen; i++)
	s->ba_ir[i] *= BASSGAIN;
    
    return AF_OK;
}

/* Description of this filter */
af_info_t af_info_hrtf = {
    "HRTF Headphone",
    "hrtf",
    "ylai",
    "",
    AF_FLAGS_REENTRANT,
    af_open
};