aboutsummaryrefslogtreecommitdiffhomepage
path: root/audio/out/push.c
blob: 4fa2bc53d5955873c4a96796a09fa26a59d4dbae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * This file is part of mpv.
 *
 * mpv is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * mpv is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with mpv.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <stddef.h>
#include <pthread.h>
#include <inttypes.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>

#include "osdep/io.h"

#include "ao.h"
#include "internal.h"
#include "audio/format.h"

#include "common/msg.h"
#include "common/common.h"

#include "input/input.h"

#include "osdep/threads.h"
#include "osdep/timer.h"
#include "osdep/atomics.h"

#include "audio/audio.h"
#include "audio/audio_buffer.h"

struct ao_push_state {
    pthread_t thread;
    pthread_mutex_t lock;
    pthread_cond_t wakeup;

    // --- protected by lock

    struct mp_audio_buffer *buffer;

    bool terminate;
    bool wait_on_ao;
    bool still_playing;
    bool need_wakeup;
    bool paused;

    // Whether the current buffer contains the complete audio.
    bool final_chunk;
    double expected_end_time;

    int wakeup_pipe[2];
};

// lock must be held
static void wakeup_playthread(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    if (ao->driver->wakeup)
        ao->driver->wakeup(ao);
    p->need_wakeup = true;
    pthread_cond_signal(&p->wakeup);
}

static int control(struct ao *ao, enum aocontrol cmd, void *arg)
{
    int r = CONTROL_UNKNOWN;
    if (ao->driver->control) {
        struct ao_push_state *p = ao->api_priv;
        pthread_mutex_lock(&p->lock);
        r = ao->driver->control(ao, cmd, arg);
        pthread_mutex_unlock(&p->lock);
    }
    return r;
}

static double unlocked_get_delay(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    double driver_delay = 0;
    if (ao->driver->get_delay)
        driver_delay = ao->driver->get_delay(ao);
    return driver_delay + mp_audio_buffer_seconds(p->buffer);
}

static double get_delay(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    pthread_mutex_lock(&p->lock);
    double delay = unlocked_get_delay(ao);
    pthread_mutex_unlock(&p->lock);
    return delay;
}

static void reset(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    pthread_mutex_lock(&p->lock);
    if (ao->driver->reset)
        ao->driver->reset(ao);
    mp_audio_buffer_clear(p->buffer);
    p->paused = false;
    if (p->still_playing)
        wakeup_playthread(ao);
    p->still_playing = false;
    pthread_mutex_unlock(&p->lock);
}

static void audio_pause(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    pthread_mutex_lock(&p->lock);
    if (ao->driver->pause)
        ao->driver->pause(ao);
    p->paused = true;
    wakeup_playthread(ao);
    pthread_mutex_unlock(&p->lock);
}

static void resume(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    pthread_mutex_lock(&p->lock);
    if (ao->driver->resume)
        ao->driver->resume(ao);
    p->paused = false;
    p->expected_end_time = 0;
    wakeup_playthread(ao);
    pthread_mutex_unlock(&p->lock);
}

static void drain(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;

    MP_VERBOSE(ao, "draining...\n");

    pthread_mutex_lock(&p->lock);
    if (p->paused)
        goto done;

    p->final_chunk = true;
    wakeup_playthread(ao);
    while (p->still_playing && mp_audio_buffer_samples(p->buffer) > 0)
        pthread_cond_wait(&p->wakeup, &p->lock);

    if (ao->driver->drain) {
        ao->driver->drain(ao);
    } else {
        double time = unlocked_get_delay(ao);
        mp_sleep_us(MPMIN(time, ao->buffer / (double)ao->samplerate + 1) * 1e6);
    }

done:
    pthread_mutex_unlock(&p->lock);

    reset(ao);
}

static int unlocked_get_space(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    int space = mp_audio_buffer_get_write_available(p->buffer);
    if (ao->driver->get_space) {
        // The following code attempts to keep the total buffered audio to
        // ao->buffer in order to improve latency.
        int device_space = ao->driver->get_space(ao);
        int device_buffered = ao->device_buffer - device_space;
        int soft_buffered = mp_audio_buffer_samples(p->buffer);
        // The extra margin helps avoiding too many wakeups if the AO is fully
        // byte based and doesn't do proper chunked processing.
        int min_buffer = ao->buffer + 64;
        int missing = min_buffer - device_buffered - soft_buffered;
        // But always keep the device's buffer filled as much as we can.
        int device_missing = device_space - soft_buffered;
        missing = MPMAX(missing, device_missing);
        space = MPMIN(space, missing);
        space = MPMAX(0, space);
    }
    return space;
}

static int get_space(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    pthread_mutex_lock(&p->lock);
    int space = unlocked_get_space(ao);
    pthread_mutex_unlock(&p->lock);
    return space;
}

static bool get_eof(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    pthread_mutex_lock(&p->lock);
    bool eof = !p->still_playing;
    pthread_mutex_unlock(&p->lock);
    return eof;
}

static int play(struct ao *ao, void **data, int samples, int flags)
{
    struct ao_push_state *p = ao->api_priv;

    pthread_mutex_lock(&p->lock);

    int write_samples = mp_audio_buffer_get_write_available(p->buffer);
    write_samples = MPMIN(write_samples, samples);

    MP_TRACE(ao, "samples=%d flags=%d r=%d\n", samples, flags, write_samples);

    if (write_samples < samples)
        flags = flags & ~AOPLAY_FINAL_CHUNK;
    bool is_final = flags & AOPLAY_FINAL_CHUNK;

    struct mp_audio audio;
    mp_audio_buffer_get_format(p->buffer, &audio);
    for (int n = 0; n < ao->num_planes; n++)
        audio.planes[n] = data[n];
    audio.samples = write_samples;
    mp_audio_buffer_append(p->buffer, &audio);

    bool got_data = write_samples > 0 || p->paused || p->final_chunk != is_final;

    p->final_chunk = is_final;
    p->paused = false;
    if (got_data) {
        p->still_playing = true;
        p->expected_end_time = 0;
    }

    // If we don't have new data, the decoder thread basically promises it
    // will send new data as soon as it's available.
    if (got_data)
        wakeup_playthread(ao);
    pthread_mutex_unlock(&p->lock);
    return write_samples;
}

// called locked
static void ao_play_data(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;
    struct mp_audio data;
    mp_audio_buffer_peek(p->buffer, &data);
    int max = data.samples;
    int space = ao->driver->get_space(ao);
    space = MPMAX(space, 0);
    if (data.samples > space)
        data.samples = space;
    int flags = 0;
    if (p->final_chunk && data.samples == max)
        flags |= AOPLAY_FINAL_CHUNK;
    MP_STATS(ao, "start ao fill");
    int r = 0;
    if (data.samples)
        r = ao->driver->play(ao, data.planes, data.samples, flags);
    MP_STATS(ao, "end ao fill");
    if (r > data.samples) {
        MP_WARN(ao, "Audio device returned non-sense value.\n");
        r = data.samples;
    }
    r = MPMAX(r, 0);
    // Probably can't copy the rest of the buffer due to period alignment.
    bool stuck_eof = r <= 0 && space >= max && data.samples > 0;
    if ((flags & AOPLAY_FINAL_CHUNK) && stuck_eof) {
        MP_ERR(ao, "Audio output driver seems to ignore AOPLAY_FINAL_CHUNK.\n");
        r = max;
    }
    mp_audio_buffer_skip(p->buffer, r);
    if (r > 0)
        p->expected_end_time = 0;
    // Nothing written, but more input data than space - this must mean the
    // AO's get_space() doesn't do period alignment correctly.
    bool stuck = r == 0 && max >= space && space > 0;
    if (stuck)
        MP_ERR(ao, "Audio output is reporting incorrect buffer status.\n");
    // Wait until space becomes available. Also wait if we actually wrote data,
    // so the AO wakes us up properly if it needs more data.
    p->wait_on_ao = space == 0 || r > 0 || stuck;
    p->still_playing |= r > 0;
    // If we just filled the AO completely (r == space), don't refill for a
    // while. Prevents wakeup feedback with byte-granular AOs.
    int needed = unlocked_get_space(ao);
    bool more = needed >= (r == space ? ao->device_buffer / 4 : 1) && !stuck;
    if (more)
        mp_input_wakeup(ao->input_ctx); // request more data
    MP_TRACE(ao, "in=%d flags=%d space=%d r=%d wa=%d needed=%d more=%d\n",
             max, flags, space, r, p->wait_on_ao, needed, more);
}

static void *playthread(void *arg)
{
    struct ao *ao = arg;
    struct ao_push_state *p = ao->api_priv;
    mpthread_set_name("ao");
    pthread_mutex_lock(&p->lock);
    while (!p->terminate) {
        if (!p->paused)
            ao_play_data(ao);

        if (!p->need_wakeup) {
            MP_STATS(ao, "start audio wait");
            if (!p->wait_on_ao || p->paused) {
                // Avoid busy waiting, because the audio API will still report
                // that it needs new data, even if we're not ready yet, or if
                // get_space() decides that the amount of audio buffered in the
                // device is enough, and p->buffer can be empty.
                // The most important part is that the decoder is woken up, so
                // that the decoder will wake up us in turn.
                MP_TRACE(ao, "buffer inactive.\n");

                bool was_playing = p->still_playing;
                double timeout = -1;
                if (p->still_playing && !p->paused && p->final_chunk &&
                    !mp_audio_buffer_samples(p->buffer))
                {
                    double now = mp_time_sec();
                    if (!p->expected_end_time)
                        p->expected_end_time = now + unlocked_get_delay(ao);
                    if (p->expected_end_time < now) {
                        p->still_playing = false;
                    } else {
                        timeout = p->expected_end_time - now;
                    }
                }

                if (was_playing && !p->still_playing)
                    mp_input_wakeup(ao->input_ctx);
                pthread_cond_signal(&p->wakeup); // for draining

                if (p->still_playing && timeout > 0) {
                    struct timespec ts = mp_rel_time_to_timespec(timeout);
                    pthread_cond_timedwait(&p->wakeup, &p->lock, &ts);
                } else {
                    pthread_cond_wait(&p->wakeup, &p->lock);
                }
            } else {
                // Wait until the device wants us to write more data to it.
                if (!ao->driver->wait || ao->driver->wait(ao, &p->lock) < 0) {
                    // Fallback to guessing.
                    double timeout = 0;
                    if (ao->driver->get_delay)
                        timeout = ao->driver->get_delay(ao);
                    timeout *= 0.25; // wake up if 25% played
                    if (!p->need_wakeup) {
                        struct timespec ts = mp_rel_time_to_timespec(timeout);
                        pthread_cond_timedwait(&p->wakeup, &p->lock, &ts);
                    }
                }
            }
            MP_STATS(ao, "end audio wait");
        }
        p->need_wakeup = false;
    }
    pthread_mutex_unlock(&p->lock);
    return NULL;
}

static void destroy_no_thread(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;

    ao->driver->uninit(ao);

    for (int n = 0; n < 2; n++)
        close(p->wakeup_pipe[n]);

    pthread_cond_destroy(&p->wakeup);
    pthread_mutex_destroy(&p->lock);
}

static void uninit(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;

    pthread_mutex_lock(&p->lock);
    p->terminate = true;
    wakeup_playthread(ao);
    pthread_mutex_unlock(&p->lock);

    pthread_join(p->thread, NULL);

    destroy_no_thread(ao);
}

static int init(struct ao *ao)
{
    struct ao_push_state *p = ao->api_priv;

    pthread_mutex_init(&p->lock, NULL);
    pthread_cond_init(&p->wakeup, NULL);
    mp_make_wakeup_pipe(p->wakeup_pipe);

    if (ao->device_buffer <= 0) {
        MP_FATAL(ao, "Couldn't probe device buffer size.\n");
        goto err;
    }

    p->buffer = mp_audio_buffer_create(ao);
    mp_audio_buffer_reinit_fmt(p->buffer, ao->format,
                               &ao->channels, ao->samplerate);
    mp_audio_buffer_preallocate_min(p->buffer, ao->buffer);
    if (pthread_create(&p->thread, NULL, playthread, ao))
        goto err;
    return 0;
err:
    destroy_no_thread(ao);
    return -1;
}

const struct ao_driver ao_api_push = {
    .init = init,
    .control = control,
    .uninit = uninit,
    .reset = reset,
    .get_space = get_space,
    .play = play,
    .get_delay = get_delay,
    .pause = audio_pause,
    .resume = resume,
    .drain = drain,
    .get_eof = get_eof,
    .priv_size = sizeof(struct ao_push_state),
};

// Must be called locked.
int ao_play_silence(struct ao *ao, int samples)
{
    assert(ao->api == &ao_api_push);
    if (samples <= 0 || !af_fmt_is_pcm(ao->format) || !ao->driver->play)
        return 0;
    char *p = talloc_size(NULL, samples * ao->sstride);
    af_fill_silence(p, samples * ao->sstride, ao->format);
    void *tmp[MP_NUM_CHANNELS];
    for (int n = 0; n < MP_NUM_CHANNELS; n++)
        tmp[n] = p;
    int r = ao->driver->play(ao, tmp, samples, 0);
    talloc_free(p);
    return r;
}

#ifndef __MINGW32__

#include <poll.h>

#define MAX_POLL_FDS 20

// Call poll() for the given fds. This will extend the given fds with the
// wakeup pipe, so ao_wakeup_poll() will basically interrupt this function.
// Unlocks the lock temporarily.
// Returns <0 on error, 0 on success, 1 if the caller should return immediately.
int ao_wait_poll(struct ao *ao, struct pollfd *fds, int num_fds,
                 pthread_mutex_t *lock)
{
    struct ao_push_state *p = ao->api_priv;
    assert(ao->api == &ao_api_push);
    assert(&p->lock == lock);

    if (num_fds >= MAX_POLL_FDS || p->wakeup_pipe[0] < 0)
        return -1;

    struct pollfd p_fds[MAX_POLL_FDS];
    memcpy(p_fds, fds, num_fds * sizeof(p_fds[0]));
    p_fds[num_fds] = (struct pollfd){
        .fd = p->wakeup_pipe[0],
        .events = POLLIN,
    };

    pthread_mutex_unlock(&p->lock);
    int r = poll(p_fds, num_fds + 1, -1);
    r = r < 0 ? -errno : 0;
    pthread_mutex_lock(&p->lock);

    memcpy(fds, p_fds, num_fds * sizeof(fds[0]));
    bool wakeup = false;
    if (p_fds[num_fds].revents & POLLIN) {
        wakeup = true;
        // flush the wakeup pipe contents - might "drown" some wakeups, but
        // that's ok for our use-case
        char buf[100];
        read(p->wakeup_pipe[0], buf, sizeof(buf));
    }
    return (r >= 0 || r == -EINTR) ? wakeup : -1;
}

void ao_wakeup_poll(struct ao *ao)
{
    assert(ao->api == &ao_api_push);
    struct ao_push_state *p = ao->api_priv;

    write(p->wakeup_pipe[1], &(char){0}, 1);
}

#endif