aboutsummaryrefslogtreecommitdiffhomepage
path: root/adpcm.c
blob: 30b73ff5e0e082da249f4b3be51715524dc3abb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
    Unified ADPCM Decoder for MPlayer

    This file is in charge of decoding all of the various ADPCM data
    formats that various entities have created. Details about the data
    formats can be found here:
      http://www.pcisys.net/~melanson/codecs/

    (C) 2001 Mike Melanson
*/

#include "config.h"
#include "bswap.h"
#include "adpcm.h"

#define BE_16(x) (be2me_16(*(unsigned short *)(x)))
#define BE_32(x) (be2me_32(*(unsigned int *)(x)))
#define LE_16(x) (le2me_16(*(unsigned short *)(x)))
#define LE_32(x) (le2me_32(*(unsigned int *)(x)))

// pertinent tables
static int adpcm_step[89] =
{
  7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
  19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
  50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
  130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
  337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
  876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
  2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
  5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
  15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};

static int adpcm_index[16] =
{
  -1, -1, -1, -1, 2, 4, 6, 8,
  -1, -1, -1, -1, 2, 4, 6, 8
};

static int ms_adapt_table[] =
{
  230, 230, 230, 230, 307, 409, 512, 614,
  768, 614, 512, 409, 307, 230, 230, 230
};

static int ms_adapt_coeff1[] =
{
  256, 512, 0, 192, 240, 460, 392
};

static int ms_adapt_coeff2[] =
{
  0, -256, 0, 64, 0, -208, -232
};

// useful macros
// clamp a number between 0 and 88
#define CLAMP_0_TO_88(x)  if (x < 0) x = 0; else if (x > 88) x = 88;
// clamp a number within a signed 16-bit range
#define CLAMP_S16(x)  if (x < -32768) x = -32768; \
  else if (x > 32767) x = 32767;
// clamp a number above 16
#define CLAMP_ABOVE_16(x)  if (x < 16) x = 16;
// sign extend a 16-bit value
#define SE_16BIT(x)  if (x & 0x8000) x -= 0x10000;
// sign extend a 4-bit value
#define SE_4BIT(x)  if (x & 0x8) x -= 0x10;

void decode_nibbles(unsigned short *output,
  int output_size, int channels,
  int predictor_l, int index_l,
  int predictor_r, int index_r)
{
  int step[2];
  int predictor[2];
  int index[2];
  int diff;
  int i;
  int sign;
  int delta;
  int channel_number = 0;

  step[0] = adpcm_step[index_l];
  step[1] = adpcm_step[index_r];
  predictor[0] = predictor_l;
  predictor[1] = predictor_r;
  index[0] = index_l;
  index[1] = index_r;

  for (i = 0; i < output_size; i++)
  {
    delta = output[i];

    index[channel_number] += adpcm_index[delta];
    CLAMP_0_TO_88(index[channel_number]);

    sign = delta & 8;
    delta = delta & 7;

    diff = step[channel_number] >> 3;
    if (delta & 4) diff += step[channel_number];
    if (delta & 2) diff += step[channel_number] >> 1;
    if (delta & 1) diff += step[channel_number] >> 2;

    if (sign)
      predictor[channel_number] -= diff;
    else
      predictor[channel_number] += diff;

    CLAMP_S16(predictor[channel_number]);
    output[i] = predictor[channel_number];
    step[channel_number] = adpcm_step[index[channel_number]];

    // toggle channel
    channel_number ^= channels - 1;

  }
}

int ima_adpcm_decode_block(unsigned short *output, unsigned char *input,
  int channels)
{
  int initial_predictor_l = 0;
  int initial_predictor_r = 0;
  int initial_index_l = 0;
  int initial_index_r = 0;
  int i;

  initial_predictor_l = BE_16(&input[0]);
  initial_index_l = initial_predictor_l;

  // mask, sign-extend, and clamp the predictor portion
  initial_predictor_l &= 0xFF80;
  SE_16BIT(initial_predictor_l);
  CLAMP_S16(initial_predictor_l);

  // mask and clamp the index portion
  initial_index_l &= 0x7F;
  CLAMP_0_TO_88(initial_index_l);

  // handle stereo
  if (channels > 1)
  {
    initial_predictor_r = BE_16(&input[IMA_ADPCM_BLOCK_SIZE]);
    initial_index_r = initial_predictor_r;

    // mask, sign-extend, and clamp the predictor portion
    initial_predictor_r &= 0xFF80;
    SE_16BIT(initial_predictor_r);
    CLAMP_S16(initial_predictor_r);

    // mask and clamp the index portion
    initial_index_r &= 0x7F;
    CLAMP_0_TO_88(initial_index_r);
  }

  // break apart all of the nibbles in the block
  if (channels == 1)
    for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2; i++)
    {
      output[i * 2 + 0] = input[2 + i] & 0x0F;
      output[i * 2 + 1] = input[2 + i] >> 4;
    }  
  else
    for (i = 0; i < IMA_ADPCM_SAMPLES_PER_BLOCK / 2 * 2; i++)
    {
      output[i * 4 + 0] = input[2 + i] & 0x0F;
      output[i * 4 + 1] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] & 0x0F;
      output[i * 4 + 2] = input[2 + i] >> 4;
      output[i * 4 + 3] = input[2 + IMA_ADPCM_BLOCK_SIZE + i] >> 4;
    }  

  decode_nibbles(output,
    IMA_ADPCM_SAMPLES_PER_BLOCK * channels, channels,
    initial_predictor_l, initial_index_l,
    initial_predictor_r, initial_index_r);

  return IMA_ADPCM_SAMPLES_PER_BLOCK * channels;
}

int ms_adpcm_decode_block(unsigned short *output, unsigned char *input,
  int channels, int block_size)
{
  int current_channel = 0;
  int idelta[2];
  int sample1[2];
  int sample2[2];
  int coeff1[2];
  int coeff2[2];
  int stream_ptr = 0;
  int out_ptr = 0;
  int upper_nibble = 1;
  int nibble;
  int snibble;  // signed nibble
  int predictor;

  // fetch the header information, in stereo if both channels are present
  coeff1[0] = ms_adapt_coeff1[input[stream_ptr]];
  coeff2[0] = ms_adapt_coeff2[input[stream_ptr]];
  stream_ptr++;
  if (channels == 2)
  {
    coeff1[1] = ms_adapt_coeff1[input[stream_ptr]];
    coeff2[1] = ms_adapt_coeff2[input[stream_ptr]];
    stream_ptr++;
  }

  idelta[0] = LE_16(&input[stream_ptr]);
  stream_ptr += 2;
  SE_16BIT(idelta[0]);
  if (channels == 2)
  {
    idelta[1] = LE_16(&input[stream_ptr]);
    stream_ptr += 2;
    SE_16BIT(idelta[1]);
  }

  sample1[0] = LE_16(&input[stream_ptr]);
  stream_ptr += 2;
  SE_16BIT(sample1[0]);
  if (channels == 2)
  {
    sample1[1] = LE_16(&input[stream_ptr]);
    stream_ptr += 2;
    SE_16BIT(sample1[1]);
  }

  sample2[0] = LE_16(&input[stream_ptr]);
  stream_ptr += 2;
  SE_16BIT(sample2[0]);
  if (channels == 2)
  {
    sample2[1] = LE_16(&input[stream_ptr]);
    stream_ptr += 2;
    SE_16BIT(sample2[1]);
  }

  while (stream_ptr < block_size)
  {
    // get the next nibble
    if (upper_nibble)
      nibble = snibble = input[stream_ptr] >> 4;
    else
      nibble = snibble = input[stream_ptr++] & 0x0F;
    upper_nibble ^= 1;
    SE_4BIT(snibble);

    predictor = (
      ((sample1[current_channel] * coeff1[current_channel]) +
       (sample2[current_channel] * coeff2[current_channel])) / 256) +
      (snibble * idelta[current_channel]);
    CLAMP_S16(predictor);
    sample2[current_channel] = sample1[current_channel];
    sample1[current_channel] = predictor;
    output[out_ptr++] = predictor;

    // compute the next adaptive scale factor (a.k.a. the variable idelta)
    idelta[current_channel] = 
      (ms_adapt_table[nibble] * idelta[current_channel]) / 256;
    CLAMP_ABOVE_16(idelta[current_channel]);

    // toggle the channel
    current_channel ^= channels - 1;
  }

  return (block_size - (MS_ADPCM_PREAMBLE_SIZE * channels)) * 2;
}

// note: This decoder assumes the format 0x61 data always comes in
// mono flavor
int fox61_adpcm_decode_block(unsigned short *output, unsigned char *input)
{
  int i;
  int predictor;
  int index;

  // the first predictor value goes straight to the output
  predictor = output[0] = LE_16(&input[0]);
  SE_16BIT(predictor);
  index = input[2];

  // unpack the nibbles
  for (i = 4; i < FOX61_ADPCM_BLOCK_SIZE; i++)
  {
    output[1 + (i - 4) * 2 + 0] = (input[i] >> 4) & 0x0F;
    output[1 + (i - 4) * 2 + 1] = input[i] & 0x0F;
  }

  decode_nibbles(&output[1], FOX61_ADPCM_SAMPLES_PER_BLOCK - 1, 1,
  predictor, index,
  0, 0);

  return FOX61_ADPCM_SAMPLES_PER_BLOCK;
}

// note: This decoder assumes the format 0x62 data always comes in
// stereo flavor
int fox62_adpcm_decode_block(unsigned short *output, unsigned char *input,
  int channels)
{
  int predictor_l;
  int predictor_r;
  int index_l;
  int index_r;
  int i;
  int adjustment;

static int counter = 0;

  predictor_l = LE_16(&input[10]);
  predictor_r = LE_16(&input[12]);
  SE_16BIT(predictor_l);
  SE_16BIT(predictor_r);
  index_l = input[14];
  index_r = input[15];

  for (i = 16; i < FOX62_ADPCM_BLOCK_SIZE; i++)
  {
    output[(i - 16) * 2 + 0] = input[i] & 0x0F;
    output[(i - 16) * 2 + 1] = (input[i] >> 4) & 0x0F;
  }

  decode_nibbles(output, FOX62_ADPCM_SAMPLES_PER_BLOCK * channels, channels,
  predictor_l, index_l,
  predictor_r, index_r);


  for (i = 0; i < FOX62_ADPCM_SAMPLES_PER_BLOCK / 2; i += 2)
  {
    adjustment = (predictor_r + output[i + 1]) / 2;
if (counter < 20)
{
printf ("(L, R) = %04X, %04X, prev_r = %04X, adjustment = %04X\n", 
  output[i], output[i+1], predictor_r, adjustment);
  counter++;
}
    predictor_r = output[i + 1];
    output[i + 1] = output[i] - adjustment;
    output[i] += adjustment;
  }

if (counter++ == 20)
{
printf (" after:\n");
for (i = 0; i < 20; i++)
  printf ("%04X\n", output[i]);
}
  return FOX62_ADPCM_SAMPLES_PER_BLOCK * channels;
}