aboutsummaryrefslogtreecommitdiffhomepage
path: root/DOCS/tech/libavc-options.txt
blob: 5d07705cb7ef08e509c7d5a58a130c3df0b572ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
Description of what all those libavcodec options do ...
WARNING: I am no encoding expert so the recommendations might be bad ...
if you find any errors, missing stuff, ... send a patch or cvs commit if you
have an cvs account :)

lavcopts: (encoder options)
---------------------------

vqmin 1-31 (minimum quantizer) for pass1/2
	1 is not recommended (much larger file, little quality difference (if u are lucky) 
           and other weird things (if u are less lucky))
           weird things: msmpeg4, h263 will be very low quality
                         ratecontrol will be confused -> lower quality
                         some decoders will not be able to decode it
	2 is recommended for normal mpeg4/mpeg1video encoding (default)
	3 is recommended for h263(p)/msmpeg4
	   the reason for 3 instead of 2 is that 2 could lead to overflows
           (this will be fixed for h263(p) by changing the quanizer per MB in	    
           the future, but msmpeg4 doesnt support that so it cant be fixed for
	   that)

vqscale 1-31 quantizer for constant quantizer / constant quality encoding
	1 is not recommended (much larger file, little quality difference and
        possible other weird things)
	lower means better quality but larger files
	see vqmin

vqmax 1-31 (maximum quantizer) for pass1/2
	31 default
	10-31 should be a sane range

mbqmin 1-31 (minimum macroblock quantizer) for pass1/2
	2 default

mbqmax 1-31 (maximum macroblock quantizer) for pass1/2
	31 default
        
vqdiff  1-31 (maximum quantizer difference between I or P frames) for pass1/2
	3 default

vmax_b_frames 0-4 (maximum number of B frames between non B frames)
	0 no b frames (default)
	0-2 is a sane range for mpeg4

vme 0-5 (motion estimation)
	0 none  (not recommanded, very lq)
	1 full  (not recommanded, too slow)
	2 log   (not recommanded, lq)
	3 phods (not recommanded, lq)
	4 EPZS  (default)
	5 X1    (experimantal, might change from time to time or be just broken)

vhq (high quality mode)
	encode each MB as in all modes and choose the best (this is slow but
        better filesize/quality)
	disabled by default

v4mv
	allow 4 MV per MB (little difference in filesize/quality)
	disabled by default

keyint  0-300 (maximum interval between keyframes)
	keyframes are needed for seeking as seeking is only possible to a
        keyframe but they need more space than non-keyframes so larger numbers here
        mean slightly smaller files, but less precise seeking
	0 no keyframes 
	>300 is not recommended as the quality might be bad (depends upon
        decoder, encoder and luck)
        for strict mpeg1/2/4 compliance this would have to be <=132

vb_strategy 0-1 for pass 2
	0 allways use the max number of B frames (default)
	1 avoid B frames in high motion scenes (this will cause bitrate
          misprediction)

vpass
	1 first pass
        2 second pass
          (only need to specify if two-pass encoding is used)
        Tip: u can try to use constant quantizer mode for pass1 (vqscale=<quantizer>)
        for huffyuv:
        	pass 1 saves statistics
                pass 2 encodes with a optimal huffman table based upon the pass 1 stats

vbitrate (kbits per second) for pass1/2
	800 is default
        (if value is bigger then 16000 it is interpreted as bit not kbit!)

vratetol (filesize tolerance in kbit) for pass1/2
	this is just an approximation, the real difference can be much smaller
        or larger
	1000-100000 is a sane range
	8000 is default

vrc_maxrate (maximum bitrate in kbit/sec) for pass1/2
vrc_minrate (minimum bitrate in kbit/sec) for pass1/2
vrc_buf_size (buffer size    in kbit) for pass1/2
	this is for stuff like VCD
	VCD:  FIXME
	SVCD: ...
	DVD:  ...
	Note: vratetol should not be too large during the 2.pass or there might 
              be problems if vrc_(min|max)rate is used

vb_qfactor (-31.0-31.0) for pass1/2
	1.25 is default
vi_qfactor (-31.0-31.0) for pass1/2
	0.8 is default
vb_qoffset (-31.0-31.0) for pass1/2
	1.25 is default
vi_qoffset (-31.0-31.0) for pass1/2
	0.0 is default
        if v{b|i}_qfactor > 0  
            I/B-Frame quantizer = P-Frame quantizer * v{b|i}_qfactor + v{b|i}_qoffset
        else    
            do normal ratecontrol (dont lock to next P frame quantizer) and
            set q= -q * v{b|i}_qfactor + v{b|i}_qoffset
	tip: to do constant quantizer encoding with different quantizers for
             I/P and B frames you can use:
             vqmin=<ip_quant>:vqmax=<ip_quant>:vb_qfactor=<b_quant/ip_quant>

vqblur (0.0-1.0) quantizer blur (pass1)
	0.0 qblur disabled
	0.5 is the default
	1.0 average the quantizer over all previous frames
	larger values will average the quantizer more over time so that it will
        be changed slower
vqblur (0.0-99.0) quantizer blur (pass2)
	gaussian blur (gaussian blur cant be done during pass 1 as the future quantizers arent known)
	0.5 is the default
	larger values will average the quantizer more over time so that it will
        be changed slower

vqcomp  quantizer compression (for pass1/2) 
	depends upon vrc_eq

vrc_eq	the main ratecontrol equation (for pass1/2)
	1			constant bitrate
	tex			constant quality
	1+(tex/avgTex-1)*qComp	approximately the equation of the old ratecontrol code
	tex^qComp		with qcomp 0.5 or something like that (default)

        infix operators: +,-,*,/,^
        variables:
		tex		texture complexity
		iTex,pTex	intra, non intra texture complexity
		avgTex		average texture complexity
		avgIITex	average intra texture complexity in I frames
		avgPITex	average intra texture complexity in P frames
		avgPPTex	average non intra texture complexity in P frames
		avgBPTex	average non intra texture complexity in B frames
		mv		bits used for MVs
		fCode		maximum length of MV in log2 scale
		iCount		number of intra MBs / number of MBs
		var		spatial complexity
		mcVar		temporal complexity
		qComp		qcomp from the command line
		isI, isP, isB	is 1 if picture type is I/P/B else 0
		Pi,E		see ur favorite math book

        functions: 
		max(a,b),min(a,b)	maximum / minimum
		gt(a,b)			is 1 if a>b, 0 otherwise
		lt(a,b)			is 1 if a<b, 0 otherwise
		eq(a,b)			is 1 if a==b,0 otherwise
		sin,cos,tan,sinh,cosh,tanh,exp,log,abs

vrc_override	user specified quality for specific parts (ending credits ...) (for pass1/2)
	<start-frame>,<end-frame>,<quality>[/<start-frame>,<end-frame>,<quality>[/...]]
	quality 2..31 -> quantizer
	quality -500..0 -> quality correcture in %
        
vrc_init_cplx	(0-1000) initial complexity for pass1

vqsquish (0 or 1) for pass1/2 how to keep the quantizer between qmin & qmax
	0 use cliping
	1 use a nice differentiable function (default)

vlelim (-1000-1000) single coefficient elimination threshold for luminance
	0 disabled (default)
	-4 (JVT recommendation)
	negative values will allso consider the dc coefficient
	should be at least -4 or lower for encoding at quant=1

vcelim (-1000-1000) single coefficient elimination threshold for chrominance
	0 disabled (default)
	7 (JVT recommendation)
	negative values will allso consider the dc coefficient
	should be at least -4 or lower for encoding at quant=1

vstrict (-1,0,1) strict standard compliance
	0  (default)
        1  only recommended if you want to feed the output into the mpeg4 reference
           decoder
        -1 allows nonstandard YV12 huffyuv encoding (20% smaller files, but 
           cant be played back by the official huffyuv codec)

vdpart	data partitioning
	adds 2 byte per video packet
	each videopacket will be encoded in 3 seperate partitions:
		1. MVs             (=movement)
		2. DC coefficients (=low res picture)
		3. AC coefficients (=details)
	the MV & DC are most important, loosing them looks far worse than 
	loosing the AC and the 1. & 2. partition (MV&DC) are far smaller than
	the 3. partition (AC) -> errors will hit the AC partition much more
	often than the MV&DC -> the picture will look better with partitioning
	than without, as without partitining an error will trash AC/DC/MV 
	equally
	improves error-resistance when transfering over unreliable channels (eg.
        streaming over the internet)

vpsize	(0-10000) video packet size
	0 disabled (default)
	100-1000 good choice
	improves error-resistance (see vdpart for more info)

gray	grayscale only encoding (a bit faster than with color ...)

vfdct	(0-99) dct algorithm
	0 automatically select a good one (default)
	1 fast integer 
        2 accurate integer
        3 mmx
        4 mlib
        
idct	(0-99) idct algorithm
	0 automatically select a good one (default)
	1 jpeg reference integer
        2 simple
        3 simplemmx
        4 libmpeg2mmx (inaccurate, DONT USE for encoding with keyint >100)
        5 ps2
        6 mlib
        7 arm
        note: all these IDCTs do pass the IEEE1180 tests AFAIK

lumi_mask	(0.0-1.0) luminance masking
	0.0 disabled (default)
        0.0-0.3 should be a sane range
        warning: be carefull, too large values can cause disasterous things
        warning2: large values might look good on some monitors but may look horrible
        on other monitors

dark_mask	(0.0-1.0) darkness masking
	0.0 disabled (default)
        0.0-0.3 should be a sane range
        warning: be carefull, too large values can cause disasterous things
        warning2: large values might look good on some monitors but may look horrible
        on other monitors / TV / TFT
        
tcplx_mask	(0.0-1.0) temporal complexity masking
	0.0 disabled (default)

scplx_mask	(0.0-1.0) spatial complexity masking
	0.0 disabled (default)
        0.0-0.5 should be a sane range
        larger values help against blockiness, if no deblocking filter is used
        for decoding
        Tip: crop any black borders completly away as they will reduce the quality
        of the MBs there, this is true if scplx_mask isnt used at all too

naq	normalize adaptive quantization (experimental)
	when using adaptive quantization (*_mask), the average per-MB quantizer
	may no longer match the requested frame-level quantizer. using naq will
	attempt to adjust the per-MB quantizers to maintain the proper average.
 
ildct	use interlaced dct

format
	YV12 (default)
        422P (for huffyuv)

pred (for huffyuv)
	0 left prediction
        1 plane/gradient prediction
        2 median prediction
 
qpel	use quarter pel motion compensation
	Tip: this seems only usefull for high bitrate encodings

precmp	comparission function for motion estimation pre pass
cmp	comparission function for full pel motion estimation
subcmp	comparission function for sub pel motion estimation
	0 SAD (sum of absolute differences) (default)
        1 SSE (sum of squared errors)
        2 SATD (sum of absolute hadamard transformed differences)
        3 DCT (sum of absolute dct transformed differences)
        4 PSNR (sum of the squared quantization errors)
        5 BIT (number of bits needed for the block)
        6 RD (rate distoration optimal, slow)
        7 ZERO (0)
        +256 (use chroma too, doesnt work with b frames currently)
        Tip: SAD is fast, SATD is good
        Tip2: when using SATD for full pel search u should use a larger diamond
              something like dia=2 or dia=4

predia	(-99 - 6) diamond type & size for motion estimation pre pass
dia	(-99 - 6) diamond type & size for motion estimation
	...
	-3 shape adaptive diamond with size 3
	-2 shape adaptive diamond with size 2
	-1 experimental
	1 normal size=1 diamond (default) =EPZS type diamond
                        0
                       000
                        0
	2 normal size=2 diamond
                        0
                       000
                      00000
                       000
                        0
        ...
        Tip: the shape adaptive stuff seems to be faster at the same quality
        Note: the sizes of the normal diamonds and shape adaptive ones dont
              have the same meaning

trell	trellis quantization
	this will find the optimal encoding for each 8x8 block
	trellis quantization is quite simple a optimal quantization in the 
	PSNR vs bitrate sense (assuming that there would be no rounding errors introduced 
	by the IDCT, which is obviously not the case) it simply finds a block for the minimum of
	error + lambda*bits 
	lambda is a qp dependant constant
	bits is the amount of bits needed to encode the block
	error is simple the sum of squared errors of the quantization
        
last_pred	(0-99) amount of motion predictors from the previous frame
	0 (default)
	a -> will use 2a+1 x 2a+1 MB square of MV predictors from the previous frame

preme	(0-2) Motion estimation pre-pass
	0 disabled
	1 only after I frames (default)
	2 allways
        
subq	(1-8) subpel refinement quality (for qpel)
	8 (default)
	Note: this has a significant effect on the speed
        
psnr	will print the psnr for the whole video after encoding and store the per frame psnr
	in a file with name like "psnr_012345.log"


lavdopts: (decoder options)
---------------------------

ec	error concealment
	1 use strong deblock filter for damaged MBs
        2 iterative MV search (slow)
        3 all (default)
        Note: just add the ones u want to enable

er	error resilience
	0 disabled
        1 carefull (should work with broken encoders)
        2 normal (default) (works with compliant encoders)
        3 agressive (more checks but might cause problems even for valid bitstreams)
        4 very agressive

bug	manual workaround encoder bugs (autodetection isnt foolproof for these)
	0 nothing
	1		autodetect bugs (default)
	2 for msmpeg4v3	some old lavc generated msmpeg4v3 files (no autodetect)
	4 for mpeg4	xvid interlacing bug     (autodetected if fourcc==XVIX)
	8 for mpeg4	UMP4                     (autodetected if fourcc==UMP4)
        16for mpeg4	padding bug
        32for mpeg4	illegal vlc bug          (autodetected per fourcc)
	64for mpeg4	XVID&DIVX qpel bug	 (autodetected)
        Note: just add the ones u want to enable

gray	grayscale only decoding (a bit faster than with color ...)

idct	see lavcopts
        note: the decoding quality is highest if the same idct algorithm is used 
        for decoding as for encoding, this is often not the most accurate though


Notes:	1. lavc will strictly follow the quantizer limits vqmin, vqmax, vqdiff
           even if it violates the bitrate / bitrate tolerance
	2. changing some options between pass1 & 2 can reduce the quality

FAQ:	Q: Why is the filesize much too small?
	A: Try to increase vqmin=2 or 1 (be carefull with 1, it could cause
           strange things to happen).
	Q: What provides better error recovery while keeping the filesize low?
           Should I use data partitioning or increase the number of video packets?
	A: Data partitioning is better in this case.

Glossary:
MB	Macroblock (16x16 luminance and 8x8 chrominance samples)
MV	Motion vector
ME	Motion estimation
MC	Motion compensation
RC	Rate control
DCT	Discrete Cosine Transform
IDCT	Inverse Discrete Cosine Transform
DC	The coefficient of the constant term in the DCT (avg value of block)
JVT	Joint Video Team Standard -- http://www.itu.int/ITU-T/news/jvtpro.html
PSNR	peak signal to noise ratio

Examples:
mencoder foobar.avi -lavcopts vcodec=mpeg4:vhq:keyint=300:vqscale=2 -o new-foobar.avi
mplayer  foobar.avi -lavdopts bug=1

Links:
short intro to mpeg coding:
http://www.eecs.umich.edu/~amarathe/mpeg.html
longer intro to jpeg/mpeg coding:
http://www.cs.sfu.ca/undergrad/CourseMaterials/CMPT479/material/notes/Chap4/Chap4.2/Chap4.2.html
ftp://ftp.tek.com/mbd/manuals/video_audio/25W_11418_4.pdf

--
Written 2002 by Michael Niedermayer and reviewed by Felix Buenemann.
Check the MPlayer documentation for contact-addresses.