aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/crypto/scrypt/scrypt.go
blob: 9b25b5ac255a8df66d676c177ab33af60819a265 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package scrypt implements the scrypt key derivation function as defined in
// Colin Percival's paper "Stronger Key Derivation via Sequential Memory-Hard
// Functions" (https://www.tarsnap.com/scrypt/scrypt.pdf).
package scrypt // import "golang.org/x/crypto/scrypt"

import (
	"crypto/sha256"
	"errors"

	"golang.org/x/crypto/pbkdf2"
)

const maxInt = int(^uint(0) >> 1)

// blockCopy copies n numbers from src into dst.
func blockCopy(dst, src []uint32, n int) {
	copy(dst, src[:n])
}

// blockXOR XORs numbers from dst with n numbers from src.
func blockXOR(dst, src []uint32, n int) {
	for i, v := range src[:n] {
		dst[i] ^= v
	}
}

// salsaXOR applies Salsa20/8 to the XOR of 16 numbers from tmp and in,
// and puts the result into both both tmp and out.
func salsaXOR(tmp *[16]uint32, in, out []uint32) {
	w0 := tmp[0] ^ in[0]
	w1 := tmp[1] ^ in[1]
	w2 := tmp[2] ^ in[2]
	w3 := tmp[3] ^ in[3]
	w4 := tmp[4] ^ in[4]
	w5 := tmp[5] ^ in[5]
	w6 := tmp[6] ^ in[6]
	w7 := tmp[7] ^ in[7]
	w8 := tmp[8] ^ in[8]
	w9 := tmp[9] ^ in[9]
	w10 := tmp[10] ^ in[10]
	w11 := tmp[11] ^ in[11]
	w12 := tmp[12] ^ in[12]
	w13 := tmp[13] ^ in[13]
	w14 := tmp[14] ^ in[14]
	w15 := tmp[15] ^ in[15]

	x0, x1, x2, x3, x4, x5, x6, x7, x8 := w0, w1, w2, w3, w4, w5, w6, w7, w8
	x9, x10, x11, x12, x13, x14, x15 := w9, w10, w11, w12, w13, w14, w15

	for i := 0; i < 8; i += 2 {
		u := x0 + x12
		x4 ^= u<<7 | u>>(32-7)
		u = x4 + x0
		x8 ^= u<<9 | u>>(32-9)
		u = x8 + x4
		x12 ^= u<<13 | u>>(32-13)
		u = x12 + x8
		x0 ^= u<<18 | u>>(32-18)

		u = x5 + x1
		x9 ^= u<<7 | u>>(32-7)
		u = x9 + x5
		x13 ^= u<<9 | u>>(32-9)
		u = x13 + x9
		x1 ^= u<<13 | u>>(32-13)
		u = x1 + x13
		x5 ^= u<<18 | u>>(32-18)

		u = x10 + x6
		x14 ^= u<<7 | u>>(32-7)
		u = x14 + x10
		x2 ^= u<<9 | u>>(32-9)
		u = x2 + x14
		x6 ^= u<<13 | u>>(32-13)
		u = x6 + x2
		x10 ^= u<<18 | u>>(32-18)

		u = x15 + x11
		x3 ^= u<<7 | u>>(32-7)
		u = x3 + x15
		x7 ^= u<<9 | u>>(32-9)
		u = x7 + x3
		x11 ^= u<<13 | u>>(32-13)
		u = x11 + x7
		x15 ^= u<<18 | u>>(32-18)

		u = x0 + x3
		x1 ^= u<<7 | u>>(32-7)
		u = x1 + x0
		x2 ^= u<<9 | u>>(32-9)
		u = x2 + x1
		x3 ^= u<<13 | u>>(32-13)
		u = x3 + x2
		x0 ^= u<<18 | u>>(32-18)

		u = x5 + x4
		x6 ^= u<<7 | u>>(32-7)
		u = x6 + x5
		x7 ^= u<<9 | u>>(32-9)
		u = x7 + x6
		x4 ^= u<<13 | u>>(32-13)
		u = x4 + x7
		x5 ^= u<<18 | u>>(32-18)

		u = x10 + x9
		x11 ^= u<<7 | u>>(32-7)
		u = x11 + x10
		x8 ^= u<<9 | u>>(32-9)
		u = x8 + x11
		x9 ^= u<<13 | u>>(32-13)
		u = x9 + x8
		x10 ^= u<<18 | u>>(32-18)

		u = x15 + x14
		x12 ^= u<<7 | u>>(32-7)
		u = x12 + x15
		x13 ^= u<<9 | u>>(32-9)
		u = x13 + x12
		x14 ^= u<<13 | u>>(32-13)
		u = x14 + x13
		x15 ^= u<<18 | u>>(32-18)
	}
	x0 += w0
	x1 += w1
	x2 += w2
	x3 += w3
	x4 += w4
	x5 += w5
	x6 += w6
	x7 += w7
	x8 += w8
	x9 += w9
	x10 += w10
	x11 += w11
	x12 += w12
	x13 += w13
	x14 += w14
	x15 += w15

	out[0], tmp[0] = x0, x0
	out[1], tmp[1] = x1, x1
	out[2], tmp[2] = x2, x2
	out[3], tmp[3] = x3, x3
	out[4], tmp[4] = x4, x4
	out[5], tmp[5] = x5, x5
	out[6], tmp[6] = x6, x6
	out[7], tmp[7] = x7, x7
	out[8], tmp[8] = x8, x8
	out[9], tmp[9] = x9, x9
	out[10], tmp[10] = x10, x10
	out[11], tmp[11] = x11, x11
	out[12], tmp[12] = x12, x12
	out[13], tmp[13] = x13, x13
	out[14], tmp[14] = x14, x14
	out[15], tmp[15] = x15, x15
}

func blockMix(tmp *[16]uint32, in, out []uint32, r int) {
	blockCopy(tmp[:], in[(2*r-1)*16:], 16)
	for i := 0; i < 2*r; i += 2 {
		salsaXOR(tmp, in[i*16:], out[i*8:])
		salsaXOR(tmp, in[i*16+16:], out[i*8+r*16:])
	}
}

func integer(b []uint32, r int) uint64 {
	j := (2*r - 1) * 16
	return uint64(b[j]) | uint64(b[j+1])<<32
}

func smix(b []byte, r, N int, v, xy []uint32) {
	var tmp [16]uint32
	x := xy
	y := xy[32*r:]

	j := 0
	for i := 0; i < 32*r; i++ {
		x[i] = uint32(b[j]) | uint32(b[j+1])<<8 | uint32(b[j+2])<<16 | uint32(b[j+3])<<24
		j += 4
	}
	for i := 0; i < N; i += 2 {
		blockCopy(v[i*(32*r):], x, 32*r)
		blockMix(&tmp, x, y, r)

		blockCopy(v[(i+1)*(32*r):], y, 32*r)
		blockMix(&tmp, y, x, r)
	}
	for i := 0; i < N; i += 2 {
		j := int(integer(x, r) & uint64(N-1))
		blockXOR(x, v[j*(32*r):], 32*r)
		blockMix(&tmp, x, y, r)

		j = int(integer(y, r) & uint64(N-1))
		blockXOR(y, v[j*(32*r):], 32*r)
		blockMix(&tmp, y, x, r)
	}
	j = 0
	for _, v := range x[:32*r] {
		b[j+0] = byte(v >> 0)
		b[j+1] = byte(v >> 8)
		b[j+2] = byte(v >> 16)
		b[j+3] = byte(v >> 24)
		j += 4
	}
}

// Key derives a key from the password, salt, and cost parameters, returning
// a byte slice of length keyLen that can be used as cryptographic key.
//
// N is a CPU/memory cost parameter, which must be a power of two greater than 1.
// r and p must satisfy r * p < 2³⁰. If the parameters do not satisfy the
// limits, the function returns a nil byte slice and an error.
//
// For example, you can get a derived key for e.g. AES-256 (which needs a
// 32-byte key) by doing:
//
//      dk, err := scrypt.Key([]byte("some password"), salt, 32768, 8, 1, 32)
//
// The recommended parameters for interactive logins as of 2017 are N=32768, r=8
// and p=1. The parameters N, r, and p should be increased as memory latency and
// CPU parallelism increases; consider setting N to the highest power of 2 you
// can derive within 100 milliseconds. Remember to get a good random salt.
func Key(password, salt []byte, N, r, p, keyLen int) ([]byte, error) {
	if N <= 1 || N&(N-1) != 0 {
		return nil, errors.New("scrypt: N must be > 1 and a power of 2")
	}
	if uint64(r)*uint64(p) >= 1<<30 || r > maxInt/128/p || r > maxInt/256 || N > maxInt/128/r {
		return nil, errors.New("scrypt: parameters are too large")
	}

	xy := make([]uint32, 64*r)
	v := make([]uint32, 32*N*r)
	b := pbkdf2.Key(password, salt, 1, p*128*r, sha256.New)

	for i := 0; i < p; i++ {
		smix(b[i*128*r:], r, N, v, xy)
	}

	return pbkdf2.Key(password, b, 1, keyLen, sha256.New), nil
}