aboutsummaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/crypto/ocsp/ocsp.go
blob: 589dfd35f11264228071a71bd591f8d7ca467055 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ocsp parses OCSP responses as specified in RFC 2560. OCSP responses
// are signed messages attesting to the validity of a certificate for a small
// period of time. This is used to manage revocation for X.509 certificates.
package ocsp // import "golang.org/x/crypto/ocsp"

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/elliptic"
	"crypto/rand"
	"crypto/rsa"
	_ "crypto/sha1"
	_ "crypto/sha256"
	_ "crypto/sha512"
	"crypto/x509"
	"crypto/x509/pkix"
	"encoding/asn1"
	"errors"
	"fmt"
	"math/big"
	"strconv"
	"time"
)

var idPKIXOCSPBasic = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 5, 5, 7, 48, 1, 1})

// ResponseStatus contains the result of an OCSP request. See
// https://tools.ietf.org/html/rfc6960#section-2.3
type ResponseStatus int

const (
	Success       ResponseStatus = 0
	Malformed     ResponseStatus = 1
	InternalError ResponseStatus = 2
	TryLater      ResponseStatus = 3
	// Status code four is unused in OCSP. See
	// https://tools.ietf.org/html/rfc6960#section-4.2.1
	SignatureRequired ResponseStatus = 5
	Unauthorized      ResponseStatus = 6
)

func (r ResponseStatus) String() string {
	switch r {
	case Success:
		return "success"
	case Malformed:
		return "malformed"
	case InternalError:
		return "internal error"
	case TryLater:
		return "try later"
	case SignatureRequired:
		return "signature required"
	case Unauthorized:
		return "unauthorized"
	default:
		return "unknown OCSP status: " + strconv.Itoa(int(r))
	}
}

// ResponseError is an error that may be returned by ParseResponse to indicate
// that the response itself is an error, not just that its indicating that a
// certificate is revoked, unknown, etc.
type ResponseError struct {
	Status ResponseStatus
}

func (r ResponseError) Error() string {
	return "ocsp: error from server: " + r.Status.String()
}

// These are internal structures that reflect the ASN.1 structure of an OCSP
// response. See RFC 2560, section 4.2.

type certID struct {
	HashAlgorithm pkix.AlgorithmIdentifier
	NameHash      []byte
	IssuerKeyHash []byte
	SerialNumber  *big.Int
}

// https://tools.ietf.org/html/rfc2560#section-4.1.1
type ocspRequest struct {
	TBSRequest tbsRequest
}

type tbsRequest struct {
	Version       int              `asn1:"explicit,tag:0,default:0,optional"`
	RequestorName pkix.RDNSequence `asn1:"explicit,tag:1,optional"`
	RequestList   []request
}

type request struct {
	Cert certID
}

type responseASN1 struct {
	Status   asn1.Enumerated
	Response responseBytes `asn1:"explicit,tag:0,optional"`
}

type responseBytes struct {
	ResponseType asn1.ObjectIdentifier
	Response     []byte
}

type basicResponse struct {
	TBSResponseData    responseData
	SignatureAlgorithm pkix.AlgorithmIdentifier
	Signature          asn1.BitString
	Certificates       []asn1.RawValue `asn1:"explicit,tag:0,optional"`
}

type responseData struct {
	Raw            asn1.RawContent
	Version        int `asn1:"optional,default:0,explicit,tag:0"`
	RawResponderID asn1.RawValue
	ProducedAt     time.Time `asn1:"generalized"`
	Responses      []singleResponse
}

type singleResponse struct {
	CertID           certID
	Good             asn1.Flag        `asn1:"tag:0,optional"`
	Revoked          revokedInfo      `asn1:"tag:1,optional"`
	Unknown          asn1.Flag        `asn1:"tag:2,optional"`
	ThisUpdate       time.Time        `asn1:"generalized"`
	NextUpdate       time.Time        `asn1:"generalized,explicit,tag:0,optional"`
	SingleExtensions []pkix.Extension `asn1:"explicit,tag:1,optional"`
}

type revokedInfo struct {
	RevocationTime time.Time       `asn1:"generalized"`
	Reason         asn1.Enumerated `asn1:"explicit,tag:0,optional"`
}

var (
	oidSignatureMD2WithRSA      = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
	oidSignatureMD5WithRSA      = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
	oidSignatureSHA1WithRSA     = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
	oidSignatureSHA256WithRSA   = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
	oidSignatureSHA384WithRSA   = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
	oidSignatureSHA512WithRSA   = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
	oidSignatureDSAWithSHA1     = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
	oidSignatureDSAWithSHA256   = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 3, 2}
	oidSignatureECDSAWithSHA1   = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
	oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
	oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
	oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
)

var hashOIDs = map[crypto.Hash]asn1.ObjectIdentifier{
	crypto.SHA1:   asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26}),
	crypto.SHA256: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 1}),
	crypto.SHA384: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 2}),
	crypto.SHA512: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 3}),
}

// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
var signatureAlgorithmDetails = []struct {
	algo       x509.SignatureAlgorithm
	oid        asn1.ObjectIdentifier
	pubKeyAlgo x509.PublicKeyAlgorithm
	hash       crypto.Hash
}{
	{x509.MD2WithRSA, oidSignatureMD2WithRSA, x509.RSA, crypto.Hash(0) /* no value for MD2 */},
	{x509.MD5WithRSA, oidSignatureMD5WithRSA, x509.RSA, crypto.MD5},
	{x509.SHA1WithRSA, oidSignatureSHA1WithRSA, x509.RSA, crypto.SHA1},
	{x509.SHA256WithRSA, oidSignatureSHA256WithRSA, x509.RSA, crypto.SHA256},
	{x509.SHA384WithRSA, oidSignatureSHA384WithRSA, x509.RSA, crypto.SHA384},
	{x509.SHA512WithRSA, oidSignatureSHA512WithRSA, x509.RSA, crypto.SHA512},
	{x509.DSAWithSHA1, oidSignatureDSAWithSHA1, x509.DSA, crypto.SHA1},
	{x509.DSAWithSHA256, oidSignatureDSAWithSHA256, x509.DSA, crypto.SHA256},
	{x509.ECDSAWithSHA1, oidSignatureECDSAWithSHA1, x509.ECDSA, crypto.SHA1},
	{x509.ECDSAWithSHA256, oidSignatureECDSAWithSHA256, x509.ECDSA, crypto.SHA256},
	{x509.ECDSAWithSHA384, oidSignatureECDSAWithSHA384, x509.ECDSA, crypto.SHA384},
	{x509.ECDSAWithSHA512, oidSignatureECDSAWithSHA512, x509.ECDSA, crypto.SHA512},
}

// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
func signingParamsForPublicKey(pub interface{}, requestedSigAlgo x509.SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
	var pubType x509.PublicKeyAlgorithm

	switch pub := pub.(type) {
	case *rsa.PublicKey:
		pubType = x509.RSA
		hashFunc = crypto.SHA256
		sigAlgo.Algorithm = oidSignatureSHA256WithRSA
		sigAlgo.Parameters = asn1.RawValue{
			Tag: 5,
		}

	case *ecdsa.PublicKey:
		pubType = x509.ECDSA

		switch pub.Curve {
		case elliptic.P224(), elliptic.P256():
			hashFunc = crypto.SHA256
			sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
		case elliptic.P384():
			hashFunc = crypto.SHA384
			sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
		case elliptic.P521():
			hashFunc = crypto.SHA512
			sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
		default:
			err = errors.New("x509: unknown elliptic curve")
		}

	default:
		err = errors.New("x509: only RSA and ECDSA keys supported")
	}

	if err != nil {
		return
	}

	if requestedSigAlgo == 0 {
		return
	}

	found := false
	for _, details := range signatureAlgorithmDetails {
		if details.algo == requestedSigAlgo {
			if details.pubKeyAlgo != pubType {
				err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
				return
			}
			sigAlgo.Algorithm, hashFunc = details.oid, details.hash
			if hashFunc == 0 {
				err = errors.New("x509: cannot sign with hash function requested")
				return
			}
			found = true
			break
		}
	}

	if !found {
		err = errors.New("x509: unknown SignatureAlgorithm")
	}

	return
}

// TODO(agl): this is taken from crypto/x509 and so should probably be exported
// from crypto/x509 or crypto/x509/pkix.
func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) x509.SignatureAlgorithm {
	for _, details := range signatureAlgorithmDetails {
		if oid.Equal(details.oid) {
			return details.algo
		}
	}
	return x509.UnknownSignatureAlgorithm
}

// TODO(rlb): This is not taken from crypto/x509, but it's of the same general form.
func getHashAlgorithmFromOID(target asn1.ObjectIdentifier) crypto.Hash {
	for hash, oid := range hashOIDs {
		if oid.Equal(target) {
			return hash
		}
	}
	return crypto.Hash(0)
}

func getOIDFromHashAlgorithm(target crypto.Hash) asn1.ObjectIdentifier {
	for hash, oid := range hashOIDs {
		if hash == target {
			return oid
		}
	}
	return nil
}

// This is the exposed reflection of the internal OCSP structures.

// The status values that can be expressed in OCSP.  See RFC 6960.
const (
	// Good means that the certificate is valid.
	Good = iota
	// Revoked means that the certificate has been deliberately revoked.
	Revoked
	// Unknown means that the OCSP responder doesn't know about the certificate.
	Unknown
	// ServerFailed is unused and was never used (see
	// https://go-review.googlesource.com/#/c/18944). ParseResponse will
	// return a ResponseError when an error response is parsed.
	ServerFailed
)

// The enumerated reasons for revoking a certificate.  See RFC 5280.
const (
	Unspecified          = 0
	KeyCompromise        = 1
	CACompromise         = 2
	AffiliationChanged   = 3
	Superseded           = 4
	CessationOfOperation = 5
	CertificateHold      = 6

	RemoveFromCRL      = 8
	PrivilegeWithdrawn = 9
	AACompromise       = 10
)

// Request represents an OCSP request. See RFC 6960.
type Request struct {
	HashAlgorithm  crypto.Hash
	IssuerNameHash []byte
	IssuerKeyHash  []byte
	SerialNumber   *big.Int
}

// Marshal marshals the OCSP request to ASN.1 DER encoded form.
func (req *Request) Marshal() ([]byte, error) {
	hashAlg := getOIDFromHashAlgorithm(req.HashAlgorithm)
	if hashAlg == nil {
		return nil, errors.New("Unknown hash algorithm")
	}
	return asn1.Marshal(ocspRequest{
		tbsRequest{
			Version: 0,
			RequestList: []request{
				{
					Cert: certID{
						pkix.AlgorithmIdentifier{
							Algorithm:  hashAlg,
							Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
						},
						req.IssuerNameHash,
						req.IssuerKeyHash,
						req.SerialNumber,
					},
				},
			},
		},
	})
}

// Response represents an OCSP response containing a single SingleResponse. See
// RFC 6960.
type Response struct {
	// Status is one of {Good, Revoked, Unknown}
	Status                                        int
	SerialNumber                                  *big.Int
	ProducedAt, ThisUpdate, NextUpdate, RevokedAt time.Time
	RevocationReason                              int
	Certificate                                   *x509.Certificate
	// TBSResponseData contains the raw bytes of the signed response. If
	// Certificate is nil then this can be used to verify Signature.
	TBSResponseData    []byte
	Signature          []byte
	SignatureAlgorithm x509.SignatureAlgorithm

	// IssuerHash is the hash used to compute the IssuerNameHash and IssuerKeyHash.
	// Valid values are crypto.SHA1, crypto.SHA256, crypto.SHA384, and crypto.SHA512.
	// If zero, the default is crypto.SHA1.
	IssuerHash crypto.Hash

	// RawResponderName optionally contains the DER-encoded subject of the
	// responder certificate. Exactly one of RawResponderName and
	// ResponderKeyHash is set.
	RawResponderName []byte
	// ResponderKeyHash optionally contains the SHA-1 hash of the
	// responder's public key. Exactly one of RawResponderName and
	// ResponderKeyHash is set.
	ResponderKeyHash []byte

	// Extensions contains raw X.509 extensions from the singleExtensions field
	// of the OCSP response. When parsing certificates, this can be used to
	// extract non-critical extensions that are not parsed by this package. When
	// marshaling OCSP responses, the Extensions field is ignored, see
	// ExtraExtensions.
	Extensions []pkix.Extension

	// ExtraExtensions contains extensions to be copied, raw, into any marshaled
	// OCSP response (in the singleExtensions field). Values override any
	// extensions that would otherwise be produced based on the other fields. The
	// ExtraExtensions field is not populated when parsing certificates, see
	// Extensions.
	ExtraExtensions []pkix.Extension
}

// These are pre-serialized error responses for the various non-success codes
// defined by OCSP. The Unauthorized code in particular can be used by an OCSP
// responder that supports only pre-signed responses as a response to requests
// for certificates with unknown status. See RFC 5019.
var (
	MalformedRequestErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x01}
	InternalErrorErrorResponse    = []byte{0x30, 0x03, 0x0A, 0x01, 0x02}
	TryLaterErrorResponse         = []byte{0x30, 0x03, 0x0A, 0x01, 0x03}
	SigRequredErrorResponse       = []byte{0x30, 0x03, 0x0A, 0x01, 0x05}
	UnauthorizedErrorResponse     = []byte{0x30, 0x03, 0x0A, 0x01, 0x06}
)

// CheckSignatureFrom checks that the signature in resp is a valid signature
// from issuer. This should only be used if resp.Certificate is nil. Otherwise,
// the OCSP response contained an intermediate certificate that created the
// signature. That signature is checked by ParseResponse and only
// resp.Certificate remains to be validated.
func (resp *Response) CheckSignatureFrom(issuer *x509.Certificate) error {
	return issuer.CheckSignature(resp.SignatureAlgorithm, resp.TBSResponseData, resp.Signature)
}

// ParseError results from an invalid OCSP response.
type ParseError string

func (p ParseError) Error() string {
	return string(p)
}

// ParseRequest parses an OCSP request in DER form. It only supports
// requests for a single certificate. Signed requests are not supported.
// If a request includes a signature, it will result in a ParseError.
func ParseRequest(bytes []byte) (*Request, error) {
	var req ocspRequest
	rest, err := asn1.Unmarshal(bytes, &req)
	if err != nil {
		return nil, err
	}
	if len(rest) > 0 {
		return nil, ParseError("trailing data in OCSP request")
	}

	if len(req.TBSRequest.RequestList) == 0 {
		return nil, ParseError("OCSP request contains no request body")
	}
	innerRequest := req.TBSRequest.RequestList[0]

	hashFunc := getHashAlgorithmFromOID(innerRequest.Cert.HashAlgorithm.Algorithm)
	if hashFunc == crypto.Hash(0) {
		return nil, ParseError("OCSP request uses unknown hash function")
	}

	return &Request{
		HashAlgorithm:  hashFunc,
		IssuerNameHash: innerRequest.Cert.NameHash,
		IssuerKeyHash:  innerRequest.Cert.IssuerKeyHash,
		SerialNumber:   innerRequest.Cert.SerialNumber,
	}, nil
}

// ParseResponse parses an OCSP response in DER form. It only supports
// responses for a single certificate. If the response contains a certificate
// then the signature over the response is checked. If issuer is not nil then
// it will be used to validate the signature or embedded certificate.
//
// Invalid responses and parse failures will result in a ParseError.
// Error responses will result in a ResponseError.
func ParseResponse(bytes []byte, issuer *x509.Certificate) (*Response, error) {
	return ParseResponseForCert(bytes, nil, issuer)
}

// ParseResponseForCert parses an OCSP response in DER form and searches for a
// Response relating to cert. If such a Response is found and the OCSP response
// contains a certificate then the signature over the response is checked. If
// issuer is not nil then it will be used to validate the signature or embedded
// certificate.
//
// Invalid responses and parse failures will result in a ParseError.
// Error responses will result in a ResponseError.
func ParseResponseForCert(bytes []byte, cert, issuer *x509.Certificate) (*Response, error) {
	var resp responseASN1
	rest, err := asn1.Unmarshal(bytes, &resp)
	if err != nil {
		return nil, err
	}
	if len(rest) > 0 {
		return nil, ParseError("trailing data in OCSP response")
	}

	if status := ResponseStatus(resp.Status); status != Success {
		return nil, ResponseError{status}
	}

	if !resp.Response.ResponseType.Equal(idPKIXOCSPBasic) {
		return nil, ParseError("bad OCSP response type")
	}

	var basicResp basicResponse
	rest, err = asn1.Unmarshal(resp.Response.Response, &basicResp)
	if err != nil {
		return nil, err
	}

	if len(basicResp.Certificates) > 1 {
		return nil, ParseError("OCSP response contains bad number of certificates")
	}

	if n := len(basicResp.TBSResponseData.Responses); n == 0 || cert == nil && n > 1 {
		return nil, ParseError("OCSP response contains bad number of responses")
	}

	var singleResp singleResponse
	if cert == nil {
		singleResp = basicResp.TBSResponseData.Responses[0]
	} else {
		match := false
		for _, resp := range basicResp.TBSResponseData.Responses {
			if cert.SerialNumber.Cmp(resp.CertID.SerialNumber) == 0 {
				singleResp = resp
				match = true
				break
			}
		}
		if !match {
			return nil, ParseError("no response matching the supplied certificate")
		}
	}

	ret := &Response{
		TBSResponseData:    basicResp.TBSResponseData.Raw,
		Signature:          basicResp.Signature.RightAlign(),
		SignatureAlgorithm: getSignatureAlgorithmFromOID(basicResp.SignatureAlgorithm.Algorithm),
		Extensions:         singleResp.SingleExtensions,
		SerialNumber:       singleResp.CertID.SerialNumber,
		ProducedAt:         basicResp.TBSResponseData.ProducedAt,
		ThisUpdate:         singleResp.ThisUpdate,
		NextUpdate:         singleResp.NextUpdate,
	}

	// Handle the ResponderID CHOICE tag. ResponderID can be flattened into
	// TBSResponseData once https://go-review.googlesource.com/34503 has been
	// released.
	rawResponderID := basicResp.TBSResponseData.RawResponderID
	switch rawResponderID.Tag {
	case 1: // Name
		var rdn pkix.RDNSequence
		if rest, err := asn1.Unmarshal(rawResponderID.Bytes, &rdn); err != nil || len(rest) != 0 {
			return nil, ParseError("invalid responder name")
		}
		ret.RawResponderName = rawResponderID.Bytes
	case 2: // KeyHash
		if rest, err := asn1.Unmarshal(rawResponderID.Bytes, &ret.ResponderKeyHash); err != nil || len(rest) != 0 {
			return nil, ParseError("invalid responder key hash")
		}
	default:
		return nil, ParseError("invalid responder id tag")
	}

	if len(basicResp.Certificates) > 0 {
		ret.Certificate, err = x509.ParseCertificate(basicResp.Certificates[0].FullBytes)
		if err != nil {
			return nil, err
		}

		if err := ret.CheckSignatureFrom(ret.Certificate); err != nil {
			return nil, ParseError("bad signature on embedded certificate: " + err.Error())
		}

		if issuer != nil {
			if err := issuer.CheckSignature(ret.Certificate.SignatureAlgorithm, ret.Certificate.RawTBSCertificate, ret.Certificate.Signature); err != nil {
				return nil, ParseError("bad OCSP signature: " + err.Error())
			}
		}
	} else if issuer != nil {
		if err := ret.CheckSignatureFrom(issuer); err != nil {
			return nil, ParseError("bad OCSP signature: " + err.Error())
		}
	}

	for _, ext := range singleResp.SingleExtensions {
		if ext.Critical {
			return nil, ParseError("unsupported critical extension")
		}
	}

	for h, oid := range hashOIDs {
		if singleResp.CertID.HashAlgorithm.Algorithm.Equal(oid) {
			ret.IssuerHash = h
			break
		}
	}
	if ret.IssuerHash == 0 {
		return nil, ParseError("unsupported issuer hash algorithm")
	}

	switch {
	case bool(singleResp.Good):
		ret.Status = Good
	case bool(singleResp.Unknown):
		ret.Status = Unknown
	default:
		ret.Status = Revoked
		ret.RevokedAt = singleResp.Revoked.RevocationTime
		ret.RevocationReason = int(singleResp.Revoked.Reason)
	}

	return ret, nil
}

// RequestOptions contains options for constructing OCSP requests.
type RequestOptions struct {
	// Hash contains the hash function that should be used when
	// constructing the OCSP request. If zero, SHA-1 will be used.
	Hash crypto.Hash
}

func (opts *RequestOptions) hash() crypto.Hash {
	if opts == nil || opts.Hash == 0 {
		// SHA-1 is nearly universally used in OCSP.
		return crypto.SHA1
	}
	return opts.Hash
}

// CreateRequest returns a DER-encoded, OCSP request for the status of cert. If
// opts is nil then sensible defaults are used.
func CreateRequest(cert, issuer *x509.Certificate, opts *RequestOptions) ([]byte, error) {
	hashFunc := opts.hash()

	// OCSP seems to be the only place where these raw hash identifiers are
	// used. I took the following from
	// http://msdn.microsoft.com/en-us/library/ff635603.aspx
	_, ok := hashOIDs[hashFunc]
	if !ok {
		return nil, x509.ErrUnsupportedAlgorithm
	}

	if !hashFunc.Available() {
		return nil, x509.ErrUnsupportedAlgorithm
	}
	h := opts.hash().New()

	var publicKeyInfo struct {
		Algorithm pkix.AlgorithmIdentifier
		PublicKey asn1.BitString
	}
	if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
		return nil, err
	}

	h.Write(publicKeyInfo.PublicKey.RightAlign())
	issuerKeyHash := h.Sum(nil)

	h.Reset()
	h.Write(issuer.RawSubject)
	issuerNameHash := h.Sum(nil)

	req := &Request{
		HashAlgorithm:  hashFunc,
		IssuerNameHash: issuerNameHash,
		IssuerKeyHash:  issuerKeyHash,
		SerialNumber:   cert.SerialNumber,
	}
	return req.Marshal()
}

// CreateResponse returns a DER-encoded OCSP response with the specified contents.
// The fields in the response are populated as follows:
//
// The responder cert is used to populate the responder's name field, and the
// certificate itself is provided alongside the OCSP response signature.
//
// The issuer cert is used to puplate the IssuerNameHash and IssuerKeyHash fields.
//
// The template is used to populate the SerialNumber, Status, RevokedAt,
// RevocationReason, ThisUpdate, and NextUpdate fields.
//
// If template.IssuerHash is not set, SHA1 will be used.
//
// The ProducedAt date is automatically set to the current date, to the nearest minute.
func CreateResponse(issuer, responderCert *x509.Certificate, template Response, priv crypto.Signer) ([]byte, error) {
	var publicKeyInfo struct {
		Algorithm pkix.AlgorithmIdentifier
		PublicKey asn1.BitString
	}
	if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
		return nil, err
	}

	if template.IssuerHash == 0 {
		template.IssuerHash = crypto.SHA1
	}
	hashOID := getOIDFromHashAlgorithm(template.IssuerHash)
	if hashOID == nil {
		return nil, errors.New("unsupported issuer hash algorithm")
	}

	if !template.IssuerHash.Available() {
		return nil, fmt.Errorf("issuer hash algorithm %v not linked into binary", template.IssuerHash)
	}
	h := template.IssuerHash.New()
	h.Write(publicKeyInfo.PublicKey.RightAlign())
	issuerKeyHash := h.Sum(nil)

	h.Reset()
	h.Write(issuer.RawSubject)
	issuerNameHash := h.Sum(nil)

	innerResponse := singleResponse{
		CertID: certID{
			HashAlgorithm: pkix.AlgorithmIdentifier{
				Algorithm:  hashOID,
				Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
			},
			NameHash:      issuerNameHash,
			IssuerKeyHash: issuerKeyHash,
			SerialNumber:  template.SerialNumber,
		},
		ThisUpdate:       template.ThisUpdate.UTC(),
		NextUpdate:       template.NextUpdate.UTC(),
		SingleExtensions: template.ExtraExtensions,
	}

	switch template.Status {
	case Good:
		innerResponse.Good = true
	case Unknown:
		innerResponse.Unknown = true
	case Revoked:
		innerResponse.Revoked = revokedInfo{
			RevocationTime: template.RevokedAt.UTC(),
			Reason:         asn1.Enumerated(template.RevocationReason),
		}
	}

	rawResponderID := asn1.RawValue{
		Class:      2, // context-specific
		Tag:        1, // Name (explicit tag)
		IsCompound: true,
		Bytes:      responderCert.RawSubject,
	}
	tbsResponseData := responseData{
		Version:        0,
		RawResponderID: rawResponderID,
		ProducedAt:     time.Now().Truncate(time.Minute).UTC(),
		Responses:      []singleResponse{innerResponse},
	}

	tbsResponseDataDER, err := asn1.Marshal(tbsResponseData)
	if err != nil {
		return nil, err
	}

	hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm)
	if err != nil {
		return nil, err
	}

	responseHash := hashFunc.New()
	responseHash.Write(tbsResponseDataDER)
	signature, err := priv.Sign(rand.Reader, responseHash.Sum(nil), hashFunc)
	if err != nil {
		return nil, err
	}

	response := basicResponse{
		TBSResponseData:    tbsResponseData,
		SignatureAlgorithm: signatureAlgorithm,
		Signature: asn1.BitString{
			Bytes:     signature,
			BitLength: 8 * len(signature),
		},
	}
	if template.Certificate != nil {
		response.Certificates = []asn1.RawValue{
			{FullBytes: template.Certificate.Raw},
		}
	}
	responseDER, err := asn1.Marshal(response)
	if err != nil {
		return nil, err
	}

	return asn1.Marshal(responseASN1{
		Status: asn1.Enumerated(Success),
		Response: responseBytes{
			ResponseType: idPKIXOCSPBasic,
			Response:     responseDER,
		},
	})
}